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Relaxation of a dewetting contact line.
Part 1. A full-scale hydrodynamic calculation
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The relaxation of a dewetting contact line is investigated theoretically in the so-called
‘Landau–Levich’ geometry in which a vertical solid plate is withdrawn from a bath
of partially wetting liquid. The study is performed in the framework of lubrication
theory, in which the hydrodynamics is resolved at all length scales (from molecular to
macroscopic). We investigate the bifurcation diagram for unperturbed contact lines,
which turns out to be more complex than expected from simplified ‘quasi-static’
theories based upon an apparent contact angle. Linear stability analysis reveals that
below the critical capillary number of entrainment, Cac, the contact line is linearly
stable at all wavenumbers. Away from the critical point, the dispersion relation
has an asymptotic behaviour σ∝|q| and compares well to a quasi-static approach.
Approaching Cac, however, a different mechanism takes over and the dispersion
evolves from ∼|q| to the more common ∼q2. These findings imply that contact lines
cannot be described using a universal relation between speed and apparent contact
angle, but viscous effects have to be treated explicitly.

1. Introduction
Wetting and dewetting phenomena are encountered in a variety of environmental

and technological contexts, ranging from the treatment of plants to oil-recovery and
coating. Yet, their dynamics cannot be captured within the framework of classical
hydrodynamics – with the usual no-slip boundary condition on the substrate – since
the viscous stress diverges at the contact line (Huh & Scriven 1971; Dussan V. & Davis
1974). The description of moving contact lines has remained a challenge, especially
since it involves a wide range of length scales. In between molecular and millimetric
scales, the strong viscous stresses are balanced by capillary forces. In this zone, the
slope of the free surface varies logarithmically with the distance to the contact line
so that the interface is strongly curved, even down to small scales (Voinov 1976;
Cox 1986). Ultimately, the intermolecular forces due to the substrate introduce the
physical mechanism that cuts off this singular tendency (Voinov 1976; Cox 1986;
de Gennes 1986; Blake, de Coninck & D’Ortuna 1995; Pismen & Pomeau 2000).

A popular theoretical approach has been to assume that all viscous dissipation is
localized at the contact line, so that macroscopically the problem reduces to that of a
static interface that minimizes the free energy. In such a quasi-static approximation,
one does not have to deal explicitly with the contact-line singularity: the dynamics is
entirely governed by an apparent contact angle θa that serves as a boundary condition
for the interface (Voinov 1976; Cox 1986; Joanny & de Gennes 1984; Golestanian &
Raphael 2001b; Nikolayev & Beysens 2003). This angle is a function of the capillary
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Figure 1. (a) A standard geometry to study contact-line dynamics is that of a vertical solid
plate withdrawn from a bath of liquid with a constant velocity U . The position of the contact
line is indicated by zcl . (b) In this paper, we study the relaxation of transverse perturbations
of contact lines, by computing the evolution of the interface profile h(z, y, t).

number Ca = ηU/γ , which compares the contact-line velocity U to the capillary
velocity γ /η, where γ and η denote surface tension and viscosity. Since the dissipative
stresses are assumed to be localized at the contact line, viscous effects will modify
the force balance determining the contact angle. This induces a shift with respect to
the equilibrium value θe. Within this approximation, the difficulty of the contact-line
problem is hidden in the relation θa(Ca), which depends on the mechanism releasing
the singularity. While it is agreed that the angle increases with Ca for advancing
contact lines and decreases in the receding case, there are many different theories for
the explicit form (Voinov 1976; Cox 1986; de Gennes 1986; Blake et al. 1995).

