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A sessile liquid drop can deform the substrate on which it rests if the solid is sufficiently “soft.” In

this paper we compute the detailed spatial structure of the capillary forces exerted by the drop on

the solid substrate using a model based on Density Functional Theory. We show that, in addition to

the normal forces, the drop exerts a previously unaccounted tangential force. The resultant effect

on the solid is a pulling force near the contact line directed towards the interior of the drop, i.e., not

along the interface. The resulting elastic deformations of the solid are worked out and illustrate the

importance of the tangential forces. VC 2011 American Institute of Physics. [doi:10.1063/1.3615640]

I. INTRODUCTION

A drop of liquid can adhere to a solid surface due to mo-

lecular interactions. The microscopic structure of the forces

exerted on the liquid is accounted for by classical wetting

theory, e.g., using the concept of disjoining pressure.1,2 From

a macroscopic perspective this induces a normal force local-

ized near the contact line of magnitude c sin h,3,4 where c is

the liquid-vapor surface tension and h the contact angle. This

attractive force (per unit line) is compensated for by a repul-

sive Laplace pressure spread out over the contact area of the

drop, giving a zero resultant force. Experimental evidence

for such nontrivial spatial structure of capillary forces can be

inferred from the elastic deformation of the solid below a liq-

uid drop.4–12 Figure 1(a) (taken from Ref. 8) shows that elas-

tic deformation is small, but measurable, on sufficiently soft

substrates.

One should note, however, that elastic deformation is

induced by forces exerted on the solid. This means that, a
priori, one cannot apply the classical theories of wetting,

which account for the forces exerted on the liquid. The goal

of the present paper is therefore to extend the standard for-

malism of wetting to compute the microscopic forces exerted

on the solid. It will turn out that, indeed, there are some cru-

cial differences when changing the “system” to which the

forces are applied from liquid to solid. We will work out the

consequences for the resulting elastic deformations, which

we show to be fundamentally different from existing theoret-

ical predictions.

There has been an intrinsic interest in the elasto-capillary

interactions such as drops on a soft surface.12–17 For example,

the contact angle of the drop on a soft surface is slightly dif-

ferent from Young’s equilibrium angle h.18–21 The energy bal-

ance now has an elastic contribution and for a small deviation

from Young’s angle Dh one finds Dh� c/(ER), where E is the

Young elastic modulus of the system and R the radius of the

drop. Other effects are enhancement of contact angle hystere-

sis,22 visco-elastic dissipation during drop spreading23,24 or

enhanced nucleation density in condensation processes.25 To

estimate the significance of elastic deformations it is instruc-

tive to consider the characteristic length scale ‘¼ c/E, from

the ratio of surface tension and the elastic modulus, which

determines the scale of deformations. For polycrystalline

materials, for which the elastic modulus is determined by the

interaction between molecules (E�GPa), such elastic defor-

mations are irrelevant (‘� 10�12 m). However, for solids

whose elasticity is of entropic origin (rubbers or gels with

E. 10 kPa) deformations extend into the micron range and

have indeed been observed experimentally.8,9,11,12,17,26

Interestingly, the elastic problem cannot be solved

within a macroscopic framework where the effect of surface

tension is represented by a localized force. This is because

the elastic response to a Dirac d-function gives an infinite

displacement at the contact line. This singularity can be

regularized by introducing microscopic physics, either in the

solid phase27 or in the liquid phase. The simplest and most

common approach is to spread out the pull of the contact line

over a small region of finite thickness w. By assuming that

this force is uniformly distributed in this thin region, Rusa-

nov5 and Lester6 have solved the elastic displacement profile

analytically. The resulting scale of displacement near the

contact line becomes� ‘ ln (R/w), illustrating the singularity

as w! 0. As pointed out by White,4 the precise distribution

of capillary forces can be obtained explicitly when introduc-

ing a microscopic model for the molecular interactions. It

was argued that the normal traction is simply equal to the

disjoining pressure P(h). This indeed gives a pressure peak

localized near the contact line, whose integral is equal to c
sin h. Once more it should be emphasized, however, that this

involves the forces exerted on the liquid, and not the forces

exerted on the solid, as required to obtain the elastic

deformation.

In this paper we compute the forces exerted by the liquid

on the solid using Density Functional Theory in the sharp-

kink approximation.28 This approach has the merit that (for

small contact angles) all results can be expressed in terms of

the disjoining pressure and can thus be related to the usual

wetting theory. Our central finding is that, besides a normal

component, there is also a nonzero tangential component

exerted on the solid, as depicted in Fig. 1(b). The physical
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origin of this tangential force can be understood by consider-

ing solid molecules directly below the contact line: there is

always more liquid present at the interior of the contact line

than at the exterior, yielding an “inward” attractive interac-

tion with a nonzero tangential component. Near the contact

line, this leads to the following normal (Fn) and tangential

(Ft) force components:

Fn=L ¼ c sin h; (1)

Ft=L ¼ cð1þ cos hÞ; (2)

where L is the length of the contact line. Hence, the resultant

force points towards the liquid (Fig. 1(c)) and is not directed

along the interface. The angle that characterizes the direction

of the force follows from tan a¼ sin h/(1þ cos h), which

simply gives a¼ h/2. This force was not considered before

in the literature and we therefore investigate the way it

affects the elastic deformation of the substrate.

It is worth emphasizing that the capillary forces pre-

dicted by the Density Functional Theory model are perfectly

consistent with thermodynamics and do not lead to a viola-

tion of Youngs law. One should bear in mind that (1,2) repre-

sent the forces exerted on the solid; by contrast, Youngs law

reflects the equilibrium shape of the deformable liquid and

thus involves forces exerted on the liquid.29 In fact, the same

model was previously shown to yield Youngs angle when

computing the equilibrium shape of the liquid30,31 and thus

yields a consistent thermodynamic picture. Let us further

note that the presented results are fundamentally different

from the tangential contribution described in Refs. 5, 7, 8.

