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1 Method: Measuring the average depth of the atmospheric
boundary layer

In this supplementary method section, we show how the typical mixing height H can be determined
from ground temperature measurements.

1.1 Aim of the approach

The main aim of the letter is to show the influence of the vertical structure of the atmospheric
boundary layer (ABL) on the size of giant dunes. These dunes form over long periods of time
(typically ten thousands years) and should thus be related to statistically averaged quantities. The
detailed modelling of the atmospheric processes is very complex due to its intrinsic variability: e.g.
nocturnal/diurnal cycles, daily variation of cloud cover and weather conditions, long term memory
effects and seasonal evolution of the ABL, etc [5, 6]. Besides, the evolution of dunes is also an
intermittent process determined by wind driven sand transport and thus sensitive to the wind
regime (Fig. 5). To achieve a fully quantitative description of the problem, one would thus need
to investigate the average effect of the ABL structure, adequately weighted by the wind strength
and direction [7].

This is far beyond the current state of science for several reasons amongst which the lack
of long time series of spatially resolved atmospheric data in desertic zones and the lack of ABL
models valid on long time-scales. We show here that despite this complexity, a semi-quantitative
description can be proposed (at least in the tropical desertic regions) from elementary scaling law
arguments. For instance, figure 5 shows that the winds contributing most to sand transport have
a velocity around 2 Uth and blow a significant fraction of time. This justifies to ignore the wind
fluctuations and in particular the rare largest storms, in first approximation. In the same spirit,
the description detailed below provides a way to average systematic daily variations as well as
random weather fluctuations to get the typical ABL structure at the seasonal time-scale.
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Figure 5: (a) Fraction of the overall aeolian sediment flux due to the largest winds, as a function
of the fraction of time during which they blow. This parametric plot represents, on the vertical
axis, the flux due wind speeds larger than U normalised by the total flux; The horizontal axis
is the time during which the wind speed is larger than U normalised by the time during which
the wind speed is larger than the transport threshold Uth. This cumulative distribution is almost
the same for the three deserts shown here, Atlantic Sahara (Tan-Tan, N), Grand Erg Oriental
(Ouargla, •) and RubAlKhali (Sulayel, �). However, the fraction of time during which there is
transport (U > Uth is respectively 45%, 32% and 25% on the ground and 65%, 69% and 44% on
dune summits. Typically, half of the overall sediment flux is transported by the 25% more intense
winds. The largest 1% storms, blowing one or two days per year, transport around 8% of the
overall flux. (b) Probability distribution function (PDF) of the wind velocity U normalised by
Uth. The PDF is weighted by the sediment flux the wind can transport: it measures the fraction
of the overall flux transported by the winds of velocity U . The winds contributing most to the
overall transport have a velocity between Uth and 3 Uth.
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Figure 6: (a) Example of vertical profiles of the virtual potential temperature (IGRA data base [2],
Ouargla, Algeria). The symbols correspond to different sounding dates: june 29th 1997 (◦), july
7th 1997 (�), october 16th 1997 (M), october 25th 1997 (•), november 28th 1997 (�), february
1st 2000 (N) and february 5th 2000 (H). They have all been performed around 12 UTC/GMT.
The profile below H is flat: Θv(z) ' Θ0. Above the capping layer, the profile is fitted by a linear
relation, giving the slope γ ' 4K/km and the reference temperature ΘFA

0 .

We do not intend to provide a meteorological description which could account for local weather
particularities and for the variability at the scale of days. Rather, we aim to understand and isolate
the major physical mechanisms governing the ABL structure. More precisely, the depth of the
ABL, averaged at the seasonal scale, turns out to be mostly determined by the ground temperature.
Using available meteorological data, we show here that the identified scaling laws are robust and
reliable for the giant dune formation problem.

1.2 Density profile

The typical vertical structure of the ABL in desert regions almost ideally fits the convectively
driven situation described in text books [5, 6, 7]. As shown in figure 6, a well-mixed layer (ML) of
thickness H lies below the stratified free atmosphere (FA). In between, the entrainment zone has
a thickness negligible compared to H. The air density profile is roughly constant in the ML, and
linearly stratified in the FA. We note by ∆ρ the density drop from the ML to the FA, which is much
smaller than the reference density ρ0. To the first order, the density profile can be approximated
by:

ρ = ρ0 for z < H, (1)

ρ = ρ0 −∆ρ+ (z −H)
dρ

dz
for z > H, (2)

where the density gradient is a negative constant. The so-called Brunt-Väisälä frequency N ≡√
−g 1

ρ0

dρ
dz is then also a constant and characterises the stability of the FA. The time-scale over

which the depth H evolves is assumed to be large compared to the hydrodynamical and thermo-
dynamical equilibration times.

1.3 Virtual potential temperature profile

It is usual in the atmospheric context to introduce the virtual potential temperature defined as

Θ = Tv

(
P0

P

)R/Cp

, (3)
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where P0 = 105 Pa is a reference pressure, R = 8.31 J/K the perfect gaz constant, Cp the air molar
heat capacity and Tv is the virtual temperature defined with respect to the ordinary temperature
as

T

Tv
= 1−

(
1− Mw

Md

)
esat(Td)
P

. (4)

In this expression, esat is the saturated vapour pressure – e.g. given by Hylan and Wexler’s fit
[1] – and Td is the dew point temperature; Mw = 0.018 kg/Mol and Md = 0.029 kg/Mol are the
molecular masses of water and dry air respectively. It is easy to sea that dΘ = 0 for an air parcel
experiencing an adiabatic transformation.

The equation of state of the air can be written as ρ = P0
RdΘ

(
P0
P

)R/Cp−1
, where Rd ≡ R/Md =

287 m2s−2K−1Mol−1. In agreement with the classical Boussinesq approximation, we consider that
the main variations of the density come from those of the temperature (and not the pressure) [8].
It follows that dρ

ρ ' −
dΘ
Θ . The Brunt-Väisälä frequency can therefore be expressed in terms of

the potential temperature as
N2 = gγ/Θ, (5)

where the temperature gradient γ ≡ dΘ
dz is a positive constant. Similarly to the density, the

potential temprature vertical profile is then given by:

Θ = Θ0 for z < H, (6)
Θ = Θ0 + ∆Θ + γ(z −H) for z > H. (7)

The surface layer, dominated by the shear induced turbulent mixing, is not explicitely taken into
account within these approximations. From the z > H region, one can extrapolate the value ΘFA

0

of the virtual temperature on the ground:

ΘFA
0 = Θ0 + ∆Θ− γH. (8)

Neglecting the temperature jump across the capping layer, this ideal picture leads to the following
geometrical relation between ground temperature and mixing height:

H ' (Θ0 −ΘFA
0 )/γ. (9)

The above vertical structure is used in section 7 for the aerodynamic calculation. We show below
that this description, although not valid to describe the daily fluctuations of the ABL, provides
the correct scaling laws for quantities averaged over few weeks.

1.4 Relation between mixing height and ground temperature

There is no available data base allowing a direct and systematic analysis of the potential temper-
ature Θ, its vertical gradient γ, the corresponding Brunt-Väisälä frequency N , the capping height
H and the temperature drop ∆Θ at the crossing of the interface between the FA and the ML. The
balloon soundings from the Integrated Global Radiosonde Archive (IGRA [2, 3]) provide some raw
meteorological data. They are unfortunately rather sparse in time and with a poor vertical reso-
lution in the mixing layer. We have focused on three places – Ouargla (31◦55’N 5◦24’E, Algeria),
Sulayel (20◦28’N 45◦37’E, Saoudi Arabia) and São Luis (02◦53’S 44◦28’W, Brasil) – to process
the IGRA data and extract the potential temperature measured on the ground Θ0, the potential
temperature gradient γ, the capping height H and the potential temperature extrapolated to the
ground from a linear fit of the data in the FA region ΘFA

0 .
These quantities are plotted as a function of the day number in figure 7. Panels (a) and (b)

show that although both Θ0 and ΘFA
0 follow the seasonal changes, the variation amplitude of the

latter is significantly smaller than that of the former. The most robust output is the temperature
gradient (panel (d)): γ is almost constant (γ ' 4K/km) all year long and independent of the
location, which means that the FA is only weakly affected by the heating of the ground, but
rather is governed by atmospheric mechanisms on a large scale, in particular radiative transfers and
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Figure 7: Meteorological data computed from balloon soundings [2] in three places: Ouargla (Al-
geria), Sulayel (Saoudi Arabia) and São Luis (Brasil). (a) Virtual potential temperature measured
on the ground Θ0 (•) and extrapolated to the ground from a linear fit of the data in the FA region
ΘFA

0 (◦), as a function of the day number, in Ouargla. Available data cover the time period june
1997 – may 2000 and have been averaged over a 10 day wide running window. (b) Same for Sulayel
over the period october 1977 – december 1978. (c) Depth of the ML (N) and ground temperature
difference Θ0 − ΘFA

0 (◦), in Ouargla, as a function of the day number. The dashed line corre-
sponds to the prediction of H by equation (12), whose parameters are determined by fitting the
ground temperature time series (Fig. 8). The arrow shows the typical mixing height determined
by H = δΘ/γ. (d) Free atmosphere virtual potential temperature gradient γ in Ouargla (�),
Sulayel (◦) and São Luis (�) as a function of the day number.

residual turbulent mixing. Other typical values determined from this analysis are: N ' 0.01s−1,
∆Θ/Θ0 = ∆ρ/ρ0 ' 0.005.

Finally, in panel (c), we display the mixing height H, averaged over 10 days, as a function
of time. From the technical point of view, we average all the points obtained over several years
whose acquisition dates coincide within 5 days. It is thus an ensemble average that mixes very
different realisations, for instance sunny days where the convective layer reaches its maximum
possible height (Eq. 9) but also cloudy days during which the convective layer does not develop.
As expected, H is larger during summer time and almost vanishes in winter. Although not
necessarily valid for individual profiles, we find that the average thickness of the ML follows very
well the seasonal evolution of the temperature difference Θ0−ΘFA

0 , averaged in the same way as H.
These results thus support a simplified picture in which the FA is in a steady state, characterised
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Figure 8: Ground virtual potential temperature versus time, in Ouargla, Algeria (airports weather
data base [4]). The raw data are displayed in panel (a). In panel (b), the sinusoidal daily variations
have been subtracted. The remainder has been fitted by equation (11) (red line). (c) Residual
fluctuations, after substraction of both annual and daily sinusoidal variations.

by constant values of γ and ΘFA
0 (Fig. 6).