Experimentally, however, it has turned out to be very difficult to discriminate
between the various theoretical proposals (Hoffman 1975; Le Grand, Daerr & Limat
2005; Rio et al. 2005). All models predict a nearly linear scaling of the contact
angle in a large range of Ca and the prefactor is effectively an adjustable parameter
(namely the logarithm of the ratio between a molecular and macroscopic length).
Differences become more pronounced close to the so-called forced wetting transition:
it is well known that the motion of receding contact lines is limited by a maximum
speed beyond which liquid deposition occurs (Blake & Ruschak 1979; de Gennes
1986). An example of this effect is provided by drops sliding down a window. At high
velocities, these develop singular cusp-like tails that can emit little droplets (Podgorski,
Flesselles & Limat 2001; Le Grand et al. 2005). Similarly, solid objects can be coated
by a non-wetting liquid when withdrawn fast enough from a liquid bath (Blake &
Ruschak 1979; Quéré 1991; Sedev & Petrov 1991) (figure 1a). Above the transition, a
capillary ridge develops (Snoeijer et al. 2006) that eventually leaves a Landau–Levich
film of uniform thickness (Landau & Levich 1942).

An important question is to what extent a quasi-static approximation, in which
dissipative effects are taken to be localized at the contact line, are able to describe
these phenomena. This problem has been addressed by using a fully hydrodynamic
model that properly incorporates viscous effects at all length scales (Hocking 2001;
Eggers 2004, 2005). It was found that stationary meniscus solutions cease to exist
above a critical value Cac, owing to a matching problem at both ends of the scale
range: the highly curved contact-line zone and the macroscopic flow (Eggers 2004,
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Figure 2. Experimental realization of contact line perturbations. The contact line is deformed
by ‘wetting defects’ on the partially wetting plate. The narrow connection between the defect
and the bath undergoes a Rayleigh–Plateau-like instability, leaving a periodically deformed
contact line.

2005). The values of Cac and the emerging θa(Ca) are not universal: they depend on
the inclination at which the plate is withdrawn from the liquid reservoir. Hence, the
large-scale geometry of the interface does play a role and the dynamics of contact
lines cannot be captured by a single universal law for θa(Ca).

Golestanian & Raphael (2001a, b) identified another sensitive test to discriminate
contact-line models. They considered the relaxation of dewetting contact lines
perturbed at a well-defined wavenumber q (figure 1b). This can be achieved
experimentally by introducing wetting defects on the solid plate, separated by a
wavelength λ. As can be seen in figure 2, these defects create a nonlinear perturbation
when passing through the contact line, but eventually the relaxation occurs along
the Fourier mode with q = 2π/λ (Delon et al. 2007). Using a quasi-static theory,
Golestanian & Raphael predict that the perturbations decay exponentially ∼ e−σ t

with a relaxation rate

σ = |q|γ
η

f (Ca), (1.1)

where f (Ca) is very sensitive to the form of θa(Ca). Their theory is built upon the
work by Joanny & de Gennes (1984), who identified the scaling proportional to |q| for
static contact lines (Ca = 0). Ondarçuhu and Veyssié (1991) experimentally confirmed
this |q|-dependence in the limit of Ca =0, whereas Nikolayev & Beysens (2003)
argued that this scaling should saturate to the inverse capillary length lγ =

√
γ /ρg

in the large wavelength limit. However, an intriguing and untested prediction for
the dynamic problem is that the relaxation times diverge when approaching forced
wetting transition at Cac. This ‘critical’ behaviour should occur at all length scales
and is encountered in the prefactor f (Ca), which vanishes as Ca → Cac.

In this paper, we perform a fully hydrodynamic analysis of perturbed menisci when
a vertical plate is withdrawn from a bath of liquid with a velocity U (figure 1).
Using the lubrication approximation, it is possible to take into account the viscous
dissipation at all length scales, from molecular (i.e. the slip length) to macroscopic. We
thus drop the assumptions of quasi-static theories and describe the full hydrodynamics



66 J. H. Snoeijer, B. Andreotti, G. Delon and M. Fermigier

θ + ∆θ θ – ∆θ

∆z

z

y

x

x–
lγ

z/lγ

U

(a)

(b) 4

3

2

1

0 1

Figure 3. (a) Macroscopic representation of the interface shape near a perturbed contact
line. The advanced part of the contact line has a smaller apparent contact angle than the
unperturbed θa , and will thus have a higher speed with respect to the plate. This will decrease
the amplitude of the perturbation. (b) Cross-sections of the perturbed interface profile along
z. Note that the interface joins the static bath at z =0.