Those refer to forces originating from the difference with

Young’s angle induced by deformation itself. This is a higher

order effect with respect to the basic tangential capillary

forces and is smaller by orders of magnitude (�‘/R).

The paper is organized as follows. Section II develops

the formalism used to calculate the forces on the solid and

points out the relation with disjoining pressure and thermo-

dynamic pressure. In Sec. III we then quantify the tangential

and normal forces, leading to (1,2), and illustrate the results

for a Van der Waals model for the interactions in Sec. IV. In

Sec. V we then show how the tangential capillary force

affects the elastic deformation of the solid in the limit of

small deformations, and the paper closes with a discussion.

II. DENSITY FUNCTIONAL THEORY IN THE
SHARP-KINK APPROXIMATION

Here we introduce the formalism needed to compute the

forces exerted by a liquid drop on a solid. This is based on

Density Functional Theory in the sharp-kink approximation,

in the same spirit as Refs. 28, 30–33. We will define four im-

portant pressures: the disjoining pressure P, the thermody-

namic pressure PL, the repulsion pr and the Laplace pressure.

These will be used in Sec. III to make explicit predictions for

the capillary forces on the solid.

A. Repulsion pr

From standard continuum mechanics one can express

the force F that the liquid exerts on the solid as

F ¼ �
ð
S

drr/LS �
ð
@S

dA pr; (3)

where S and @S are the volume and boundary of the solid

domain, respectively. Long-range (attractive) interaction

between liquid and solid molecules gives rise to a potential

/LS inside the solid, i.e., an energy per unit volume. The

short-range (repulsive) interactions are assumed to lead to

isotropic stresses and to determine completely the pair corre-

lation functions at a given density. The liquid therefore

exerts a contact pressure pr on the solid. Such an explicit sep-

aration in long-range attraction and short-range repulsion is a

standard approach in Density Functional Theory,34 and

forms the basis for our analysis. We furthermore use the so-

called sharp interface approximation,28,30,32 where the

FIG. 1. (a) Shape of an ionic liquid drop on a soft PDMS surface, deter-

mined experimentally by Pericet-C’amara et al.8 using laser scanning mi-

croscopy. The aspect ratio has been exaggerated by a factor 15. (b)

Macroscopic representation of the capillary forces below a small liquid drop

and resulting elastic displacements. A localized normal force of magnitude c
sin h pulls along the contact line and is balanced by the Laplace pressure,

which is applied to the wetted surface area. In this paper we show that there

is also a nonzero tangential force of magnitude c(1þ cos h). The resulting

force points towards the interior of the liquid, at an angle a to the horizontal.

The sum of these forces induces a small deformation of the interface. (c)

Physical origin of the tangential force. Solid molecules just below the con-

tact line experience a resultant attraction towards the interior of the drop,

where there is more liquid. This effect is particularly striking when the con-

tact angle h is above p/2.
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different phases are assumed to be homogeneous and sepa-

rated by an infinitely thin interface. In this framework, one

can express the liquid-on-solid potential as

/LSðrÞ ¼ qLqS

ð
L

dr0uLSðjr� r0jÞ; (4)

where uLS is the effective solid-liquid interaction potential,

which takes into account the pair correlation function

(throughout we assume the interaction to depend only on the

intermolecular distance r� r0j j). qL and qS are the liquid and

solid densities, respectively. The integral runs over the entire

liquid domain L, which implies that /LS is a functional of L.

More generally, one can define

/abðrÞ ¼ qaqb

ð
a

dr0uabðjr� r0jÞ; (5)

as the potential in phase b due to phase a. Note that in gen-

eral /ab 6¼ /ba, unless the domains of a and b have an identi-

cal shape.

The calculation of the force F (or to be precise the nor-

mal component Fn) still requires the repulsive pressure pr.

This can be obtained from the equilibrium condition inside

the liquid,

r pr þ /LL þ /SLð Þ ¼ 0 (6)

so that the total potential prþ/LLþ/SL must be homogene-

ous.28,30 Here it is assumed that the incompressibility of the

liquid results from the repulsive term pr, which adapts its

value according to the local values of the liquid-liquid and

solid-liquid interactions /LL, /SL.

B. Thermodynamic pressure PL

The existence of a quantity conserved throughout the

liquid (the total potential) allows to generalize the concept of

thermodynamic pressure PL of the liquid phase. Let us con-

sider the case where the liquid is in equilibrium with its

vapour phase. The constant of integration in Eq. (6) can then

be determined from the boundary conditions at the interfa-

ces. In the present framework repulsion is described as a

contact force, as opposed to attraction whose influence

spreads over a few molecular diameters. As a consequence

the repulsive potential pr must be continuous, while there is

no such condition for /LL and /SL. Inside the vapour the den-

sity is so small that interactions can be neglected compared

to the kinetic pressure Pv. Therefore, the only force transmis-

sion by the vapor on the liquid is through pr and we simply

find pr ¼ Pv in the vapor. When the liquid-vapor interface is

flat, we thus find pr ¼ Pv ¼ PL at the both sides of the inter-

face. If in addition the liquid film is macroscopically thick

(meaning that /SL¼ 0 at the interface), we thus obtain inside

the liquid,

pr þ /LL þ /SL ¼ PL þPLLð0Þ; (7)

where we denote PLL(0) as the value of /LL at the edge of an

infinite half space of liquid. For a detailed definition of Pab

we refer to the subsequent paragraphs.

We propose to take Eq. (7) as a definition of the thermo-

dynamic pressure PL in the liquid. It is, as expected, a char-

acteristic of the phase and it can be identified as the true

thermodynamic pressure in the macroscopic limit.