Because the meteorological database from sounding balloons such as those discussed above
do not provide sufficiently frequent and precise data sets, we make use of ground temperature
measurements to evaluate the seasonal variations of Θ0−ΘFA

0 . These measurements are available
from weather airport data bases in all relevant places in the world. This database provide daily
measurements (temperature, pressure and humidity) performed with almost identical techniques
in similar environments, see [4]. We have analysed more than a hundred such time-series in tropical
deserts. They all show daily variations superimposed on quasi-sinusoidal annual variations (Figs. 8
& 9). Interestingly, the amplitude of daily variations does not depend much on the season. As a
consequence, a good approximation of these data is given by:

Θ0 = Θ + δΘ
√

2 sin(2πt+ ϕ) +D
√

2 sin(2πt/Tday + ϕday), (10)

where time t is expressed in years and Tday is 1 day. In this expression, Θ is the average temperature
and δΘ ≡ [(Θ−Θ)2]1/2 stands for the amplitude of variation of the ground temperature at the
scale of the year (its rms value) and D at the scale of the day. In most places (but not e.g. in
Brasil) the fitted phases ϕ and ϕday correspond to a maximum temperature in the mid-afternoon
in the mid-summer. All the values corresponding to the different places investigated in this study
are displayed in tables 1 and 2. The panels (a) of figures 8, 9 and 10 show raw data with the
annual sinusoidal best fit

Θ0 = Θ + δΘ
√

2 sin(2πt+ ϕ), (11)

superimposed. Panels (b) show the same time series, once the sinusoidal fit of the daily variations
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Figure 9: Ground virtual potential temperature versus time, in Sulayel, Saoudi Arabia. The raw
data are displayed in panel (a). In panel (b), sinusoidal daily variations have been subtracted. The
remainder has been fitted by equation (11) (red line). (c) Residual fluctuations, after substraction
of both annual and daily sinusoidal variations.

is subtracted. Finally, panels (c) show the residual fluctuations i.e. the difference between the raw
data and its fit by equation (10), which reflect the weather randomness. We hypothesise that giant
dunes are insensitive to these stochastic variations, which can thus be ignored in the description
of the problem.

Despite the extrapolated ground temperature ΘFA
0 is not perfectly constant in time, the panel

(c) of figure 7 shows that the rms value of Θ0 − ΘFA
0 is approximately equal to δΘ. Since the

convective ML is not necessarily present nor well developed (in particular at night), the average
ML thickness H is weaker than expected if the ideal picture described in section 1.3 was true at
each instant. Still, the fact that the mixing height can go higher for higher ground temperature
is such a robust process that the geometrical law holds, within a prefactor:

H ∼ δΘ
2γ

[1 + sin(2πt+ ϕ)] . (12)

This estimate is in fair agreement with the meteorological data in Ouargla, see figure 7(c). The
maximum of this curve, δΘ/γ, gives a typical value of the thickness of the well-mixed layer,
representative of the corresponding meteorological local conditions. This is the value that we use
to investigate the scaling law of the giant dune size. Note that the annual average of the mixing
height is in fact closer to 1

2 δΘ/γ.
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Figure 10: Ground virtual potential temperature versus time, in Parnaiba (02◦55’S 41◦36’W, same
region as São Luis, Brasil). The raw data are displayed in panel (a). The red solid line is the
best fit by a sinusoid (Eq. 11). The orange lines correspond to the maximum and minimum daily
temperatures given by equation (13). (b) Average depth of the ML in Parnaiba as a function of the
day number computed on the whole time series (N) or conditioned by the existence of an inversion
layer persistent after one night (◦). The dashed line corresponds to the model equation (12), whose
parameters are determined by fitting the ground temperature time series (a). Available data cover
the time period january 1984 – july 1987. The solid line corresponds to the model equation (14),
for the maximum mixing height.

1.5 Maximum vs average mixing height

To understand the robustness of the relation between mixing height and ground temperature, we
summarise here the basic processes at work during annual and daily cycles. During the nocturnal
cycle, the ground virtual potential temperature becomes smaller than that in the former ML – and
that in the FA. As a consequence, the fluid gets stably stratified down to the ground: convection
is blocked and the only remaining fluctuations come from mechanical turbulence i.e. inertial non-
linear effects. While convection turbulence tends to homogeneise the virtual potential temperature
Θ, mechanical turbulence tends to homogeneise the real temperature T and thus slowly restores
stratification below the free atmosphere (Eq. 3). Still, the temperature profile in the morning most
often keeps memory of previous days. During the next diurnal cycle, a turbulent heat flux from the
surface into the atmosphere occurs whenever the ground temperature becomes larger than that
of any layer above it. A new mixing layer develops whose maximum height is that for which the
virtual potential temperature in the free atmosphere is equal to that of the ground, independently
of the initial profile let after the night. Indeed, the turbulent heat flux would be suppressed if the
ground was cooler than the FA. Equation (9) thus corresponds to this maximum height, reached
after some transient. Under different weather conditions (e.g. clouds), the ground temperature
can never sufficiently increase to induce strong convection and the mixing height remains very
small.

Figure 10 illustrates this crude picture on an extreme example (coastal Brasil). Indeed, panel
(a) shows there is almost no annual temperature variation (δΘ = 0.7 K) due to the thermal
regulation by the oceanic influence. Then, in comparison, the daily variations are rather important
(D = 1.5 K), the maximum and minimum temperature being well described by:

Θ± = Θ + δΘ
√

2 sin(2πt+ ϕ)±D
√

2. (13)

Figure 10(b) shows the annual variations of the mixing height, computed from atmospheric sound-
ings in two different ways. The bottom series of symbols (N) corresponds to a value averaged over
a 10 day wide running window, taking into account the whole available data (measured in the
morning, at 12 UTC/GMT). This includes the frequent situation where the stratification extends
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down to the ground: we have then set the mixing height to 0. The top series of symbols (◦) is the
same, but conditioned by the persistence of an inversion layer from the previous day i.e. when
the profile is not stratified down to the ground. As for the Algerian case (Fig. 7 c), the average
mixing height is in nice agreement with the prediction of equation (12). Still, the mixing height
can grow to roughly 1 km, as shown by the conditional average. Following our analysis, H cannot
be larger than the geometrical relation (9), evaluated for the ground maximum temperature Θ+:

Hmax =
D
√

2 + δΘ
√

2 [1 + sin(2πt+ ϕ)]
γ

. (14)

It can be observed that this relation fits quantitatively the data, which reinforces the strength of
the theoretical argument for the maximum ABL depth (Eq. 9) is very strong. In other words, one
can consider that the maximum is reached as soon as a mixed layer develops.

1.6 Dispersion relation of the waves propagating on the capping layer

We derive here the dispersion relation of the waves propagating on the capping layer (equation (1)
of the letter). In the first approximation, the mixed layer and the free atmosphere are considered
as two immiscible perfect fluids. Following the ABL structure previously described, the density
of the ML is homogeneous and equal to ρ0 and there is a density drop ∆ρ at the interface. The
FA is stably stratified from the interface to infinity, with a constant Brunt-Väisälä frequency N
defined by:

N2 = − g

ρ0 −∆ρ
dρ

dz
(15)

In the ML, the Euler equations read:

∂xux + ∂zuz = 0, (16)
ρ0 (∂tux + ux∂xux + uz∂zux) = −∂xP, (17)
ρ0 (∂tuz + ux∂xuz + uz∂zuz) = −∂zP − ρ0g, (18)

Linearising around the static reference situation, which is homogeneous in space and time, the
general solution takes the form eiωt+ikx+q↓z. The pressure disturbance P̃ is related to the vertical
velocity by:

ρ0ωq↓uz = ik2P̃ , (19)

ρ0iωuz = −q↓P̃ , (20)

In the limit of large kH, the vertical decay rate is related to the wavenumber by:

q↓
k

= 1. (21)

This means that the disturbances decay exponentially with the distance to the interface, with a
rate equal to k. In the FA, we use the Boussinesq approximation [?]:

∂xux + ∂zuz = 0, (22)
(ρ0 −∆ρ) (∂tux + ux∂xux + uz∂zux) = −∂xP, (23)
(ρ0 −∆ρ) (∂tuz + ux∂xuz + uz∂zuz) = −∂zP − ρg, (24)

∂tρ+ ux∂xρ+ uz∂zρ = 0. (25)

Linearising around the static reference situation, which is also homogeneous in space and time,
the general solution again takes the form eiωt+ikx+q↑z, now with:

(ρ0 −∆ρ)ωq↑uz = ik2P̃ , (26)

(ρ0 −∆ρ)
(
N2 − ω2

)
uz = −iq↑ωP̃ , (27)
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which gives:

q↑
k

= −

√
1−

(
N

ω

)2

. (28)

The interface position H follows the material velocity on both side of the interface:

∂tH = lim
z→H+

uz = lim
z→H−

uz (29)

The last boundary condition is the continuity of pressure through the interface:

lim
z→H+

P = lim
z→H−

P (30)

This leads to the following dispersion relation for the interfacial waves,

ω2 +
(

1− ∆ρ
ρ0

)
ω
√
ω2 −N2 =

∆ρ
ρ0
gk, (31)

valid for asymptotically large kH. Note that the generalisation for finite kH may be easily
obtained. Introducing the phase velocity c = ω/k, one recovers equation (1) of the letter. We can
see that the waves can propagate, localised at the interface, when ω is larger than N . However,
when ω < N , an imaginary term appears, which means that the interfacial waves are damped.
The waves are not localised anymore on the interface and internal waves are radiated.

In rivers, gravity waves can also propagate at the free surface. Their dispersion relation is
the same, except that the upper region can be treated as vacuum (ρ = 0), i.e. ∆ρ = ρ0 and
N = 0. As discussed above as well as in the letter, the density drop in the atmospheric case is
much smaller (∆ρ/ρ0 ' 0.005). In that case, it is also important to emphasise that, even if the
waves are trapped on the capping layer, their propagation is influenced by the stratification of the
whole FA: that is the reason for which the dispersion relation ω(k) depends on N .

In the section 7, we derive the disturbances induced by the presence of dunes on the atmospheric
flow, including turbulence. The effect of the capping layer is interpreted in terms of standing
interfacial waves.
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Dune type Coord. λ Nearest Coord. T δT δΘ/γ
and location weather station Θ δΘ