of the problem. The first step is to compute the unperturbed meniscus profiles as a
function of the plate velocity. We show that these basic solutions undergo a series
of bifurcations that link the effect that stationary solutions cease to exist beyond
Cac (Eggers 2004), to the upward propagating fronts beyond the transition (Snoeijer
et al. 2006). Then we study the dispersion of contact-line perturbations through a
linear stability analysis. Our main findings are: (i) the relaxation time for the mode
q = 0 scales as |Ca − Cac|−1/2; (ii) finite wavelength perturbations always decay in
a finite time even right at the critical point; (iii) the scaling σ ∝ |q| proposed by
(1.1) breaks down when approaching Cac. These results illustrate the limitations of
simplified theories based upon an apparent contact angle.

The paper is organized as follows. In § 2, we summarize the results from a quasi-
static theory and generalize the work by Golestanian & Raphael. In § 3, we formulate
the hydrodynamic approach and compute the bifurcation diagram of the base
solutions. After addressing technical points of the linear stability analysis in § 4,
we present our numerical results for the dispersion relation in § 5. The paper closes
with a discussion in § 6.

2. Results from quasi-static theory
We briefly revisit the quasi-static approach to contact-line perturbations, which

will serve as a benchmark for the full hydrodynamic calculation starting in § 3. The
results below are based upon the analysis of Golestanian & Raphael, which has been
extended to long wavelengths and large contact angles.

2.1. Short wavelengths: qlγ � 1

At distances well below the capillary length, lγ =
√

γ /ρg, we can treat the unperturbed
profiles as a straight wedge of angle θa . Perturbations should not affect the total
Laplace pressure, and hence not the total curvature of the free interface. The interface
will thus be deformed (figure 3a): the advanced part of the contact line has a smaller
apparent contact angle than the unperturbed θa . According to θa(Ca), such a smaller
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angle corresponds to a higher velocity with respect to the plate, hence the perturbation
will decay. From this argument, we readily understand that the rate of relaxation σ ,
depends on how a variation of θ induces a variation of Ca, and thus involves the
derivative dCa/dθa (Golestanian & Raphael 2003).

Working out the mathematics, see Appendix B, we find

ησ

|q|γ = − tan θa

cos θa

(
d tan θa

dCa

)−1

. (2.1)

This implies that the time scale for the relaxation is set by the length q−1 and the
capillary velocity γ /η, where γ represents surface tension and η is the viscosity. We
therefore introduce

σ∞(Ca) = lim
qlγ →∞

σ

qlγ

ηlγ

γ
, (2.2)

which will be used later to compare to the hydrodynamic calculation in the limit of
large q .

2.2. Large wavelengths: qlγ � 1

When considering modulations of the contact line with 1/q of the order of the
capillary length, we can no longer treat the basic profile as a simple wedge. Instead,
we must invoke the full profile h0(z) and the results for σ are no longer geometry
independent (see also Sekimoto, Oguma & Kawasaki 1987). For the geometry of a
vertical plate immersed in a bath of liquid, we can characterize the profiles by the
‘meniscus rise’, indicating the position of the contact line zcl above the liquid bath
(figure 1). This is directly related to the contact angle as (Landau & Lifshitz 1959)

zcl = ± lγ
√

2(1 − sin θa), (2.3)

where the sign depends on whether θa < π/2 (positive), θa > π /2 (negative). In fact,
this relation is often used to experimentally determine θa(Ca), since the meniscus rise
zcl (Ca) can be measured more easily than the slope of the interface.