C. Disjoining pressure P

The disjoining pressure is defined as the pressure acting

on a flat liquid film of thickness h, due to the influence of the

solid substrate (Fig. 2). It can be related to the potential

Pab(h) at a distance h from an infinite half space:

PabðhÞ ¼
ð1
�1

dx

ð1
�1

dy

ð1
h

dz uabðjrjÞ

¼ 2p
ð1

h

r2 1� h

r

� �
uabðrÞdr : (8)

Contrarily to /ab 6¼ /ba, we recover the symmetry property

Pab¼Pba. Within the sharp-kink approximation discussed

above, the disjoining pressure P(h) can then be computed

as31,32

PðhÞ ¼ PSLðhÞ �PLLðhÞ: (9)

From this definition it is clear that P(h) quantifies the change

in energy when replacing part of the liquid by solid mole-

cules. In other words, it is the correction to the total potential

at the liquid vapour interface due to the presence of the solid

at a distance h.

To relate to the macroscopic concepts of surface ten-

sions and contact angles, one can use the following integral

properties:31

ð1
0

PLL hð Þdh ¼ �2c; (10)

ð1
0

PSL hð Þdh ¼ �cSV þ cSL � c

¼ �c 1þ cos hð Þ : (11)

Note that the solid-liquid interaction only involves the differ-

ence cSL – cSV, and not the surface tensions individually.

Here we made use of Young’s law, which was explicitly

validated in the context of the present DFT model.30,31 Com-

bining the two equations, one obtains the usual normalization

of the disjoining pressure,

FIG. 2. Repulsion pr for a flat liquid film of thickness h. The potentials PLL

and PSL are defined in the text.
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ð1
0

P hð Þdh ¼ �cSV þ cSL þ c

¼ c 1� cos hð Þ: (12)

Note that, in the case of a description that includes a precur-

sor film of thickness h0, the lower limit of integration should

be h0 instead of 0 for each of the integrals.

We can now provide the detailed structure of the poten-

tial fields inside the flat liquid film (Fig. 2). Once again, the

density inside the vapor can be neglected as compared to the

kinetic pressure Pv and we simply find pr ¼ Pv. Crossing the

liquid-vapour interface, the repulsive pressure pr is continu-

ous. The attractive potential at the liquid-vapour interface

can be decomposed as shown in Fig. 3. The attraction by the

solid leads to a potential /SL¼PSL(h). Namely, the solid

represents an infinite half-space at a distance h. The self-

attraction by the liquid film can be also expressed as a func-

tion of the interaction induced by half a space of liquid

located at a distance h: from the geometric construction in

Fig. 3 one finds /LL¼PLL(0)�PLL(h). We finally get the

expression of the thermodynamic pressure from Eq. (7),

PL ¼ Pv þPSLðhÞ �PLLðhÞ
¼ Pv þPðhÞ; (13)

where we used the definition of the disjoining pressure (9).

For a thin flat film, the thermodynamic pressure inside the

liquid is thus different from the vapour pressure. The differ-

ence is precisely the disjoining pressure. This justifies and

explains the concept.

D. Laplace pressure

When the interfaces are curved, it can be shown by

expansion of the domain of integration28,30 that there is a

deficit of energy that is exactly equal to the Laplace pressure.

Consider the liquid film shown in Fig. 4, which is assumed

to be much thicker than the molecular size. The liquid-vapor

interface presents a curvature j. If the curvature is macro-

scopic, h0 jj j � 1, the potential due to the liquid film turns

out to be

/LL ¼ PLLð0Þ þ c j: (14)

If j> 0, the liquid domain is convex so that the volume of

liquid attracting a given element of liquid at the surface is

smaller than in the flat case. Therefore, /LL <j jPLL 0ð Þj j–note

that /LL and PLL are negative. We finally get the expression

of the thermodynamic pressure from Eq. (7),

PL ¼ Pv þ c j: (15)

Indeed, one recognises the standard Laplace pressure. We

see here that, just like the disjoining pressure, the Laplace

pressure results from the geometry of the attractive volume.

E. Local approximation

In principle the above equations are sufficient to evalu-

ate the liquid-on-solid force F, once the molecular interac-

tion /LS is specified. However, the technical difficulty is that

both /LS and pr are functionals of the liquid domain L. In

turn, the shape of this domain has to be found self-consis-

tently such that the liquid is in equilibrium,28,30–33 i.e., by

minimizing the total free energy. For a liquid-vapor inter-

face, the equilibrium condition is that the interface is an iso-

potential. As pr ¼ Pv is constant, this imposes that /LLþ/SL

is also constant along the free surface. This can readily be

inferred from Eq. (7). It was shown in Refs. 30, 31 that this

framework indeed leads to Youngs law for the macroscopic

contact angle of the liquid at equilibrium.

The equilibrium condition can be simplified for interfa-

ces of macroscopic curvatures and small slopes.31,32 Then,

the nonlocal functionals reduce to functions of the local

thickness h and local curvature j. The two geometrical

effects previously described add to each other: the capillary

pressure is the sum of the Laplace pressure and the disjoining

pressure. At the free surface, the solid induced potential

reads /SL ¼ PSL hð Þ and the liquid induced potential reads

/LL ¼ PLLð0Þ �PLLðhÞ þ cj; (16)

In fact, one can show from a geometric construction that this

local approximation is valid when h� h0h0, which for small

slopes spans the entire liquid domain.

One finally obtains the thermodynamic pressure PL from

Eq. (7),

PL ¼ Pv �PLLðhÞ þPSLðhÞ þ cj ¼ Pv þ cjþPðhÞ: (17)

This equation can be used to compute the equilibrium shape

of the liquid domain, expressed as h(x, y). This will be done

explicitly in Sec. IV, where we compute the shape of drops

and capillary forces for a specific choice of P(h).

FIG. 3. The potential energy at the top surface of a liquid film of thickness

h can be decomposed into three contributions. The solid-liquid interaction

/SL is simply the potential due to an infinite half-space of solid located at

distance h. The liquid-liquid interaction /LL can be expressed into two con-

tributions of semi-infinite liquid phases: in one case it is located at a distance

h, while in other case it is at a zero distance.