(km) (K) (K) (km)
Star dunes 19◦27’ N 1.7 Sharurah 17◦28’ N 302 5.6 1.6
(Rub’ al Khali, Oman) 53◦42’ E (S. Arabia) 47◦07’ E 310 6.4
Star dunes 31◦27’ N 1.8 Hassi Messaoud 31◦40’ N 297 8.8 2.3
(Erg Oriental, Algeria) 07◦45’ E (Algeria) 06◦09’ E 298 9.3
Star dunes 31◦09’ N 2.0 Errachidia 31◦56’ N 293 8.2 2.2
(Erg Chebbi, Morocco) 03◦59’ W (Morocco) 04◦24’ W 304 8.7
Star dunes 31◦27’ N 2.2 Hassi Messaoud 31◦40’ N 297 8.8 2.3
(Erg Oriental, Algeria) 07◦45’ E (Algeria) 06◦09’ E 298 9.3
Star dunes 32◦03’ N 2.5 Altar 30◦43’ N 296 7.4 2.1
(Sonora, Mexico) 114◦23’ W (Mexico) 111◦44’ W 300 8.3
Longitudinal dunes 21◦07’ N 1.1 Atar 20◦31’ N 302 4.2 1.2
(Shara, Mauritania) 09◦41’ W (Mauritania) 13◦04’ W 304 4.8
Longitudinal dunes, 18◦11’ N 1.9 Sharurah 17◦28’ N 302 5.6 1.6
(Rub’ al Khali, S. Arabia) 47◦21’ E (S. Arabia) 47◦07’ E 310 6.4
Longitudinal dunes 24◦15’ S 2.2 Hardap 24◦32’ S 294 5.6 1.5
(Namib, Namibia) 15◦03’ E (Namibia) 17◦56’ E 308 5.9
Longitudinal dunes 24◦09’ N 2.3 Bordji B. Mokhtar 21◦20’ N 300 6.9 1.9
(Sahara, Mali) 04◦45’ W (Algeria) 0◦57’ E 304 7.7
Longitudinal dunes 27◦54’ N 2.8 In Amenas 28◦03’ N 296 8.0 2.1
(Erg Oriental, Libya) 11◦45’ E (Algeria) 09◦38’ E 302 8.6
Longitudinal dunes 39◦58’ N 2.8 Dunhuang 40◦09’ N 284 11.7 3.3
(Gobi, China) 92◦34’ E (China) 94◦41’ E 295 13.1
Longitudinal dunes 30◦21’ N 2.9 Nokkundi 28◦49’ N 299 8.2 2.4
(Iran) 59◦21’ E (Iran) 62◦45’ E 307 9.5
Transverse dunes 02◦37’ N 0.2 Parnaiba 02◦55’ S 302 0.9 0.2
(Coastal desert, Brasil) 42◦57’ W (Brasil) 41◦36’ W 303 0.7
Transverse dunes 11◦26’ N 0.2 Coro 11◦25’ N 302 0.4 0.1
(Coastal desert, Venezuela) 69◦42’ W (Venezuela) 69◦41’ W 303 0.4
Transverse dunes 28◦04’ N 0.4 Las Palmas 27◦56’ N 294 2.1 0.6
(Atlantic Sahara) 12◦13’ W (Spain) 15◦23’ W 294 2.4
Transverse dunes 14◦54’ S 0.4 Pisco 13◦45’ S 293 2.5 0.7
(Coastal desert, Peru) 75◦30’ W (Peru) 76◦17’ W 294 2.9
Transverse dunes 16◦23’ S 0.5 Mocamedes 15◦12’ S 295 2.6 0.7
(Coastal desert, Angola) 12◦01’ E (Angola) 12◦09’ E 297 3.0
Transverse dunes 25◦45’ S 0.7 Lüderitz 26◦38’ S 290 1.6 0.5
(Coastal desert, Namibia) 14◦55’ E (Namibia) 15◦03’ E 290 1.8
Transverse dunes 32◦49’ N 0.9 San Diego 32◦44’ N 290 2.7 0.8
(Algodones, USA) 114◦59’ W (USA) 117◦10’ W 291 3.2
Transverse dunes 32◦47’ N 0.9 Remada 32◦19’ N 294 6.9 1.9
(Sahara, Tunisia) 09◦14’ E (Tunisia) 10◦24’ E 297 7.4

Table 1: Mean dune wavelength λ measured in different locations. From the airport weather
station the closest to each site, we get the average ground (resp. ordinary and virtual potential)
temperatures T and Θ as well as the rms amplitude δT and δΘ of their annual variations. The last
column gives an estimation of the typical mixing depth computed as H ' δΘ/γ with γ = 4K/km.
These data are displayed in figure 2(a) of the letter.
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Transverse dunes 31◦48’ N 1.4 Puerto Penasco 31◦18’ N 296 6.6 1.9
(Sonora, Mexico) 113◦51’ W (Mexico) 113◦33’ W 297 7.6
Transverse dunes 30◦47’ N 1.7 Nokkundi 28◦49’ N 299 8.2 2.4
(Iran) 59◦37’ E (Iran) 62◦45’ E 307 9.5
Transverse dunes 28◦04’ N 1.7 Khuzdar 27◦50’ N 296 7.1 2.1
(East Pakistan) 65◦10’ E (Pakistan) 66◦38’ E 310 8.3
Transverse dunes 30◦07’ N 1.8 Timimoun 29◦15’ N 298 8.9 2.4
(Erg Occidental, Algeria) 0◦43’ E (Algeria) 0◦17’ E 301 9.6
Transverse dunes 40◦02’ N 1.9 Dunhuang 40◦09’ N 284 11.7 3.3
(Ming Shashan, China) 94◦42’ E (China) 94◦41’ E 295 13.1
Transverse dunes 29◦12’ N 1.9 Tindouf 27◦40’ N 297 7.3 2.0
(Algeria) 02◦35’ E (Algeria) 08◦08’ W 301 8.0
Transverse dunes 28◦32’ N 2.1 Siwa 29◦12’ N 296 6.6 1.8
(Great sand sea, Libya) 23◦10’ E (Egypt) 25◦29’ E 296 7.3
Transverse dunes 30◦35’ N 2.2 Kandahar 31◦30’ N 295 8.0 2.3
(Afghanistan) 65◦40’ E (Afghanistan) 65◦51’ E 306 9.1
Transverse dunes 40◦11’ N 2.7 Kuqa 41◦43’ N 284 11.5 3.2
(North Taklamakan, China) 84◦56’ E (China) 82◦57’ E 294 12.9
Transverse dunes 37◦56’ N 3.0 Andir 37◦56’ N 285 11.2 3.2
(South Taklamakan, China) 82◦28’ E (China) 83◦39’ E 297 12.9
Transverse dunes 40◦18’ N 3.0 Ruoqiang 39◦02’ N 286 12.3 3.4
(East Taklamakan, China) 87◦05’ E (China) 88◦10’ E 294 13.6
Transverse dunes 38◦38’ N 3.2 Yunchuan 38◦29’ N 283 10.9 3.1
(East Badain Jaran, China) 104◦59’ E (China) 106◦13’ E 294 12.4
Transverse dunes 40◦04’ N 3.4 Ejin Qi 41◦57’ N 283 13.6 3.7
(West Badain Jaran, China) 102◦13’ E (China) 101◦04’ E 292 14.8
Snow giant dunes 80◦47’ S 2.7 Vostok 78◦27’ S 219 11.8 3.5
(Antarctica) 124◦30’ E (Antarctica) 106◦52’ E 252 15.4

Table 2: Database continued.
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2 Method: Measuring giant dune wavelength

In this section, we show the equivalence between four techniques that allow to measure the wave-
length λg of giant dune patterns.

2.1 Fourier transform

The theory proposed for the scale of giant dunes is based on the aerodynamical calculation of the
flow around dunes, which is local in the Fourier space and thus non-local in the physical space.
It means that the giant dunes are under the influence of their neighbours even several ranks of
dunes away. Thus, giant dunes should not be thought of as independent objects and the relevant
quantity is a wavelength in the Fourier sense i.e. an average over a large spatial extent.

We have performed Fourier analysis of the digital elevation model (DEM) of a star dune field
in the Grand Erg Oriental (Algeria), which is one of the most subtle to analyse. It reflects
the relative amplitude of the sinusoidal modes composing the pattern. This spectrum, displayed
in figure 11 presents a central peak, which corresponds to the average altitude, surrounded by
two peaks of very high amplitude (violet contours), four positive peaks (blue contours) and two
negative peaks of lower amplitude (green contours). This corresponds to a complex pattern, hybrid
between a hexagonal lattice (six positive peaks on a circle) and a parallelogram lattice (two positive
and two negative peaks). These peaks correspond to the wavelengths of well-defined superposed
modes. This organisation suggests a formation of these star dunes by secondary destabilisation
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Figure 11: Fourier transform of star dune profiles of the Grand Erg Oriental obtained by a
digital elevation model. For comparison, the wavelengths determined from the histograms of
dune spacing along the principal directions of the pattern is shown by the red circles (λ = 2.16 km
and λ = 1.77 km).
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of longitudinal dunes, in which there are two dominant wavelengths, one along the longitudinal
crests and the other crosswise. It is consistent with the the values of λ (red circles in figure 11)
found using the mean dune spacing in these directions (solid line, λ = 2.16 km and dotted line,
λ = 1.77 km, see table) or the structure function (see below).

2.2 Image auto-correlation

In practice, the Fourier transform directly applied on aerial pictures gives a spectrum that is too
noisy to safely extract wavelengths. One can alternatively compute the correlation function of
such an image. We recall that the correlation function is nothing but the Fourier transform of
the Fourier spectrum. Still, as it averages over space, it is a smooth function that presents a
well-identified peak at λ. An example of such an analysis, performed on longitudinal dunes, is
displayed in figure 12. It presents a clear anti-correlation at 850 m which comes, on the image, from
the succession of shadow and sunny zones as well as a positive correlation peak at λ = 1700 m.
Although in principle, the maximum of correlation only coincides to a Fourier peak for a purely
sinusoidal pattern, they give in practice similar values for the wavelength of the dominant mode.

2.3 Dune spacing

The maximum of image correlation corresponds to the situation for which, on the average, the
displaced image of a rank of dunes best fits that of the next rank. So, it is similar in principle to
the average spacing between neighbouring dunes. In the case of transverse and longitudinal dunes,
this distance is measured between consecutive crests. For star dunes, one measures the distance
between neighbouring dunes as shown in figure 13(b). One can then compute the histogram of these
distances (see figure 13(a)), and define λ as the averaged value. As in most self-organised patterns
presenting a well-defined wavelength, the width of the dune spacing distribution is of the order
of its average λ, due to presence of dislocation-like defects. Comparing the average spacing with
the wavelength computed by Fourier or correlation techniques, it turns out that these methods
are equivalent in practice. The spacing analysis has the advantage of being insensitive to the
lighting-induced heterogeneities of aerial photographs.

2.4 Structure function

The computation of the dune spacing histogram in the case of star-dunes hides a slight ambiguity:
the results depend on the definition of neighbours. One can for instance use Voronoi tessellation or
fix the number of neighbours. A more objective analysis is based on the so-called two-point struc-
ture function g(r). Using the data set of individual dune spacings, one determines the probability
to find a dune at a distance r from another dune, whatever the direction. As shown in figure 14,
this function vanishes as r → 0, rises to a maximum at some distance, and eventually reaches a
plateau at large r. The maximum of probability coincides with the previous determinations of λ
(vertical lines in figure 14).
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Figure 12: Correlation function of a color aerial image of longitudinal giant dunes in Rub al Khali.
The axis are in meters. The levels of the iso-contours have been chosen to show the local maxima.
Black and red correspond to a high positive correlation and blue to negative correlation. Two
well-separated length-scales appear at 1700 m and 85 m, with no local maximum of correlation in
between. The small wavelength corresponds to the linear destabilisation in between the ranks of
dunes, due to the slow secondary winds.
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Figure 13: (a) Histograms of giant dunes spacing in some of the regions shown in figure 1: The star
dunes (green symbols) are in Grand Erg Oriental (Algeria); the longitudinal dunes (blue symbols)
are in Rub al Khali (Saoudi Arabia); the transverse dunes (red symbols) are in Badain Jaran
(China). (b) Definition of the distance between neighbouring dunes (in the Voronoi sense) for the
case of star dunes.
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Figure 14: Two point structure function of the Grand Erg Oriental (star dunes). The wavelengths
determined from the histogram of the dune spacing along the principal directions of the pattern
is shown by the red lines (λ = 2.16 km and λ = 1.77 km, see also the corresponding circles in
figure 11).
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3 Capping layer waves

3.1 Visualisation of the waves in the field

Figure 15 presents direct evidence of the existence of rather low inversion layers (at the beginning
of spring) and of the propagation of surface waves, similar to that on the free surface of a river.
The star dune visible in the picture is located in the Grand Erg Oriental (Algeria) in the middle
of an oil field zone. One can visualise the propagative waves above the dunes with the smoke
coming from a close gas flare and stored below the capping layer as there is no mixing in the
free atmosphere. Thus, the smoke directly shows this interface. It should be emphasised that the
waves visible in this picture are not standing waves excited by the dune: they are propagative
waves excited upwind of the dune by the flare.