We now consider the relaxation rate σ0 for perturbations with q = 0. Such a
perturbation corresponds to a uniform translation of the contact line with �z. Using
the empirical relation zcl (Ca), we can directly write

d�z

dt
= −γ

η
�Ca = −γ

η

(
dzcl

dCa

)−1

�z. (2.4)

Hence,

ηlγ σ0

γ
= lγ

(
dzcl

dCa

)−1

. (2.5)

In terms of the contact angle, using (2.3), this becomes

ηlγ σ0

γ
= −

√
2(1 − sin θa)

|cos3θa|

(
d tan θa

dCa

)−1

. (2.6)

Besides some geometric factors, this result has the same structure as the relaxation
for small wavelengths, (2.1). The crucial difference, however, is that the length scale of
the problem is now lγ instead of q . Comparing the relaxation of finite wavelenghts,
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σq , with the zero mode relaxation, σ0, we thus find

σq

σ0

	 qlγ g(θa) for qlγ � 1, (2.7)

where the prefactor g(θa) reads

g(θa) =
|cosθa| sin θa√
2(1 − sin θa)

. (2.8)

Using (2.2), we thus find the quasi-static prediction

σ∞ = σ0g(θa). (2.9)

2.3. Physical implications and predictions

The predictions of the quasi-static approach can be summarized by (2.1), (2.5)
and (2.9). The relation σ ∝ |q| was found by Joanny & de Gennes (1984), who
referred to this as the ‘anomalous elasticity’ of contact lines. The linear dependence
on q contrasts with the more generic scaling q2 for diffusive systems, and has been
confirmed experimentally by Ondarçuhu Veyssié (1991) in the static limit, Ca =0. A
consequence is that the Green’s function corresponding to this dispersion relation
is a Lorentzian ∝ (1 + [y/w(t)]2)−1, whose width w(t) grows linearly in time. The
prediction is thus that a localized deformation of the contact line, similar to figure 2
but now for a single defect, will display a broad power-law decay along y. In the
hydrodynamic calculation below, we will identify a breakdown of this phenomenology
in the vicinity of the critical point.

On the level of the speed-angle law θa(Ca), the wetting transition manifests itself
through a maximum possible value of Ca, i.e. dθ/dCa = ∞. According to (2.1)
and (2.6), this suggests a diverging relaxation time σ −1 at all length scales. Assume
that the scaling close to the maximum is θa − θc ∝ (Cac − Ca)β , where generically we
would expect β = 1/2. If the critical point occurs at zero contact angle, θc = 0, Eq. (2.1)
yields a scaling σq ∝ (Cac − Ca) for the case of large q . For q = 0 or when θc 
= 0, we
find σq ∝ (Cac −Ca)1−β . Below we show that the mode q = 0 indeed displays the latter
scaling with β = 1/2. However, the relaxation times of finite q perturbations always
remain finite according to the full hydrodynamic calculation, even at the critical point.

3. Hydrodynamic theory: the basic profile h0(z)

This section describes the hydrodynamic theory that is used to study the relaxa-
tion problem. After presenting the governing equations, we reveal the non-trivial
bifurcation diagram of the stationary solutions, h0(z), for different values of the
capillary number. This allows an explicit connection between the work on the existence
of stationary menisci (Hocking 2001; Eggers 2004, 2005), and the recently observed
transient states in the deposition of the Landau–Levich film (Snoeijer et al. 2006).
All results presented below have been obtained through numerical resolution of the
hydrodynamic equations using a Runge–Kutta integration method.

3.1. The lubrication approximation

We consider the coordinate system (z, y) attached to the solid plate (figure 1).
The position of the liquid/vapour interface is denoted by the distance from the
plate h(z, y, t). To cover the range of length scales from molecular to millimetric,
the standard approach is to describe the hydrodynamics using the lubrication
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approximation (Oron, Davis & Bankoff 1997). This is a long-wavelength expansion
of the Stokes flow based upon Ca � 1, which reduces the free-boundary problem
to a single partial differential equation for h(z, y, t). Of course, we must still deal
explicitly with the fact that viscous forces tend to diverge as h → 0. Here, we resolve
the singularity by introducing a Navier-slip boundary condition at the plate,

vz = ls
∂vz

∂x
, (3.1)

which is characterized by a slip length ls . Such a slip law has been confirmed
experimentally, yielding values for ls ranging from a single molecular length up to a
micrometre depending on the wetting properties of the liquid and the roughness of
the solid (Thompson & Robbins 1989; Barrat & Bocquet 1999; Pit, Hervet & Leger
2000; Cottin-Bizonne et al. 2005). Different mechanisms releasing the contact-line
singularity will lead to similar qualitative results, as long as the microscopic and
macroscopic lengths remain well separated.