FIG. 4. Repulsion pr for a macroscopic film of liquid that has a curved liq-

uid-vapour interface. By convention, the curvature j is positive on the

schematic.
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III. CAPILLARY FORCES ON A SOLID

We will now explicitly compute the force exerted by the

liquid on the solid, F, starting from Eq. (3). The Density Func-

tional model discussed above will allow for direct evaluation

of F, and also provides the detailed spatial distribution of the

capillary forces in the vicinity of a contact line. Throughout

this section we assume that the solid is undeformed.

A. Capillary forces under a macroscopic film

Far from a contact line, when the liquid film is macro-

scopic, one expects the force per unit area acting on the solid

to be simply the thermodynamic pressure PL, transmitted at

the interface. Here we check that this property is verified by

the Density Functional Theory model.

We consider again a perfectly flat solid-liquid interface

separating an infinite half space of solid from a macroscopic

drop of liquid (Fig. 4). The only gradient of /LS then arises

in the direction normal to the interface. Therefore, Eq. (3)

can be integrated along the normal direction yielding a nor-

mal force inside the solid,

Fn ¼ �
ð
@S

dA /LS þ pr½ �; (18)

where the integrand of (18) has to be evaluated at the solid-

liquid interface. Since the volume of liquid L is almost a

semi-infinite domain bounded by a flat interface, we can

write /LS ’ PLSð0Þ ¼ PSLð0Þ and /LL ’ PLLð0Þ. Using

Eq. (7), we obtain pr¼PL – PSL(0). Finally, this yields the

total normal stress acting on the solid (Fig. 4),

fn ¼ �pr �PLSð0Þ ¼ �PL

¼ �Pv � cj; (19)

which is the force per unit area. For a convex liquid interface

(j> 0), the solid is submitted to a higher (Laplace) pressure.

B. Tangential capillary force near a contact line

To identify the capillary forces near a contact line we

now consider a microscopic liquid film. We first derive the

component of the liquid-on-solid force that is tangential to a

flat solid interface. From Eq. (3) one can infer that it results

from the long-range term involving /LS, since pr acts along

the direction normal to the surface. Suppose that the contact

line extends in the y-direction, so that the liquid-vapor inter-

face can be written as h(x). Since @/@y¼ 0, the tangential

force Ft is along the x-direction and can be expressed as

Ft ¼ �
ð

dy

ð1
�1

dx

ð0

�1
dz
@

@x
/LS½ �; (20)

where the integrals run over the entire solid domain.

We now apply the local approximation to determine

/LS. At a position z< 0 inside the solid, the potential due to

the finite slab of thickness can be expressed as (Fig. 5),

/LS ¼ PSL �zð Þ �PSL h xð Þ � zð Þ: (21)

Here we used the symmetry property Pab ¼ Pba.

Consequently,

� @

@x
/LS½ � ¼ h0

@

@h
PSL h� zð Þ½ �; (22)

where h0 ¼ dh/dx. This implies that there will be a finite con-

tribution of the tangential force only when the liquid film

thickness varies with x (h0= 0). This breaking of left-right

symmetry, illustrated in Fig. 6, induces a tangential force

towards the side where the greater amount of liquid is pres-

ent. Replacing Eq. (22) in Eq. (20), we can integrate out the

z-direction and write the tangential force as

Ft ¼ �
ð

dy

ð1
�1

dx h0PSL hð Þ; (23)

where we used the property PSL(1)¼ 0.

From this expression one can draw two important con-

clusions. First, one can interpret the argument of the integral

as the tangential traction ft, defined as the tangential force

per unit area,

ftðxÞ ¼ �h0PSL hðxÞð Þ: (24)

This tangential capillary traction will be used below as input

to compute the elastic deformation. Strictly speaking, this

force is not localized at the solid-liquid surface, but it is

spread out over a thin region in the z-direction. In the elastic

calculation we will treat ft as localized on the surface. Sec-

ond, the total tangential force can be quantified exactly from

Eq. (23). Writing
Ð

dx h0 ¼
Ð

dh, one can use the integral

property (11), to find the central result Ft /L¼ c (1þ cos h)

(with
Ð

dy ¼ L), already presented in Eq. (2).

Actually, Eq. (2) does not rely on the local approxima-

tion and can be derived exactly, for arbitrary values of the

contact angle h. Starting again from Eq. (20), the integration

over x leads to

FIG. 5. Interaction of a volume element within the solid (at position z< 0)

with the liquid film of thickness h. The energy /LS can be decomposed into

two potentials due to a semi-infinite liquid phase: in one case the solid ele-

ment is at a distance �z from the semi-infinite liquid phase, whereas in the

other case it is at a distance h – z.

FIG. 6. (a) For a flat film the force exerted by the liquid on a volume ele-

ment of solid is in the direction normal to the interface. (b) When the liquid-

vapour interface is not parallel to the substrate, the left-right symmetry is

broken a tangential component appears. The bias is towards the side where

the amount of attracting liquid is greater. For a positive slope dh/dx, this is

oriented in the positive x direction.
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Ft ¼ �
ð

dy

ð0

�1
dz /LSjx¼1 � /LSjx¼�1
� �

: (25)

We assume that the liquid bulk is located in the positive x
direction, giving /LSjx¼1 ¼ PLS �zð Þ. At the same time,

the dry solid or the precursor film is located in the negative

x direction, h(�1)¼ h0. Using the construction of Fig. 5 with

film thickness h0, this gives /LSjx¼�1 ¼ PLS �zð Þ
�PLS h0 � zð Þ. Inserting these expressions in Eq. (25), we get

Ft=L ¼ �
ð0

�1
dz PSL h0 � zð Þ

¼ �
ð1

h0

d~z PSL ~zð Þ ¼ cð1þ cos hÞ; (26)

where we once more used the normalization (11).