3.2 Coastal dunes

Figure 16 is an aerial picture of the transverse dunes of Atlantic Sahara where we have studied
in the field the interaction between superimposed dunes and the subsequent pattern coarsening
(see fig. 4). It is also the place where the mega-barchans of figure 1(b) and 23 form. It provides
evidence of the relation between the giant dunes and the atmospheric boundary layer. It can
be observed that the giant dune scale is barely emerging in the first few ranks downwind of the
sandy beach, develops further inland and eventually generates mega-barchans. The wavelength
(∼ 400m) nicely corresponds to the capping layer height (figure 2).

The orientation of the these giant dunes provides direct evidence that they are associated with
the capping layer waves. Indeed, the crests of the superimposed dunes are perpendicular to to
the very stable trade wind direction but the giant dune crests (red lines) deviates by 35◦ from
this expectation. They are in fact parallel to the shoreline. The transition between the ocean
and the land is a strong thermic perturbation that induces standing waves on the capping layer
whose phase is related to the distance to the shoreline along the wind direction. What we see is
the signature of these waves imprinted into the dune relief.
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Figure 15: Visualisation by smoke of the waves propagating on the capping inversion layer above
star dunes. The sky has been selectively contrasted by subtraction of the mean luminosity gradient.

1000 m

Figure 16: Transverse giant dunes in the same zone as in figure 23 (Atlantic Sahara). The
ranks of dunes are parallel to the shore-line (red line), visible in the bottom left corner, and not
perpendicular to the dominant trade winds (yellow sand rose). The dotted line in blue shows the
section studied in fig. 4 of the letter.
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4 Dune length-scale separation and pattern coarsening

In this section, we demonstrate that dune fields robustly exhibit the presence of an inner length-
scale λs corresponding to elementary dunes and an outer length-scale λg corresponding to giant
dunes. The key result of the letter is that the scaling-laws followed by these two length-scales are
different because they are not selected by the same physical processes: one is related to sediment
transport and the other to the atmospheric mixing height. We show that the presence or absence
of structures at a scale between λs and λg depends on the type of analysis performed.

4.1 Aerial pictures

Looking at an aerial picture such as those of figures 17, 18, 19 and 23, one notices mostly the
alternation of stoss slopes and avalanche slip faces at small wavelength, and the large scale relief
on which they are superimposed. The inner elementary length-scale of the problem, governed by
sand flux saturation length [9, 10, 11], is the length at which a flat bed destabilises. The outer
length-scale is the kilometre scale wavelength discussed in this letter. The only places where the
formation of elementary dunes is inhibited are just downwind of large slip-faces, due to screening.

In figures 17 and 23, which correspond to unimodal wind regimes, one can clearly see the
superimposed small structures on the stoss side and the flanks of the mega-barchan and barchanoid
giant dunes. Along the giant dune stoss slope, some coarsening (an increase of the wavelength)
of the superimposed pattern is noticeable. A similar observation can be made in the case of
star dunes formed by multi-directional winds (figure 18): the average distance between the dune
summits, even considering the case of emerging star dunes, is much larger than the typical size of
the superimposed structures. A progressive coarsening of the superimposed dunes is also visible in
this photograph, with slip-faces getting larger closer to the star dune summits. Finally, figure 19 is
interesting because we clearly see that the giant dune crest is in fact composed of numerous small
scale slip-faces. In addition, small scale dunes also develop in the inter-crest region. In contrast
to the case of transverse dunes, they are transverse to giant dunes, showing the existence of these
longitudinal channelised secondary flows sufficiently strong to transport sand.

4.2 Correlation

In order to quantify the visual impression of scale separation between small superimposed and large
structures, one can perform an auto-correlation of an aerial photo. One computes the correlation
between the image and a copy of it, shifted by some distance, as a function of the displacement
vector between the two. Positive and negative peaks of this function reveal the presence or the
absence of a structure at the corresponding scale. A few examples are displayed here. In figure 20,
we show a test case of this correlation analysis run on a photo of transverse dunes in coastal
Angola. Two correlation peaks appear at 15 m and 530 m with no peak in between. This means
that these two length-scales, which correspond to λs and λg objectively exist but also that the
coherence length of the small scale pattern is very small. A similar analysis has been performed
on photos of longitudinal dunes in Rub al Khali (figure 12), transverse dunes in the Taklamakan
desert (figure 21) and giant dunes in Tunisia (figure 22). In the latter case, the analysis reveals
a transverse pattern, resulting mostly from the orientation of the sun. The pattern symmetry,
visible at the small scale (a square lattice pattern), is much more explicit in the picture (see also
section 5).

4.3 Heights of secondary slip faces

The correlation technique quantifies what can be seen by eye. It is sensitive to the rhythmic
succession of shadow zones behind slip-faces and not to slip-face relief. Figure 23 compares the
picture of a mega-barchan to a longitudinal profile z(x) measured in the field using combined
GPS and geometrical data. In particular, the height δz of superimposed structures (with (brown)
or without (orange) slip-faces) has been directly measured (see panel c). The horizontal and
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vertical axes show considerably different pictures. On the one hand, the horizontal spacing between
superimposed structures is never much larger than λs ∼ 25 m. We have directly observed the
formation of nascent structures in flat zones, as well as their propagation, the growth of their
amplitude, and the nucleation of slip-faces as their amplitude becomes sufficient. In figure 23(c),
these nascent structures correspond to the series of data points at meter scale amplitude (i.e.
close to the axis δz = 0), visible all along the giant dune. On the other hand, the height of slip-
faces are continuously distributed: there is no gap between the elementary dunes and the larger
slip-faces. Moreover, the size of major slip-faces increases all along the mega-barchan. Taken
together, the vertical and horizontal pictures show that pattern coarsening takes place in the
course of propagation of secondary structures, but also that the elementary scale is regenerated.
Having followed for five years the evolution of barchans in the Atlantic Sahara, we have directly
observed many occurrences of these mechanisms, depicted in figure 24. We expect them to be also
responsible for the formation of other types of giant dunes (e.g. figure 25).

4.4 Wavelet transform

We use a wavelet analysis to decompose giant dune relief into sub-structures at different scales.
The principle of this method is explained in figure 26 for a particular scale. The full result of this
decomposition is presented in figure 4 of the letter. It reveals that the giant dune is composed of
a continuum of length-scales between the two extremes, λs and λg.

4.5 Pattern coarsening in the case of objects interacting with their first
neighbours

We reproduce here the argument proposed by Anderson et al. [15] for a series of objects (here these
objects would be dunes) exchanging mass with their first neighbours. These objects, labelled by i,
can be parametrised by their size λi. Then, their height a(λi) and their mass m(λi) as functions
of this size. It is assumed that the mass transfer between neighbours always goes from the highest
one to lowest one. The equation of evolution of the mass can be written under the form:

dm(λi)
dt

= 2F(a(λi))−F(a(λi+1))−F(a(λi−1)) (32)

where F is an increasing function of height which describes the rate at which mass is transferred
from the lowest to the highest dune. Assume that there is a homogeneous field of objects having
all the same size λeq. Expanding the equation of evolution at the first order in λ̃i = λi − λeq, we
get:

m′(λeq)
dλ̃i
dt

= −a′(λeq))F ′(a(λeq))
[
λ̃i+1 + λ̃i−1 − 2λ̃i

]
(33)

This is the linear stability equation for the space discretised diffusion equation. The pattern is
thus stable if a′(λeq))F ′(a(λeq))/m′(λeq) is negative and exhibits coarsening otherwise. The first
time this occurs is right at the maximum of the curve a(λ).
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Figure 17: Barchanoid giant dunes of Rub’ al Khali. The size of the photo is around 2km.

21

doi: 10.1038/nature07787 SUPPLEMENTARY INFORMATION

www.nature/nature.com 



Figure 18: Star dunes in Rub’ al Khali desert. The size of the photo is around 3km. Note few
emerging star dunes in the middle of the small scale dune field (red arrows).
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Figure 19: Longitudinal dunes in Namibia. The typical distance between two neigbouring dunes
is 2km.
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Figure 20: Correlation function of a color aerial image of coastal transverse giant dunes in Angola.
The levels of the correlation iso-contours have been selected to show the local maxima. Black and
red correspond to high correlation and dark blue to low correlation. The elongated iso-contours
indicate a quasi-2D structure. The local maximum (light blue coutour) indicate a quasi-periodicity
of wavelength λg around 530 m. The bottom panel is an enlargement of the top one by a factor of
10 and reveals the secondary maximum associated to the superimposed dunes (orange elongated
contour), at λs = 15 m. The best correlation is actually obtained along a diagonal direction. This
indicates a transverse modulation of secondary slip-faces due to a secondary wind direction. Note
also the minimum of correlation (green contour) that comes from the good contrast of the image
between stoss-slopes and slip faces. There no local maximum of correlation in between λs and λg.
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Figure 21: Correlation function of a color aerial image of transverse giant dunes in the Taklamakan
desert (China). The levels of the correlation iso-contours have been chosen to show the local
maxima. Black and red correspond to high correlation and dark blue to low correlation. The
very-elongated contours indicate a nearly pure 2D transverse structure. Two local minima (blue
contour) and one local maximum (green contour) are visible, revealing a periodicity of wavelength
λg. The bottom panel is an enlargement of the top one by a factor of 10 and reveals the secondary
maximum (red contours) associated with the superimposed dunes. Note that the orange contours
correspond to local minima.
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Figure 22: Correlation function of a color aerial image of giant dunes in Tunisia. The levels of the
correlation iso-contours have been chosen to show the local maxima. Black and red correspond to
high correlation and dark blue to low correlation. The elliptic contours correspond to a quasi-2D
pattern. There are well defined secondary peaks that correspond to a minimum (dark blue) and to
a maximum (light blue) of correlation. An asymmetry is visible that corresponds to the secondary
modulation of the giant dunes. However, the sun angle creates darken shadows in one direction,
contributing to this asymmetry. The bottom panel is an enlargement of the top one by a factor
of 10 and reveals the secondary maxima (red contours) associated with the superimposed dunes.
Four local maxima of correlation are visible, which reflect a square lattice structure at the scale
λs.
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Figure 23: (a) Mega-barchan in the Atlantic Sahara. Its width is around 600m. (b) and (c)
Amplitude of the superimposed structures modulating the surface of the mega-barchan shown in
figure 1; brown symbols represent slip faces, while orange ones represent low waves without slip
faces. Open circles are data collected in September 2004, and filled circles are from April 2007.
Panel (b) shows the profile measured in 2007 (all distances in meters). The dotted line represents
the approximate profile of the horns.