The lubrication equation with slip boundary condition reads (Oron et al. 1997)

∂th + ∇ · (h U) = 0, (3.2)

γ ∇κ − ρgez +
3η(U ez − U)

h(h + 3ls)
= 0. (3.3)

Here, U is the plate velocity, U(z, y, t) =Uzez + Uyey is the depth-averaged fluid
velocity inside the film, while ∇ = ez∂z + ey∂y . The first equation is mass conservation,
while the second represents the force balance between surface tension γ , gravity ρg,
and viscosity η, respectively. We maintain the full curvature expression

κ =
(1 + ∂yh

2)∂zzh + (1 + ∂zh
2)∂yyh − 2∂yh∂zh∂yzh

(1 + ∂zh2 + ∂yh2)3/2
, (3.4)

which allows a proper matching to the liquid reservoir away from the contact line.
In the remainder, we rescale all lengths by the capillary length lγ =

√
γ /ρg, and all

velocities by γ /η, yielding the dimensionless equations

∂th + ∇ · (hU) = 0, (3.5)

∇κ − ez +
3(Ca ez − U)

h(h + 3ls)
= 0. (3.6)

The time scale in this equation thus becomes ηlγ /γ .

3.2. Boundary conditions

We must now specify boundary conditions at the liquid reservoir and at the contact
line (see figure 3). Far away from the plate, h → ∞, the free surface of the bath is
unperturbed by the contact line. Defining the vertical position of the bath at z = 0,
we can thus impose the asymptotic boundary conditions as z → 0

∂zh = −∞, (3.7a)

∂yh = 0, (3.7b)

κ = 0. (3.7c)

We impose at the contact line, at z = zcl , that

h = 0, (3.8a)

|∇h| = tan θcl , (3.8b)

hU = 0. (3.8c)
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The first condition determines the position of the contact line, while the third condition
ensures that no liquid passes the contact line. This condition is not trivial, since the
equations admit solutions where the liquid velocity diverges as ∼1/h. The second
condition imposes the microscopic contact angle, θcl , emerging from the force balance
at the contact line. This condition is actually hotly debated: for simplicity it is
often assumed that this microscopic angle remains fixed at its equilibrium value
(Hocking 2001; Eggers 2004), but measurements have suggested that this angle varies
with Ca (Ramé, Garoff & Willson 2004). We will limit ourselves to presenting an
argument in favour of a fixed microscopic angle. The boundary condition arises at a
molecular scale, lVdW , at which the fluid starts to feel the van der Waals forces exerted
by the substrate. This effect can be incorporated by a disjoining pressure A/h3,
where the Hamaker constant A ∝ γ l2V dW (Israelachvili 1992). At h = lVdW , this yields a
contribution of the order Ah′/l2VdW in (3.3). Taking lVdW ∼ ls , the viscous stresses will
have a relative influence on the disjoining term, and thus on the boundary condition,
of the order of Ca ∼ 10−2, so that the contact angle should remain roughly within
1% of its equilibrium value. This analysis of the microscopic contact angle will be
extended and compared to novel experimental results in (Delon et al. 2007).

3.3. The basic profile and the bifurcation diagram

We first solve for the basic profile h0(z), corresponding to a stationary meniscus that
is invariant along y. From continuity, we find that hUz is constant, which using the
boundary condition (3.8) yields Uz = 0. The momentum balance (3.6) for h0(z) thus
reduces to

κ ′
0 = 1 − 3Ca

h0 (h0 + 3ls)
, (3.9)

with

κ0 =
h′′

0(
1 + h′2

0

)3/2
. (3.10)

Close to the bath, i.e. z ≈ 0, the height of the interface becomes much larger than
the capillary length, so that we can ignore the viscous term. The asymptotic solution
of (3.9) near z = 0 thus simply corresponds to that of a static bath,

h0 = − ln z/c, (3.11a)

h′
0 = −1

z
, (3.11b)