C. Normal capillary force near a contact line

The normal force near a contact line can again be com-

puted from Eq. (18), but now we take into account that the

liquid thickness is finite and lies within the range of molecu-

lar interaction. For a liquid profile h(x), the expression for

the normal force becomes

Fn ¼ �
ð

dy

ð1
�1

dx pr þ /LSð Þz¼0: (27)

From Fig. 5, we compute the potential inside the solid,

located at the solid-liquid interface as

/LS ¼ PLSð0Þ �PLSðhÞ ¼ PSLð0Þ �PSLðhÞ : (28)

To determine pr we again use the equilibrium condition (7)

inside the liquid, and evaluate it at the solid-liquid interface.

This requires the potentials /LL and /SL at the solid-liquid

interface, as sketched in Fig. 7. The potential due to the solid

is simply /SL ¼ PSL 0ð Þ, since the solid is an infinite half

space. Using the local approximation, the liquid-liquid inter-

action can be expressed in terms of PLL (cf. Fig. 7),

/LL ¼ PLLð0Þ �PLLðhÞ: (29)

Hence, one obtains from Eq. (7)

pr ¼ PL þPLLðhÞ �PSLð0Þ: (30)

This gives the final expression for the normal force,

Fn ¼ �
ð

dy

ð1
�1

dx PL þPLLðhÞ �PSLðhÞf g

¼ �
ð

dy

ð1
�1

dx PL �PðhÞf g: (31)

This result can be interpreted as follows. The argument of

the integral represents the normal traction fn that can be used

to compute the elastic deformation,

fnðxÞ ¼ �PL þP hðxÞð Þ: (32)

This is indeed identical to the normal traction proposed by

White.4 The disjoining pressure contribution P(h) acts only

in the vicinity of a contact line, where h is in the range of the

molecular interactions. It is responsible for the “pulling”

force at the contact line. The second term, PL, is simply the

thermodynamic pressure in the liquid, which was already

identified in Sec. III A for a macroscopic drop.

To quantify the magnitude of the pulling force, we now

consider a two-dimensional profile for an infinite drop with

zero external pressure, i.e., PL ¼ Pv ¼ 0. Some numerical

examples will be presented in the next section (cf. Fig. 8).

The equilibrium profile is then given by a balance between

Laplace pressure and disjoining pressure, which according to

Eq. (17) can be written as

P hð Þ þ cj ¼ P hð Þ � c
h00

1þ h02
� �3=2

¼ 0: (33)

This can be integrated to4

c
h0

ð1þ h02Þ1=2

 !
x¼1

¼
ð1
�1

dx PðhÞ; (34)

where we used h0 �1ð Þ ¼ 0 corresponding to the dry solid

or the precursor film. Thus with h0 1ð Þ ¼ tan h, the left-hand

FIG. 7. The interaction of a volume element of liquid, located at the solid-

liquid interface, can be decomposed into the interaction exerted by the solid

/SL, plus two interactions between the same liquid element with a semi-infi-

nite liquid phase (in one case at a distance h and the other case at zero

distance).

FIG. 8. (Color online) Drop shape and capillary tractions for an infinite

drop with (a) h¼ 20� and (b) h¼ 70�. In both plots the drop profile h(x)/h0 is

represented by a solid line (green), the tangential traction ft/f0 by a dashed

line (red) and the normal traction fn/f0 by a dash-dotted line (blue). Tractions

are normalized by the pressure scale f0¼ c/h0.
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side becomes c sin h. The right-hand side is an integral over

the normal traction fn. Hence, the integrated normal force at

the contact line becomes, for PL¼ 0,

Fn ¼
ð

dy

ð1
�1

dx PðhðxÞÞ ¼
ð

dy c sin h; (35)

which is the anticipated result (1).

IV. NUMERICAL RESULTS

A. Drop shape and capillary traction

From the analysis above it is evident that in order to

compute the spatial structure of tangential and normal trac-

tions, one needs to know the exact shape of the drop. This

can be done once the disjoining pressure has been specified.

As an illustration of our results we consider a disjoining

pressure P(h) that corresponds to a Lennard-Jones (9-3)

potential,35,36

PSL hð Þ ¼ A

h0

h0

h

� �9

� h0

h

� �3
" #

; (36)

PLL hð Þ ¼ B

h0

h0

h

� �9

� h0

h

� �3
" #

; (37)

P hð Þ ¼ B� A

h0

h0

h

� �9

� h0

h

� �3
" #

; (38)

without any correction due to the pair correlation function.

The molecular length h0 is the equilibrium thickness of the

precursor film and sets the length scale for the interactions.

For simplicity we take the same functional form for liquid-

liquid and solid-liquid interactions, but this is not required.

The second term is the familiar long-range van der Waals

attraction, while the first represents the short-range repulsion.

Such a repulsion is needed to prevent matter from collapsing

and ensures that the surface tensions remain finite (cf. Eqs.

(10)–(12)). In this case, the repulsive term balances the

attraction at a molecular length h0, which selects the equilib-

rium thickness of a precursor film. To illustrate the robust-

ness of our results, Appendix A also discusses a disjoining

pressure for which the repulsion is modeled by a vanishing

pair correlation function. Despite the fact this model does

not lead to the formation of a precursor film, the resulting

tractions on the solid turn out very similar.

The constants A and B are determined by the integral

properties (Eqs. (10)–(12)), as A ¼ 8
3
c 1þ cos hð Þ and

B ¼ 16
3
c. Below we compute the shape of the drop and the

corresponding capillary traction fn,t for two cases: an infinite

two-dimensional drop and a finite axisymmetric drop.

B. Infinite two-dimensional drop

The drop shape for an infinite two-dimensional drop can

be determined by the equilibrium condition (33). The bound-

ary condition used for the solution of the drop profile is that

the interface asymptotically joins the precursor film,

h(�1)¼ h0. This automatically gives the correct contact

angle as h0 1ð Þ ¼ tan h.