Figure 24: Schematic depiction of the different dynamical mechanisms governing the evolution of
the superimposed dunes, as observed in the field. A sufficiently long flat surface destabilises to
form dunes at the elementary wavelength (Green arrow). As small dunes propagate faster than
large ones, they catch up with them and, when their slip faces coincide, amalgamate into a larger
structure (Red arrow). When the wind makes an angle with the slip faces, the secondary flow
inside the recirculation bubble is often sufficient to induce erosion at the foot of the slip face and
deposition at the following crest. These three dynamical mechanisms result in the coarsening of
the superimposed pattern along the slope of giant dunes.
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Figure 25: Aerial photograph of a small star dune near Hassi-Messaoud (Algeria) apparently
growing in an area covered by small dunes.
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Figure 26: (a) Longitudinal profile of the transverse giant dune shown in figure 16 (blue dotted
line). (b) Wavelet transform of this profile at the scale L = 60 m. The wavelet used is shown
in red. The wavelet tranform C(x) is the correlation of the profile and this wavelet. The value
of C reflects the degree of similarity between the profile and the analysing wavelet. The maxima
of the wavelet tranform (green triangles) are the points where C is maximum at the scale L, i.e.
in a neighbourhood of size L on both sides. By construction, two such maxima are then at least
separated by L. These maxima indicate the local presence of a structure of size larger (or equal)
to L. The scale of a given structure is given by the end of the line connecting the maxima detected
across a range of scales (see figure 4).
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5 Symmetries of the wind regimes and the dune patterns

5.1 Symmetry principle

It is a general property of pattern emergence that shape and length-scales are not determined by
the same effects. The selection of length-scales comes from physical mechanisms, while the pattern
is governed by the symmetry of the forcing (boundary conditions or driving forces). Consider
for instance a linear instability with a most unstable mode of wavelength λ. In a rectangular
elongated cell, strips spaced at λ appear. In squared cells, a square pattern forms. In a circular
cell, the pattern becomes hexagonal. Technically, this corresponds to the fact that the solution is a
superposition of modes at the same wavelength but along different axis (figure 27). The boundary
conditions determine the nature and number of such modes. In the case of dunes, the boundary
conditions are replaced by the symmetries of the forcing (the wind regime).

5.2 Symmetry analysis

Figure 1 of the letter allows us to compare the symmetries of the wind regime and the dune
pattern. In the case of a single wind direction, that direction is an axis of symmetry of the dune
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Figure 27: Selection of a pattern by mode superposition. (a) We assume that a single mode
pattern appears under a unidirectional wind. (b) Under a bi-directional wind regime, a periodic
array of uni-dimensional objects is still consistent with the symmetries. Such a pattern has a
unique wavelength λ. A wind coming from one or the other direction sees a structure of period
λw larger than λ. As an effect is at least as symmetric as its cause, the dunes must be along the
bisector of the winds. This is the case of longitudinal dunes. (c) A bi-directional wind regime is
also consistent with a bi-modal pattern (parallelogram lattice). This is the case of the dunes shown
in figure 22. (d) Under a wind regime of three or six directions, the symmetries are consistent
with a hexagonal pattern, that can be decomposed into three Fourier modes. This is the idealised
case of star dunes.
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Figure 28: Comparison of the symmetries of the wind regime and the dune pattern in the Grand
Erg Oriental (Algeria). (a) Polar diagrams of the transport rose (black) and the probability to
find a neighbouring dune in a given direction (green). (b) Isotropic (black) and anisotropic (blue
and red) components of the transport rose. (c) Same for neighbouring probablity.
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Figure 29: Comparison of the symmetries of the wind regime and the dune pattern in the Rub’ al
Khali desert (Saudi Arabia). Same colour codes as in figure 28.

pattern (transverse dunes or barchans). The case of longitudinal dunes is more complex as such
a mono-mode pattern has a symmetry consistent with any wind direction. In the case shown in
figure 1(c), the rose is composed by transverse and longitudinal winds, far from the ideal case
discussed above in figure 27. The analysis is easier when isolated dunes can be defined, in the case
of star dunes (as in Algeria, figure 28 and in Saudi Arabia, see figure 29)

For these three cases, we have analysed the sand transport roses and the probability to find one
of the first three neighbouring dunes in a given direction α (angular structure function). These
two quantities are plotted in polar coordinates in the panels (a). Note that the dune angular
structure function is symmetric with respect to the origin, while the roses are not. In panels (b)
and (c), these angular diagrams are decomposed into their isotropic (black circles) and anisotropic
(blue for positive lobes and red for negative ones) components. This decomposition allows us to
quantify the degree of anisotropy by comparing the size of the lobes to that of the corresponding
circle. It also highlights the directions of anisotropy. For this purpose we have applied an angular
low-pass filter on the anisotropic component.

The degree of anisotropy of the dune patterns (panels (c)) is well reflected by that of the wind
regime (panels (b)). In figure 28, the weak anisotropy of the wind is visible along two orthogonal
directions (positive and negative lobes). The dunes have a higher probability to have a neighbour
in the direction transverse to the strong wind direction. This structure is reminiscent from the
origin of these star dunes, probably formed by secondary instability of longitudinal dunes. This
is consistent with the Fourier analysis of the dune pattern (see figure 11). In figure 29, the wind
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Figure 30: Dunes in the Leyre river (after [13, 14]). (a-c) Formation of dunes in a natural river,
starting at t = 0 from a flat sand bed. The experiment was performed for a flow depth H = 50 cm,
a Froude number φ = 0.28 and a shear velocity u∗ = 4 cm/s. The grain size is d = 330± 70 µm.
(a) Time evolution of the wavelength λ. The pattern coarsening starts after 150 s and stops after
∼ 4000 s. (b) Same graph, but restricted to the linear regime (between t = 0 and t = 150 s). (c)
The photograph shows the dunes of wavelength 40 cm formed after 6000 s. (d) Formation of giant
dunes, starting from a flat sand bed. The experiment was performed for H = 44 cm, φ = 0.3 and
u∗ = 4 cm/s. The sand is polydisperse: it is a mixture of sand grains of size ∼ 330 ± 70 µm,
which cover 60% of the surface, and of coarse grains larger than 600 µm, which represent 40% of
the surface – but 9% of the grains and 60% of the mass. The photograph shows 3 m long giant
dunes with ∼ 40 cm superimposed dunes. (e) Photograph of the river showing the sharp transition
between dunes (zone of medium sand) and giant dunes (zone of medium and coarse sand mixed).
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Figure 31: Echo sounder image of the bedforms in Rio Paraná, Argentina. The largest wavelength
is around 100 m. The water depth is around 8 m. The flow is from top right to bottom left. This
picture is from [16].

anisotropy reveals a nearly alternative wind regime (two positive lobes at ' 120◦). The favoured
direction of the dunes is normal to the bisector of the strong wind directions. This could correspond
to a secondary instability of transverse giant dunes.

6 Other giant dunes

6.1 Giant dunes in rivers

Dunes develop in rivers whose bed, composed of grains (sand, gravels), is erodible. We refer the
reader to our recent work on the formation of bedforms in rivers [13, 14]. Figure 30 shows that the
amalgamation of superimposed bedforms – called ripples in this context – leads to a non-linear
pattern coarsening. The bedform wavelength saturates at a value on the order of the water depth.
These river dunes, whose size is determined by the flow depth, are thus the analogous of aeolian
giant dunes.

While the sand composing aeolian sand dunes is usually well sorted by ”aeolian sieving”, the
bed of a river can be at some places much more polydisperse. In the case of the Leyre river shown
in figure 30, the polydispersity allows the pattern to coarsen much beyond the wavelength reached
in the same flow conditions for a monodisperse bed. The very large river dunes, with wavelengths
on the order of 10 times the depth – wavelengths much larger than that at which surface waves
resonate with the relief – have no aeolian counterpart. A nice example of such giant river dunes
is given by the echo sounder image of the Rio Paraná’s bed (Argentina) performed by Parsons et
al. [16], see figure 31. In this example, the wavelength of the bedforms varies from few meters to
a hundred of meters, i.e. several times the water depth.

6.2 Snow giant dunes formed by katabatic winds in Antarctica

Aeolian dunes can form also with snow in Antarctica. They can form small barchans [11], but
also giant dunes, as shown by NASA satellite images [17, 18, 19]. These giant dunes are only
few meters high but several kilometers apart. The snow is transported by strong and almost
permanent katabatic winds. An example of such dunes is displayed in figure 32(right).
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Figure 32: (left) Cassini RADAR Observations of dunes on Titan. The wavelength is around
1.7 km. This picture is from [20]. (right) Snow giant dunes in Antarctica. The wavelength is
about 3 km. This picture is from [19].

6.3 Extraterrestrial dunes

Dunes of wavelength 1.7 km (figure 32(left)) have been discovered at the surface of Titan, during
the Cassini-Huygens mission [20]. Given the few atmospheric and soil data available, and following
the scaling law given in [11], we expect elementary dunes on Titan to be of the order of meters.
The data provided by [21] give a well-mixed layer on the order of a kilometre or less. Therefore,
whether these dunes are longitudinal or reversed, they can be classified as ‘giant’, in analogy with
those on Earth.

7 Atmospheric boundary layer over a wavy bottom

In this section, we develop a weakly non-linear calculation for the description of the atmospheric
turbulent flow over a wavy bottom. It extends former models that either ignore the turbulent
fluctuations but include the free atmosphere [22] or treat the unbounded case using asymptotic
matching [23, 24, 25], which assumes that the logarithm of the ratio of the dune length to the
grain size is very large. Following the vertical structure of the ABL, we treat separately the well-
mixed layer and the free atmosphere, in the spirit of the models used to describe mountain waves
[27, 28, 29, 30]. The latter can be described analytically, and serves as upper boundary conditions
for the integration of the differential equations describing the former.

7.1 Reynolds averaged description and Prandtl-like closure

We use the classical Boussinesq approximation for fluids whose densities have weak variations, e.g.
due to temperature gradients. In this approach, ρ is taken constant (ρ0) in all terms except for the
gravity term [8]. Following the standard separation between average quantities and fluctuating
ones (denoted with a prime), the equations governing the mean velocity field ui can be written as:

∂iui = 0, (34)

∂tui + uj∂jui = −∂jτij − ∂ip−
ρ

ρ0
gi, (35)

where τij = u′iu
′
j is the Reynolds stress tensor. For the sake of simplicity, we omit the density

factor in the pressure p and the stress tensor. Furthermore, as we treat the well-mixed layer here,
we take a constant density ρ = ρ0. We use here a Prandtl-like first order turbulence closure
in which the distance to the bed determines the mixing length L, and the mixing frequency is
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given by the strain rate modulus |γ̇| =
√

1
2 γ̇ij γ̇ij , where we have introduced the strain rate tensor

γ̇ij = ∂iuj + ∂jui.
Consider a homogeneous situation along the x-axis. The strain rate reduces to ∂zux. With

a shear stress that decreases linearly with height and vanishes at the capping height H, we can
write:

τxz = −κ2L2|∂zux|∂zux − ν∂zux = −|u∗|u∗
(

1− z

H

)
, (36)

where ν is the air viscosity. A simple and realistic choice is to introduce a mixing length L that
tends to the aerodynamic roughness z0 on the ground such as:

L2 = (z + z0)2 (37)

In the general case, we can write the stress tensor components as

τxz = −
(
κ2L2|γ̇|+ ν

)
γ̇xz, (38)

τzz = −
(
κ2L2|γ̇|+ ν

)
γ̇zz +

1
3
κ2χ2L2|γ̇|2, (39)

and for simplicity again, we assume the isotropy of the tensor: τxx = τzz. In these expressions, κ
and χ are two phenomenological constants. κ ' 0.4 is known as the von Kármán constant. The
typical value of χ is between 2 and 3.