Figure 8 shows the drop shape and the capillary traction

for two contact angles, h¼ 20� and 70�. The solid line

(green) represents the shape of the liquid h(x) normalized by

the precursor film thickness h0. The peaked curves are the

traction fn (dash-dotted line in blue) and ft (dashed line in

red), normalized by the natural pressure scale in the model f0
¼c/h0. Indeed, one can see that the capillary forces are local-

ized in the vicinity of the contact line, in between the precur-

sor film and the macroscopic drop. The width of the peaks is

set by the length scale h0. The most important result high-

lighted in these figures is that for a small contact angle, the

tangential traction is significantly larger than the normal trac-

tion—this is consistent with Eqs. (1) and (2) since the total

force (per unit length) is obtained by integrating over the

peaks. In fact, this integral property is determined by the val-

ues of the surface tensions and holds irrespective of the

choice of disjoining pressure. Only the detailed shape of the

peaks is affected by the choice of disjoining pressure—com-

pare, e.g., to the example given in Appendix A. It is worth

noting that, although the local approximation may not be

fully quantitative, the figure is still representative since the

localization of the capillary forces and their relative strengths

are independent of this approximation.

C. Axisymmetric drop

For three-dimensional axisymmetric drops, the equilib-

rium equation (17) for the drop shape h(r) reads37

cjþP hð Þ ¼ PL � Pv; (39)

where the expression of the curvature j is now

j ¼ � h00

1þ h02ð Þ3=2
� h0

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p : (40)

This equation is solved numerically with the boundary con-

ditions h0ð Þr¼0 ¼ 0 (symmetry) and h0ð Þr!1 ! 0 (matching

onto a precursor film). The same Lennard-Jones disjoining

pressure is used. Different drop volumes can be obtained by

varying PL � Pv.

Figure 9(a) shows the drop shape h(r) and normalized

tractions ft and fn for a contact angle h¼ 20�. Similar results

are obtained for different volumes and contact angles. The

thickness of the precursor film is slightly different from h0

due to the finite volume, and is set by PðhÞ ¼ PL � Pv. Once

more the tractions are strongly peaked near the contact line.

The negative sign for ft signals that it acts in the negative ra-

dial direction, i.e., towards the centre of the drop. A key dif-

ference with respect to infinite drop of Fig. 8 is that the

normal traction attains a nonzero constant value at the inte-

rior of the drop. This is simply the Laplace pressure (equal to

0.0061c / h0 here), with a minus sign.

This figure forms the quantitative basis for “cartoon” of

the capillary forces that was presented in Fig. 1. From the

sign of the normal traction, it is clear that inside the drop the

solid is pushed vertically downwards by the Laplace pres-

sure, whereas at the contact line it is pulled upwards by a
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force that decays rapidly on either sides of the contact line.

Similarly, there is a localized tangential force pointing

towards the interior of the drop.

V. ELASTIC DEFORMATIONS BELOW A LIQUID DROP

With the drop shapes and the tractions on the solid in

hand, one can compute the elastic response of the solid sub-

strate. We will use the tractions ft and fn from Eqs. (24) and

(32), as obtained for the undeformed solid. Hence, we

assume that the deformation of the solid does not affect the

resulting capillary traction, which in practice means

c=h0 � E. In addition, we treat the tractions as perfectly

localized at the interface. Ideally, one would like to treat the

solid as a semi-infinite elastic body and consider the tractions

as a simple load per unit length. This cannot be done, how-

ever, since such a line-loading gives rise to logarithmically

diverging displacements in the far field.38 This problem can

be avoided by considering a finite amount of liquid, which is

commonly done using axisymmetric drops of finite volume.39

An alternative is to consider an elastic medium that has finite

thickness,9 which is mathematically much more involved. As

already mentioned, none of this literature considers the elastic

deformations due to tangential capillary traction.

Here we consider elastic deformations induced by axi-

symmetric drops, whose tractions are functions of r only.

The elastic response then follows from standard expressions

for semi-infinite elastic bodies that can be found, e.g., in

Ref. 38. We distinguish the following cases:

• normal displacement due to normal traction (dn,n)
• normal displacement due to tangential traction (dn,t)
• tangential displacement due to normal traction (dt,n)
• tangential displacement due to tangential traction (dt,t)

The normal displacement at the solid surface due to nor-

mal traction can be obtained as follows:

dn;n rð Þ ¼ 1� �2

pE

ð1
0

4r0

r þ r0
K mð Þ fn r0ð Þdr0: (41)

Here � is the Poisson ratio, E is the Young’s modulus of the

material and K(m) is the elliptic integral of the first kind with

m ¼ 4rr0

rþr0ð Þ2. Similarly, the tangential displacement due to tan-

gential traction can be computed as

dt;t rð Þ ¼ 1� �2

pE

ða

0

4r0

r þ r0
ft r0ð Þ

� 2

m
� 1

� �
K mð Þ � 2

m
Y mð Þ

� �
dr0: (42)

where Y(m) is the elliptic integral of the second kind. It

should be noted that the Kernels display a logarithmic singu-

larity at r¼ r0, i.e. m¼ 1. This means that approximating the

tractions as Dirac d functions perfectly localized at the con-

tact line would give a diverging deformation at the contact

line. Instead, with the tractions spread out over a finite width

of order h0, the maximum displacement scales as �ln(R/h0),

where R is the drop size.

By contrast the normal displacement due to tangential

forces, dn,t, can be obtained in a much simpler form, without

invoking the elliptic integrals,

dn;t rð Þ ¼ � 1� 2�ð Þ 1þ �ð Þ
pE

ð1
r

ft r0ð Þdr0; (43)

and similarly, the deformation dt,n follows as

dt;n rð Þ ¼ � 1� 2�ð Þ 1þ �ð Þ
E

ðr

0

r

r0
fn r0ð Þdr0: (44)

These expressions no longer display a singular Kernel. Note

that the prefactors of these two expressions vanish for �¼ 1/2,

which corresponds to incompressible elastic materials.