7.2 Expansion in amplitude of corrugation

We focus on 2D steady situations, i.e. geometries invariant along the y-direction. The Navier-
Stokes equations (34) and (35) read

∂xux + ∂zuz = 0, (40)
ux∂xux + uz∂zux = −∂xp− ∂zτxz − ∂xτxx, (41)
ux∂xuz + uz∂zuz = −∂zp− ∂zτzz − ∂xτzx − g, (42)

In expressions (38) and (39), the strain tensor components are

γ̇xz = γ̇zx = ∂zux + ∂xuz, (43)
γ̇xx = 2∂xux, (44)
γ̇zz = 2∂zuz = −γ̇xx, (45)
|γ̇|2 = 2(∂xux)2 + 2(∂zuz)2 + (∂zux + ∂xuz)2. (46)

For sufficiently small amplitudes, we can consider a bottom profile of the form Z(x) = ζeikx

without loss of generality. λ = 2π/k is the wavelength of the bottom and a = 2ζ the amplitude of
the corrugation. We shall use this standard notation with complex numbers for all quantities all
throughout this section. However, note that, while computing non-linear contributions, one must
temporarily go back to real notations (e.g. Z = ζ/2 cos(kx)). We introduce the dimensionless
variable η = kz, the dimensionless roughness η0 = kz0, their sum ` = η + η0 and the Reynolds
number:

R =
2κ2u∗
kν

. (47)

We also introduce the function µ(η) giving the profile at equilibrium:

`2|µ′|µ′ + 2R−1µ′ +
1
κ2

(
η

ηH
− 1
)

= 0, (48)

or equivalently

µ′ =
1
`2

[
−R−1 +

√
R−2 +

`2

κ2

(
1− η

ηH

)]
. (49)
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We perform an expansion with respect to the dimensionless amplitude kζ up to the (partial) third
order:

ux = u∗
[
µ+ (kζ)eikxU1 + (kζ)2U0 + (kζ)2e2ikxU2 + (kζ)3eikxU3

]
, (50)

uz = u∗
[
(kζ)eikxW1 + (kζ)2e2ikxW2 + (kζ)3eikxW3

]
, (51)

τxz = −u2
∗

[
1− η

ηH
+ (kζ)eikxSt1 + (kζ)2St0 + (kζ)2e2ikxSt2 + (kζ)3eikxSt3

]
, (52)

p+ τzz = pH + gH

(
1− η

ηH

)
+ u2

∗
[
(kζ)eikxSn1 + (kζ)2Sn0 + (kζ)2e2ikxSn2 + (kζ)3eikxSn3

]
, (53)

where the Ui, Wi, Sti and Sni are functions of η. By ‘partial’, we mean that terms in e3ikx are
neglected. These harmonic third order terms give the first corrections to the linear solution. PH
is the pressure at the capping layer. Note: it can be shown that W0(η) = 0. Therefore we do not
include it into the following development.

Close the bottom, it is important that the mixing length retain its linear dependence on the
distance to the ground. The bottom profile undulations should then be taken into account in the
expression of L. However, introducing a term to get a vanishing L at the modulated capping layer
is secondary. For the sake of simplicity, we then consider the following form for the mixing length:

(kL)2 = `2 − 2`(kζ)eikx +
1
2

(kζ)2 +
1
2

(kζ)2e2ikx. (54)

The strain tensor components are:

γ̇xx = 2
[
(kζ)eikxiU1 + (kζ)2e2ikx2iU2 + (kζ)3eikxiU3

]
, (55)

γ̇zz = −γ̇xx, (56)
γ̇xz = µ′ + (kζ)eikx(U ′1 + iW1) + (kζ)2U ′0 + (kζ)2e2ikx(U ′2 + 2iW2)

+ (kζ)3eikx(U ′3 + iW3), (57)

so that the square of the strain modulus reads:

|γ̇|2 = µ′2 + (kζ)eikx [2µ′(U ′1 + iW1)] + (kζ)2

[
2µ′U ′0 +

1
2

(U ′1 + iW1)(U ′∗1 − iW ∗1 ) + 2U1U
∗
1

]
+ (kζ)2e2ikx

[
2µ′(U ′2 + 2iW2) +

1
2

(U ′1 + iW1)2 − 2U2
1

]
(58)

+ (kζ)3eikx [2µ′(U ′3 + iW3) + 2U ′0(U ′1 + iW1) + (U ′∗1 − iW ∗1 )(U ′2 + 2iW2) + 8U∗1U2] .

Taking the square root, we get:

|γ̇| = µ′ + (kζ)eikx(U ′1 + iW1) + (kζ)2

[
U ′0 +

1
µ′
U1U

∗
1

]
+ (kζ)2e2ikx

[
U ′2 + 2iW2 −

1
µ′
U2

1

]
+ (kζ)3eikx

[
U ′3 + iW3 −

1
µ′2

U1U
∗
1 (U ′1 + iW1) +

1
2µ′2

U2
1 (U ′∗1 − iW ∗1 ) +

4
µ′
U∗1U2

]
, (59)

so that

(kL)2|γ̇| = `2µ′ + (kζ)eikx
[
`2(U ′1 + iW1)− 2`µ′

]
+ (kζ)2

[
1
2
µ′ − `

2
(U ′1 + U ′∗1 + iW1 − iW ∗1 ) + `2

(
U ′0 +

1
µ′
U1U

∗
1

)]
+ (kζ)2e2ikx

[
1
2
µ′ − `(U ′1 + iW1) + `2

(
U ′2 + 2iW2 −

1
µ′
U2

1

)]
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+ (kζ)3eikx
[

1
4

(2U ′1 + U ′∗1 + 2iW1 − iW ∗1 )

− `

(
2U ′0 +

1
µ′
U1(2U∗1 − U1) + U ′2 + 2iW2

)
+ `2

(
U ′3 + iW3 −

1
µ′2

U1U
∗
1 (U ′1 + iW1) +

1
2µ′2

U2
1 (U ′∗1 − iW ∗1 ) +

4
µ′
U∗1U2

)]
. (60)

Finally, we can express the shear stress functions as follows:

St1 = κ2
[
2R−1(U ′1 + iW1) + 2`2µ′(U ′1 + iW1)− 2`µ′2

]
, (61)

St0 = κ2

[
2R−1U ′0 +

1
2
µ′2 +

`2

2
(U ′1 + iW1)(U ′∗1 − iW ∗1 )− `µ′(U ′1 + U ′∗1 + iW1 − iW ∗1 )

+ 2`2µ′U ′0 + `2U1U
∗
1

]
, (62)

St2 = κ2

[
2R−1(U ′2 + 2iW2) +

1
2
µ′2 +

`2

2
(U ′1 + iW1)2 − 2`µ′(U ′1 + iW1)

+ 2`2µ′ (U ′2 + 2iW2)− `2U2
1

]
, (63)

St3 = κ2
[
2R−1(U ′3 + iW3) +−4`µ′U ′0 − `U1(2U∗1 − U1)− 2`µ′(U ′2 + 2iW2) + 2`2µ′(U ′3 + iW3)

+ 4`2U∗1U2 + (U ′1 + iW1)
(
µ′ − `

2
(U ′1 + 2U ′∗1 + iW1 − 2iW ∗1 ) + 2`2U ′0

)
+

1
2

(U ′∗1 − iW ∗1 )
(
µ′ + 2`2(U ′2 + 2iW2)

)]
. (64)

Solving the expressions of the shear stress functions for the U ′i , we get:

U ′1 =
1

2(R−1 + `2µ′)

[
St1
κ2
−
(
−2`µ′2

)]
− iW1, (65)

U ′0 =
1

2(R−1 + `2µ′)

[
St0
κ2
−
(

1
2
µ′2 +

`2

2
(U ′1 + iW1)(U ′∗1 − iW ∗1 )

− `µ′(U ′1 + U ′∗1 + iW1 − iW ∗1 ) + `2U1U
∗
1

)]
, (66)

U ′2 =
1

2(R−1 + `2µ′)

[
St2
κ2
−
(

1
2
µ′2 +

`2

2
(U ′1 + iW1)2

− 2`µ′(U ′1 + iW1)− `2U2
1

)]
− 2iW2, (67)

U ′3 =
1

2(R−1 + `2µ′)

[
St3
κ2
− [−4`µ′U ′0 − `U1(2U∗1 − U1)− 2`µ′(U ′2 + 2iW2)

+ 4`2U∗1U2 + (U ′1 + iW1)
(
µ′ − `

2
(U ′1 + 2U ′∗1 + iW1 − 2iW ∗1 ) + 2`2U ′0

)
+

1
2

(U ′∗1 − iW ∗1 )
(
µ′ + 2`2(U ′2 + 2iW2)

)]]
− iW3. (68)

The linear expansion of the Navier-Stokes equations gives rise to:

W ′1 = −iU1, (69)
S′t1 = iµU1 + µ′W1 + iSn1, (70)
S′n1 = −iµW1 + iSt1. (71)

The second order expansion of the Navier-Stokes equations gives rise to two equations; one for the
terms independent of x:

S′t0 =
1
4

(W1U
′∗
1 +W ∗1U

′
1), (72)

S′n0 =
1
4
i(U1W

∗
1 − U∗1W1)− 1

4
(W ∗1W

′
1 +W1W

′∗
1 ) =

1
2
i(U1W

∗
1 − U∗1W1), (73)
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and one for the terms proportional to e2ikx:

W ′2 = −2iU2, (74)

S′t2 = µ′W2 +
1
2
W1U

′
1 + 2iµU2 +

1
2
iU2

1 + 2iSn2, (75)

S′n2 = −2iµW2 −
i

2
U1W1 −

1
2
W1W

′
1 + 2iSt2 = −2iµW2 + 2iSt2. (76)

Note that Sn0 does not enter the equation for S′t0 as its x-derivative is zero. Consequently, Sn0

decouples from the rest of the problem. Finally, the third order expansion gives the correction to
the eikx terms:

W ′3 = −iU3, (77)

S′t3 = iµU3 + iU0U1 +
1
2
iU2U

∗
1 + µ′W3 + U ′0W1 +

1
2
W ∗1U

′
2 +

1
2
W2U

′∗
1 + iSn3, (78)

S′n3 = −iµW3 − iU0W1 − iW2U
∗
1 +

1
2
iU2W

∗
1 −

1
2
W ∗1W

′
2 −

1
2
W2W

′∗
1 + iSt3,

= −iµW3 − iU0W1 −
3
2
iW2U

∗
1 +

3
2
iU2W

∗
1 + iSt3. (79)

The integration of the above set of differential equations (65)-(79) requires boundary conditions
at the bottom and at the capping interface. For the latter, one first need to give a description of
the stable free atmosphere.

7.3 Free atmosphere

The free atmosphere is a stress-free zone: the reference (homogeneous) state velocity vertical profile
is uniform µ(η) = µ(H) = 1

κ ln(1 + ηH/η0) ≡ µH , so that uFA = u∗µH . Under the Boussinesq
approximation, the Navier Stokes equations then read

∂xux + ∂zuz = 0, (80)
ux∂xux + uz∂zux = −∂xp, (81)

ux∂xuz + uz∂zuz = −∂zp−
ρ

ρ0
g. (82)

These equations must be supplemented by an equation describing the heat transfer. We assume
that all transformations are adiabatic, hence DΘ/Dt = 0 (see section 1). The equation of state
of the air relates the potential temperature and the density (and the pressure). However, since
under the Boussinesq approximation the main variations of the density come from those of the
temperature (and not the pressure), one can write Dρ/Dt = 0 as the heat equation. In the steady
case, it gives:

ux∂xρ+ uz∂zρ = 0. (83)

As before we start from a weakly non-linear expansion of the velocity and the pressure profiles
in the presence of a wavy bottom:

ux = u∗
[
µH + (kζ)eikxU1 + (kζ)2U0 + (kζ)2e2ikxU2 + (kζ)3eikxU3

]
, (84)

uz = u∗
[
(kζ)eikxW1 + (kζ)2e2ikxW2 + (kζ)3eikxW3

]
, (85)

p = pH +
[
1− ∆ρ

ρ0

]
gH

(
1− η

ηH

)
+

1
2
N2H2

(
1− η

ηH

)2

+ u2
∗
[
(kζ)eikxSn1 + (kζ)2Sn0 + (kζ)2e2ikxSn2 + (kζ)3eikxSn3

]
. (86)

We also develop the density with respect to the amplitude:

ρ = ρ0

[
1− ∆ρ

ρ0
+
N2H

g

(
1− η

ηH

)
+ (kζ)eikxR1 + (kζ)2R0 + (kζ)2e2ikxR2 + (kζ)3eikxR3

]
. (87)
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We introduce the so-called stream function Ψ, defined by ∂xΨ = −uz and ∂zΨ = ux. This
function is such that ~u · ~∇Ψ = 0, so that the iso-contours Ψ = Cst precisely show the streamlines.
It is easy to show that it is given by Ψ =

∫
uxdz, up to an arbitrary constant – setting Ψ = 0 on

the bottom, the constant value of Ψ along a stream-line corresponds to the flux below it. In the
x-homogeneous case, as ux = u∗µH , we have Ψ ≡ u∗Hψb = u∗µH(z −H) = u∗µHH(η/ηH − 1).
Like the other functions, we can express Ψ as:

Ψ = u∗H
[
ψb + (kζ)eikxψ1 + (kζ)2ψ0 + (kζ)2e2ikxψ2 + (kζ)3eikxψ3

]
. (88)

Note that the ψi are dimensionless. The relation ∂xΨ = −uz leads to the three following relations:

−iηHψ1 = W1,

−2iηHψ2 = W2,

−iηHψ3 = W3.

Similarly, the relation ∂zΨ = ux leads to:

ηHψ
′
b = µH ,

ηHψ
′
0 = U0,

which is consistent with the above expression of ψb.
As the density is a passive scalar in this problem, it must be linearly related to the stream-

function. The proportionality factor can be determined by comparing the linear terms in η in the
respective expressions of ρ and Ψ. We get ρ/ρ0 = −ΨN2/(gu∗µH). The density is thus directly
related to the vertical motion as follows:

R1 = −i N
2H

µHgηH
W1, (89)

R′0 = − N2H

µHgηH
U0, (90)

R2 = −i N2H

2µHgηH
W2, (91)

R3 = −i N
2H

µHgηH
W3, (92)

which is consistent with equation (83).
The expansion of the Navier-Stokes equations at the linear order gives:

W ′1 = −iU1, (93)
0 = iµHU1 + iSn1, (94)

S′n1 = −iµHW1 −
gH

ηH u2
∗
R1, (95)

which leads to:

W ′′1 =
(

1− N2

k2u2
∗µ

2
H

)
W1 (96)

The solutions are thus of the form eq1η, with

q1 = −

√
1− 1

η2
B

if ηB ≥ 1 , (97)

q1 = i

√
1
η2
B

− 1 if ηB ≤ 1 , (98)
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where we have introduced the Brunt-Väisälä length LB = u∗µH

N and defined the dimensionless
numbers ηB = kLB and B = LB/H. B is typically on the order of unity. There are two other
solutions for q1. However, the real mode q1 = +√... should be rejected as the velocity correction
should vanish when z →∞. Similarly, the imaginary mode q1 = −i√... is not physically relevant
as it corresponds to ways propagating energy from infinity [8]. Recalling that all stresses Sti vanish
in the FA, the linear solution then reads:

~X1 ≡


U1

W1

St1
Sn1

 =


iq1

1
0

−iµHq1

 ξ1 e
q1(η−ηH). (99)

ξ1 is related to the values of the functions U1, W1, St1 and Sn1 in η = ηH .
The second order expansion of the Navier-Stokes equations gives rise to five equations. Selecting

the terms independent of x, we get a trivially verified equation (W1U
′∗
1 +W ∗1U

′
1 = 0) and a non-

trivial one:

S′n0 =
1
2
i(U1W

∗
1 − U∗1W1)− gH

ηHu2
∗
R0 = −1

2
(q1 + q∗1)W1W

∗
1 −

gH

ηHu2
∗
R0. (100)

The integration of the above differential equation requires to know the function R0(η), and thus
U0(η) (see equation (90)). However, an additional assumption is required to get the latter, as it
cannot be deduced from this systematic expansion. Recall that U0 is the homogeneous correction
to the mean velocity profile. In fact, any constant value for U0(η) is a solution of the problem.
Two options are reasonable: either (i) U0(η) = 0 which means that the FA is insensitive to the
bottom corrugation so that the mean velocity profile is unchanged; or (ii) U0 is continuous at the
interface, which means that the whole FA feels the velocity correction in the same way as the top
of the ML.

Selecting now the term in e2ikx, we get:

W ′2 = −2iU2,

0 =
1
2
W1U

′
1 + 2iµHU2 +

1
2
iU2

1 + 2iSn2 = 2i(µHU2 + Sn2),

S′n2 = −2iµHW2 −
gH

ηHu2
∗
R2 = −2iµHW2 + i

N2

2k2u2
∗µH

W2. (101)

Thus, the corresponding solutions are of the form eq2η, with

q2 = −

√
4− 1

η2
B

if 2ηB ≥ 1, (102)

q2 = i

√
1
η2
B

− 4 if 2ηB ≤ 1. (103)

The same remark as for q1 concerning the modes q2 = +√... and q2 = −i√... applies here. The
solution ~X2 ≡ (U2,W2, St2, Sn2) then reads:

~X2 =


i
2q2

1
0

− i
2µHq2

 ξ2 e
q2(η−ηH). (104)

Similar to ξ1, x2 is related to the values of the functions U2, W2, St2 and Sn2 in η = ηH .
Finally, the third order of the expansion gives the correction to the term in eikx:

W ′3 = −iU3, (105)

0 = iµHU3 + iU0U1 +
1
2
iU2U

∗
1 + U ′0W1 +

1
2
W ∗1U

′
2 +

1
2
W2U

′∗
1 + iSn3, (106)

S′n3 = − gH

ηHu2
∗
R3 − iµHW3 − iU0W1 −

3
4

(q2 + 2q∗1)W2W
∗
1 , (107)
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which can be rearranged into:

W ′3 + iU3 = 0, (108)

µHU3 + Sn3 = −iq1U0W1 +
1
4

(2q∗1 + q2)(q∗1 − q2)W ∗1W2, (109)

S′n3 + iµHW3 − i
N2

k2u2
∗µH

W3 = −iU0W1 −
3
4

(2q∗1 + q2)W ∗1W2. (110)

The solution ~X3 ≡ (U3,W3, St3, Sn3) then reads:

~X3 =


iq1ξ3 + i

1−q21
2µHq1

U0ξ1 + i
1−q21
2µH

U0ξ1(η − ηH)

ξ3 + 1−q21
2µHq1

U0ξ1(η − ηH)
0

−iµHq1ξ3 − i q
2
1+1
2q1

U0ξ1 + i
q21−1

2 U0ξ1(η − ηH)

 eq1(η−ηH)

−


−(q∗1 + q2)(3 + q∗1

2 − q2
2)

i(3 + q∗1
2 − q2

2)
0

µH [q2
1(q∗1 − q2) + 3(q∗1 + q2)]

 1
4µHq2

ξ∗1ξ2 e
(q∗1+q2)(η−ηH), (111)

where we have simplified the expression using the fact that q1 is either real or purely imaginary.
Again, ξ3 is related to the values of all functions in ηH . These values will be involved in the
expressions of the boundary conditions detailed below.

7.4 Boundary conditions on the bottom

Both components of the velocity should vanish at the bottom, i.e. for η = kZ. Recalling that we
project all functions on the representation

f(x, η) = fb(η) + (kζ)eikxf1(η) + (kζ)2f0(η) + (kζ)2e2ikxf2(η) + (kζ)3eikxf3(η), (112)

where fb is the ‘base’ function, we can expand all fi(kZ) as

fi(kZ) = fi(0) + (kZ)f ′i(0) + (kZ)2 1
2
f ′′i (0) + (kZ)3 1

6
f ′′′i (0). (113)

With Z = ζeikx, the second and third powers of kZ read:

(kZ)2 = (kζ)2 1
2

(1 + e2ikx), (114)

(kZ)3 = (kζ)3 3
4
eikx. (115)

We then get

f(x, kZ) = fb(0) + (kζ)eikx [f1(0) + f ′b(0)]

+ (kζ)2

[
f0(0) +

1
4
f ′′b (0) +

1
4
f ′1(0) +

1
4
f∗1
′(0)
]

+ (kζ)2e2ikx

[
f2(0) +

1
4
f ′′b (0) +

1
2
f ′1(0)

]
+ (kζ)3eikx

[
f3(0) +

1
8
f ′′′b (0) + f ′0(0) +

1
2
f ′2(0) +

1
4
f ′′1 (0) +

1
8
f∗1
′′(0)

]
. (116)

The above formulae apply for the computation of ux(x, kZ), with fb(η) = µ(η) = 1
κ ln(1+η/η0).

The condition ux(x, kZ) = 0 then leads to:

U1(0) = − 1
κη0

, (117)

40

doi: 10.1038/nature07787 SUPPLEMENTARY INFORMATION

www.nature/nature.com 



U0(0) =
1

4κη2
0

− 1
4
U ′1(0)− 1

4
U ′∗1 (0), (118)

U2(0) =
1

4κη2
0

− 1
2
U ′1(0), (119)

U3(0) = − 1
4κη3

0

− U ′0(0)− 1
2
U ′2(0)− 1

4
U ′′1 (0)− 1

8
U ′′∗1 (0). (120)

Similarly, for uz(x, kZ) = 0 (for which fb = 0), we get:

W1(0) = 0, (121)

W2(0) = −1
2
W ′1(0) =

i

2
U1(0) = − i

2κη0
, (122)

W3(0) = −1
4
W ′′1 (0)− 1

8
W ′′∗1 (0)− 1

2
W ′2(0) =

i

4
U ′1(0)− i

8
U ′∗1 (0) + iU2(0). (123)

7.5 Boundary conditions at the capping layer

The capping layer is described as an infinitesimaly thin interface between the well-mixed layer
below and the free atmosphere above. We call its altitude H + ∆(x). When needed, we shall
specify below η+

H and η−H , or H + ∆+ and H + ∆−, in order to distinguish between the interface
viewed from the FA or from the ML respectively.