From these expressions one can identify a typical length

scale ‘e for the elastic deformations. Since integrals over fn
and ft are proportional to the surface tension c, we define the

elastic length scale as

FIG. 9. (Color online) Radial profiles of height, stresses and displacements

for an axisymmetric drop. (a) Drop profile (solid green line); tangential trac-

tion ft (dashed red line); normal traction fn (dashed-dotted blue line). (b)

Normal deformation due to normal (dashed-dotted blue line) and tangential

(dashed red line) tractions. (c) Tangential deformations due to normal

(dashed-dotted blue line) and tangential (dashed red line) tractions.

TABLE I. Scaling of the displacements in normal and tangential directions

due to normal and tangential tractions, expressed in the elastic length

‘e ¼
1��2ð Þc

pE .

dn /‘e dt /‘e

Normal traction sin h 1�2�
1�� p sin h

Tangential traction 1�2�
1�� 1þ cos hð Þ 1þ cos h
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‘e ¼
1� �2ð Þc

pE
: (45)

Based on this length scale, we can now tabulate the scaling

of the deformations in different directions (Table I). In these

expressions we actually account for the h dependencies of

the normal/tangential tractions, according to Eqs. (1) and (2).

This clearly shows the importance of the tangential capillary

forces. For normal displacements, the effect of the tangential

traction is comparable to that of the normal traction, in par-

ticular when the contact angle h is small. For tangential dis-

placements, however, tangential forces even dominate the

effect of normal forces and omitting them induces a signifi-

cant quantitative error.

To further illustrate this, we have computed the defor-

mation profiles for h¼ 20�, �¼ 0.35, and for the disjoining

pressure given by Eq. (38). For the numerical evaluations of

the elliptic integrals (necessary for dn,n and dt,t), we used a

method discussed in Johnson38 that explicitly avoids the sin-

gular Kernel. The resulting displacement profiles are shown

in Figs. 9(b) and 9(c). Normal displacement produced by tan-

gential traction is comparable to that produced by the normal

traction, whereas the tangential deformation produced by the

tangential traction is significantly larger than the correspond-

ing contribution of the normal traction. The displacements

dn,n and dt,t display a maximum near the contact line, whose

magnitude depends on the drop size as �ln(R/h0). For

micron-sized or larger drops, the maximum will thus be

much more pronounced than shown here since h0 is of mo-

lecular scale. A peculiarity of dn,t and dt,n is that the displace-

ments are nonzero only at the interior of the drop, and can

thus not be measured outside the drop.

VI. SUMMARY AND PERSPECTIVE

In this paper, we have used a nanoscopic yet continuum

approach – the Density Functional Theory in the sharp-kink

approximation – to derive the capillary forces exerted on a

solid substrate by a liquid drop resting on it. The drop exerts

a large tangential capillary force in the vicinity of the contact

line, with a resultant magnitude of c(1þ cos h) per unit

length. Such a force has not been reported before and its

physical origin is sketched in Fig. 1(c): there is a resultant

attraction towards the interior of the drop, where most of the

liquid is situated. Clearly, this bias is of geometric origin and

therefore does not rely on details of the sharp-kink approxi-

mation. We thus expect that a more complete theory only

gives minor quantitative differences. Let us note that our

model recovers the normal component of the capillary force,

which is known to have a resultant c sin h. In the bulk of the

drop, the Laplace pressure exerts a vertical push on the

substrate.

This novel picture of capillary forces is next employed to

determine the elastic deformations of the solid. This is relevant

when the substrate is sufficiently soft, i.e., when the elastic

modulus is sufficiently small – to lead to nanoscopic or micro-

scopic displacements. The principal limitation of our elastic

calculation is that it only applies for small deformations, i.e.,

c=h0 � E. At larger deformation, the resulting change in

geometry of the solid will have a significant effect on the cap-

illary tractions, as demonstrated in the recent work by Jerison

et al.17 Another approximation is that we treated the tractions

as localized at the surface of the substrate. However, the cor-

rections induced by the finite range of the interactions will

have an effect only in a small region around the contact line,

where, e.g., the maximum displacements are known to depend

logarithmically on details of the regularization.4,5,38

The predicted tangential force is substantial and will

have a measurable effect on the elastic deformations. Typi-

cally, experiments studying the solid deformation below a

liquid drop measure the normal displacements8,10,11—see,

e.g., Fig. 1(a). This is equivalent to dn,nþ dn,t in the present

analysis. These substrates often have a Poisson ratio close to

�¼ 0.5, in which case the contribution due to the tangential

force dn,t is expected to be relatively small. By contrast, the

tangential deformations of the free surface are very sensitive

to the tangential force, as can be inferred from Fig. 9 and

Table I. We thus suggest that, in principle, tangential dis-

placements should provide a good experimental tool to

access tangential capillary forces.

Finally, let us emphasize that a tangential force below

the contact line of magnitude c(1þ cos h) provides a striking

perspective on capillary forces. We first note that this does

not lead to a violation of Youngs law for the contact angle:

the computed tractions are exerted on the solid, while

Youngs law reflects the forces exerted on the liquid. How-

ever, when projecting the surface tension along the liquid-

vapor interface, the tangential component would be c cos h
(Ref. 40) and not c(1þ cos h). Similarly, when considering a

plate plunged in a liquid bath, the virtual work principle dic-

tates that the resultant force on the solid in fact is c cos h
(Ref. 3). All these thermodynamic results are correct and do

not contradict our present analysis. Namely, c(1þ cos h) is

the force per unit length exerted below the contact line—

there are other forces exerted on the substrate at other places.

For instance, the tangential forces around a drop balance

each other. The case of the plunging plate is more subtle. We

show in the Appendix B that a normal force appears on the

solid in places where the substrate is curved. For the plung-

ing plate, there are thus very strong forces acting on the bot-

tom edges of the plate. Indeed, one can show that these

ensure that the overall force on the solid is in accordance

with the virtual work principle. Once again, we thus expect

direct experimental evidence of the tangential force

c(1þ cos h), by measuring the tangential compression of a

soft elastic plate in a liquid.
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APPENDIX A: TRACTIONS FOR A DIFFERENT
INTERACTION POTENTIAL

In this appendix we verify that the tractions shown in

Fig. 8 are representative in the sense that results are only

mildly affected by the choice of disjoining pressure. In
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particular, we use an interaction model that does not lead to

a precursor film, but has a well-defined contact line at which

h vanishes. For this, we consider an interaction

uabðrÞ ¼ �
cab

h2
0 þ r2

� �3
; (A1)

representing a van der Waals attraction that is regularized at

molecular scale h0. The regularization stems from the van-

ishing pair-correlation function within a distance h0. For nu-

merical convenience we follow28,33 and use a simplified

form that is easily integrated. From this potential we can

derive the disjoining pressure from Eq. (8),

PabðhÞ ¼ �
pcab

4h3
0

p
2
� tan�1 h

h0

� �
� h=h0

1þ ðh=h0Þ2

" #
: (A2)

Employing Eq. (A2) in Eqs. (10) and (11), we get

cLL ¼
8h2

0c
p

; (A3)

cSL ¼
4h2

0cð1þ cos hÞ
p

; (A4)

and hence the total disjoining pressure becomes

PðhÞ ¼ cð1� cos hÞ
h0

p
2
� tan�1 h

h0

� �
� h=h0

1þ ðh=h0Þ2

" #
:

(A5)

We consider the shape of an infinite two-dimensional drop

corresponding to this disjoining pressure. For this we numeri-

cally evaluate (33) with the equilibrium boundary conditions

at the contact line, namely h(0)¼ 0 and h0(0)¼ 0. Figure 10(a)

shows the resulting drop shape as well as the tractions from

Eqs. (24) and (32). These results should be compared to Fig.

8(a). First, one notes that the new model does not lead to the

formation of a precursor film. Yet, the resulting tractions dis-

play very similar characteristics as those obtained from the

model with precursor film. The total force (per unit length) is

obtained by integrating over the peaks and these are once

more equal to c sin h and c(1þ cos h), for the normal and the

tangential components. Only the detailed shape of the peaks is

affected by the choice of disjoining pressure, though for each

of the cases the peaks have a typical width� h0.

A peculiar feature of the model without the precursor

film is that the presence of the contact line seems to induce a

discontinuity in the tractions. Namely, outside the drop,

x< 0, the tractions are strictly zero. Inside the drop, the nor-

mal traction is finite since limh!0þP hð Þ ¼ P 0ð Þ 6¼ 0, and

hence leads to a discontinuity. We show, however, that this

discontinuity is an artifact of the local approximation of the

DFT model. This approximation implicitly assumes small

spatial derivatives “d/dx,” a condition that is clearly violated

near the contact line in case there is no precursor film. Using

the methods described in Ref. 33, we were able to numeri-

cally solve the full DFT model for the interaction (A1). By

this we mean that we solve the drop shape and tractions from

the functionals described in Sec. II, without invoking the

local approximation. The results are presented in Fig. 10(b).

Indeed, the tractions are very similar to those predicted by

the local approximation, the main difference being a smooth-

ening of the discontinuity across x¼ 0.

APPENDIX B: CURVATURE INDUCED FORCE

In this appendix, we compute the force exerted by the

liquid on a solid of curvature j, depicted in Fig. 11. From

the point of view of the liquid, the same interface has thus a

curvature �j. In this case the expression of the normal stress

on the solid is slightly modified with respect to the flat sur-

face, cf. Eq. (18), as it picks up a curvature contribution:

fn ¼ �pr � /LS þ j
ð1

0

PSL hð Þdh

¼ �pr � /LS � cð1þ cos hÞj: (B1)

Considering the sub-system shown in dark gray in Fig. 11

the curvature correction term comes from the reduced vol-

ume that is attracted to the liquid, as compared to the flat

case. If the solid is convex, i.e., j> 0, this reduction of

attraction effectively yields an increased pressure.

FIG. 10. (Color online) Drop shape and capillary tractions for a two-dimen-

sional infinite drop for a model that does not lead to a precursor film. Molec-

ular interactions given by Eq. (A1), contact angle h¼ 20�. (a) Numerical

results obtained from the “local approximation.” (b) Numerical results

obtained from the full DFT model, without invoking the local approxima-

tion. See text for details. Overall, the results are very similar to those of Fig.

8(a). Note that the local approximation induces a discontinuity in the normal

traction, which is not present in the full model.

FIG. 11. Repulsion pr at the surface of a curved solid. By convention, the

curvature j is positive on the schematic.
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As previously discussed, repulsion can be expressed

using the total potential. Using the analogue of Eq. (14) for

the solid-liquid interaction, one can express the potentials,

/LL ¼ PLLð0Þ � c j; (B2)

/SL ¼ PSLð0Þ þ
1

2
c 1þ cos hð Þj; (B3)

/LS ¼ PLSð0Þ �
1

2
c 1þ cos hð Þj: (B4)

By symmetry, we also have PLS 0ð Þ ¼ PLS 0ð Þ. From Eq. (7),

we get the expression of the repulsion,

pr ¼ PL þ
1

2
cð1� cos hÞj�PSLð0Þ: (B5)

Finally, we obtain from Eq. (B1),

fN ¼ �PL � cj: (B6)

Hence, the solid is pushed by the liquid towards the inside of

the curvature. Surprisingly, the solid-vapor and solid-liquid

surface tensions do not appear in the expression.
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