When the bottom is flat, ∆ = 0. When some corrugation is present, we write

k∆ = (kζ)eikxδ1 + (kζ)2δ0 + (kζ)2e2ikxδ2 + (kζ)3eikxδ3, (124)

where the δi are (complex) numbers. It is easy to see that δ0 = 0. This identity is indeed related
to the fact that this interface is a streamline whose value (the flux below it) must be the same with
and without corrugation. This property does not allow for an additional term whose contribution
does not vanish on average (over x). In the same spirit as the previous subsection, we can expand
the non linear terms:

(k∆)2 = (kζ)2 1
2
δ1δ
∗
1 + (kζ)2e2ikx 1

2
δ2
1 + (kζ)3eikxδ2δ

∗
1 , (125)

(k∆)3 = (kζ)3eikx
3
4
δ2
1δ
∗
1 . (126)

This then leads to:

f(x, ηH + k∆) = fb(ηH) + (kζ)eikx [f1(ηH) + f ′b(ηH)δ1]

+ (kζ)2

[
f0(ηH) +

1
4
f ′′b (ηH)δ1δ∗1 +

1
4
f ′1(ηH)δ∗1 +

1
4
f∗1
′(ηH)δ1

]
+ (kζ)2e2ikx

[
f2(ηH) + f ′b(ηH)δ2 +

1
4
f ′′b (ηH)δ2

1 +
1
2
f ′1(ηH)δ1

]
+ (kζ)3eikx

[
f3(ηH) + f ′b(ηH)δ3 +

1
2
f ′′b (ηH)δ∗1δ2 +

1
8
f ′′′b (ηH)δ2

1δ
∗
1 + f ′0(ηH)δ1

+
1
2
f ′2(ηH)δ∗1 +

1
2
f∗1
′(ηH)δ2 +

1
4
f ′′1 (ηH)δ1δ∗1 +

1
8
f∗1
′′(ηH)δ2

1

]
. (127)

The first condition we wish to impose at the capping layer is that the density drops by a
constant amount ∆ρ, i.e. ρ(x, ηH + k∆+) = ρ0 −∆ρ. Using the above expression (127) for f = ρ

as well as the relation R1(η+
H) = N2

gk δ1 we get:

R0(η+
H) = −1

4
R′1(η+

H)δ∗1 −
1
4
R∗1
′(η+

H)δ1 = −N
2

4gk
(q1 + q∗1)δ1δ∗1 . (128)
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Note that, although they can be computed the same way, the expressions giving the functions R2

and R3 are not useful for our purpose.
The second point, already mentionned, is that the interface is a streamline, so that the stream

function should be constant along the it. This statement should be true both from the point of view
of the FA, and from that of the ML. Within the FA, the stream-line condition is Ψ(x, ηH+k∆+) =
u∗Hψb. Using expression (127) for f = Ψ we then get:

ξ1 = W1(η+
H) = iµHδ1, (129)

ξ2 = W2(η+
H) = 2iµHδ2 − q1δ1ξ1, (130)

ξ3 = W3(η+
H) +

i(3 + q∗1
2 − q2

2)
4µHq2

ξ∗1ξ2

= iµHδ3 +
1
2
δ2q
∗
1ξ
∗
1 + iδ1U0(ηH)− 1

4
δ∗1q2ξ2 −

1
4
δ1δ
∗
1q

2
1ξ1 +

1
8
δ2
1q
∗
1

2ξ∗1

+
i(3 + q∗1

2 − q2
2)

4µHq2
ξ∗1ξ2. (131)

These three equations define the amplitude of modulation in the free atmosphere layer for a given
∆. Note that the very same equation set could have been derived from the relation uz = ux∂x∆,
which is an equivalent definition of streamlines. Similarly, the streamline nature of the capping
layer expressed within the well-mixed layer reads:

W1(η−H) = iµHδ1, (132)

W2(η−H) = 2iµHδ2 − δ1W ′1(η−H) +
i

2
µ′Hδ

2
1 = 2iµHδ2 + iδ1U1(η−H) +

i

2κ(ηH + η0)
δ2
1 , (133)

W3(η−H) = iµHδ3 −
1
2
δ2W

∗
1
′(η−H) + iδ1U0(η−H)− 1

2
δ∗1W

′
2(η−H)− 1

4
δ1δ
∗
1W
′′
1 (η−H)

− 1
8
δ2
1W
∗
1
′′(η−H) +

i

2
µ′Hδ

∗
1δ2 +

i

8
µ′′Hδ

2
1δ
∗
1

= iµHδ3 +
i

2
δ2U

∗
1 (η−H) + iδ1U0(η−H) +

i

2
δ∗1U2(η−H) +

i

4
δ1δ
∗
1U
′
1(η−H)

+
i

8
δ2
1U
∗
1
′(η−H) +

i

2κ(ηH + η0)
δ∗1δ2 −

i

8κ(ηH + η0)2
δ2
1δ
∗
1 . (134)

This equation set can be thought of as defining the position of the interface, i.e. δ1, δ2 and δ3,
once the velocity field in the ML is known.

Finally, in agreement with our choice for the mixing length, we require that turbulence vanishes
at the interface. This condition is consistent with the fact that the FA is a stress-free zone. As a
consequence, the stress tensor is diagonal in ηH + k∆. Therefore, we wish to impose:

τxz(x, ηH + k∆−) = 0, (135)
p(x, ηH + k∆−) = p(x, ηH + k∆+). (136)

With the use of the above expression (127) with the Sti, we get for the first of these two conditions:

St1(η−H) =
1
ηH

δ1, (137)

St0(η−H) = −1
4
S′t1(ηH)δ∗1 −

1
4
S∗t1
′(ηH)δ1, (138)

St2(η−H) =
1
ηH

δ2 −
1
2
S′t1(ηH)δ1, (139)

St3(η−H) =
1
ηH

δ3 −
1
2
S∗t1
′(ηH)δ2 − S′t0(ηH)δ1 −

1
2
S′t2(ηH)δ∗1 −

1
4
S′′t1(ηH)δ1δ∗1

− 1
8
S∗t1
′′(ηH)δ2

1 . (140)
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Again, with the use of expression (127) with f = p, we get the pressure at z = H + ∆ in the ML:

p(x, ηH + k∆−)− pH
u2
∗

= (kζ)eikx
[
Sn1(η−H)− g

ku2
∗
δ1

]
+ (kζ)2

[
Sn0(η−H) +

1
4
S′n1(η−H)δ∗1 +

1
4
S∗n1
′(η−H)δ1

]
+ (kζ)2e2ikx

[
Sn2(η−H)− g

ku2
∗
δ2 +

1
2
S′n1(η−H)δ1

]
+ (kζ)3eikx

[
Sn3(η−H)− g

ku2
∗
δ3 + S′n0(η−H)δ1 +

1
2
S′n2(η−H)δ∗1

+
1
2
S∗n1
′(η−H)δ2 +

1
4
S′′n1(η−H)δ1δ∗1 +

1
8
S∗n1
′′(η−H)δ2

1

]
. (141)

In the FA, the pressure at z = H + ∆ reads:

p(x, ηH + k∆+)− pH
u2
∗

= (kζ)eikx
[
−iµHq1ξ1 −

(
1− ∆ρ

ρ0

)
g

ku2
∗
δ1

]
(142)

+ (kζ)2

[
Sn0(η+

H) +
(

N

2ku∗

)2

δ1δ
∗
1 +

1
4
S′n1(η+

H)δ∗1 +
1
4
S∗n1
′(η+

H)δ1

]

+ (kζ)2e2ikx

[
− i

2
µHq2ξ2 −

(
1− ∆ρ

ρ0

)
g

ku2
∗
δ2 +

(
N

2ku∗

)2

δ2
1

+
1
2
S′n1(η+

H) δ1

]
+ (kζ)3eikx

[
−iµHq1ξ3 − i

q2
1 + 1
2q1

ξ1U0(η+
H)

+
(2q∗1 + q2)[q2

1(q∗1 − q2) + 3(q∗1 + q2)]
4[q2

1 − (q∗1 + q2)2)]
ξ∗1ξ2

−
(

1− ∆ρ
ρ0

)
g

ku2
∗
δ3 +

(
N

2ku∗

)2

δ∗1δ2 + S′n0(η+
H)δ1

+
1
2
S′n2(η+

H)δ∗1 +
1
2
S∗n1
′(η+

H)δ2 +
1
4
S′′n1(η+

H)δ1δ∗1 +
1
8
S∗n1
′′(η+

H)δ2
1

]
.

Balancing the upper and lower pressures, and replacing the ξi as well as the several functions
f(η+

H) by their expressions, we finally get for the last boundary conditions:

Sn1(η−H) = µ2
H

(
q1 +

1
ηHφ2

)
δ1, (143)

Sn0(η−H) =
1
4
µ2
H

(
(q1 − q∗1)2 +

1
η2
B

)
δ1δ
∗
1 −

1
4
S′n1(η−H)δ∗1 −

1
4
S∗n1
′(η−H)δ1 (144)

Sn2(η−H) = µ2
H

(
q2 +

1
ηHφ2

)
δ2 +

1
2
µ2
H

(
q1(q1 − q2) +

1
2η2
B

)
δ2
1 −

1
2
S′n1(η−H)δ1 (145)

Sn3(η−H) = µ2
H

(
q1 +

1
ηHφ2

)
δ3 + µHU0(η+

H)
3q2

1 + 1
2q1

δ1 (146)

+
1
2
µ2
H

(
q2
2 + q2

1 − q1(q∗1 + q2) +Q+
1
η2
B

)
δ∗1δ2

− 1
2
µ2
H

(
q1 + q∗1 +

1
2
q1q2(q2 − q1) +

1
4
q2
1(q1 − q∗1) +

1
2
q1Q−

1
2η2
B

(q1 + q∗1)
)
δ2
1δ
∗
1

−
(
S′n0(η−H)δ1 +

1
2
S′n2(η−H)δ∗1 +

1
2
S∗n1
′(η−H)δ2 +

1
4
S′′n1(η−H)δ1δ∗1 +

1
8
S∗n1
′′(η−H)δ2

1

)
,
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where we have introduced the Froude number

φ =
u∗µH√
∆ρ
ρ0
gH

, (147)

and with

Q =
q1(3 + q2

1 − q2
2)− (q2

1(q∗1 − q2) + 3(q∗1 + q2))
q2

. (148)

In the main text, we also use the notation S ≡ φ2 to refer to a Shields number. Its typical value
is around unity. As q1 is either purely real or imaginary, we can express Q as

Q = −3− q1q2 + q2
1 if ηB ≥ 1, (149)

Q = −3− q1q2 + q2
1 + 2q1

3 + q2
1

q2
if ηB ≤ 1. (150)

With the velocities Ui and Wi given at the bottom (equations (117)-(123)), the stresses Sti and
Sni given at the capping layer (equations (137)-(140) and (143)-(146)), as well as the definition
of the interface (equations (132)-(134)), one can solve the differential equation set derived in the
previous subsection.

An essential output of this integration is the shear stress as well as the pressure on the bottom.
We define the coefficients Ai and Bi as:

S̃ti(0) = Ai + iBi, (151)

where, in accordance with the relation (116), the S̃ti(0) and S̃ni(0) are given by the different
expressions between brakets at each order of the expansion for f = τxz and f = p+τzz respectively.

These quantities can be related to the growth rate σ of an erodible wavy bed of wavelength λ.
For that purpose, the main ingredient regarding sediment transport is the saturation length `sat

[10, 11]; it reads:

σ(k) = Qk2 B1 −A1k`sat

1 + (k`sat)2
, (152)

where Q is the saturated flux over a flat bed – its value depends on the wind strength. `sat is on
the order of few meters. The maximum value of sigma occurs for ks`sat ' B1/A1.

In the non-linear regime, one can compute the amplitude at which the shear stress and thus
the sand flux are in phase with the giant dune relief. We cannot use the standard expansion a la
Ginzburg-Landau close to the instability threshold as there is no such threshold. We thus make
the approximation that well-developped dunes can still be approximated by sinusoidal shapes i.e.
that hydrodynamics is insensitive to the details of shape. Technically, we neglect the triad-mode
interaction and look only at the effect of a particular Fourier mode on itself, through the generation
of zero mode and first harmonic. We then predict the aspect ratio of the dune as

a

λ
=

2ζ
λ

=
1
π

√
−B1/B3 . (153)
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