κ0 = z, (3.11c)

which indeed respects the boundary conditions of (3.7). This solution has one free
parameter, c, that can be adjusted to fulfil the remaining boundary condition at the
contact line, h′

0 = − tan θcl . It is not entirely trivial that this uniquely fixes the solution
since (3.9) degenerates for h0 = 0. We can show that the asymptotic solution for small
Z = zcl − z is (Buckingham, Shearer & Bertozzi 2003)

h0 = tan θcl Z − (1 + tan2 θcl )
3/2Ca

2ls tan θcl

Z2 ln Z + c̃Z2, (3.12)

where c̃ is the sole degree of freedom. The expansion can be continued to arbitrary
order once θcl and c̃ are fixed.

So, the basic profile h0(z) is indeed determined by the microscopic parameters θcl

and ls , and the (experimental) control parameter Ca. This is illustrated in figure 4(a),
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Figure 4. (a) Contact-line position zcl at equilibrium as a function of the capillary number
Ca for fixed parameters θcl = 51.5◦ and ls = 5 × 10−7. Stationary solutions cease to exist above

a critical value Cac = 0.00759 · · ·. The horizontal bar denots zcl =
√

2. (b) Same as (a), but now
showing the full range of zcl . The solutions undergo a sequence of saddle-node bifurcations
with ultimately zcl → ∞, with a corresponding Ca∗ = 0.00693 · · · (dashed line).

showing zcl (Ca) for fixed parameters θcl = 51.5◦ and ls =5 × 10−7. Similar to Hocking
(2001) and Eggers (2004), we find that stationary meniscus solutions exist only up
to a critical value Cac. Beyond this capillary number, the interface has to evolve
dynamically and a liquid film will be deposited onto the plate. We can use figure 4(a)
to extract the apparent contact angle θa , via (2.3). The critical capillary number is
attained when zcl =1.4076 · · ·, which is very close to

√
2 = 1.4142 · · ·. This confirms

the predictions by Eggers (2004) that stationary solutions cease to exist at a zero
apparent contact angle. This slight difference from

√
2 is because Eggers’s asymptotic

theory becomes exact only in the limit where ls → 0, so that minor deviations can
be expected. Other values of θcl and ls lead to very similar curves, always with a
transition at zcl 	

√
2, but with shifted values of Cac. This critical value roughly scales

as Cac ∝ θ3
cl/ ln l−1

s (Eggers 2004, 2005).
In fact, the existence of a maximum capillary number is due to a saddle-node

bifurcation, which originates from the coincidence of a stable and and unstable
branch (this will be shown in more detail in § 5). As can be seen from figure 4(b), there
is a branch that continues above zcl =

√
2. Surprisingly, these solutions subsequently

undergo a series of saddle-node bifurcations, with capillary numbers oscillating around
a new Ca∗. This asymptotically approaches a solution of an infinitely long flat film
behind the contact line. Figure 5 shows the corresponding profiles h0, and illustrates
the formation of the film. This film is very different from the so-called Landau–
Levich film, which was computed in a classic paper (Landau & Levich 1942). The
Landau–Levich solution is much simpler as it does not involve a contact line and
does not display the non-monotonic shape shown in figure 5. The difference shows
up markedly in the thickness of the film: while the Landau–Levich film thickness

scales as Ca2/3, the film with a contact line has a thickness h∞ =
√

3Ca∗. Note that
very similar film solutions were identified by Hocking (2001) and by Münch & Evans
(2005) in the context of Marangoni-driven flows.

These new film solutions have been observed experimentally, as transient states in
the deposition of the Landau–Levich film (Snoeijer et al. 2006). In fact, the transition
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Figure 5. Various basic solutions h0(z) along the bifurcation diagram of figure 4, see inset.

towards entrainment was observed to coincide at Ca∗, hence well before the critical
point Cac and with θa 
= 0. For fibres, on the other hand, the condition of vanishing
contact angle has been observed experimentally by Sedev & Petrov (1991). We return
to this issue at the end of the paper.

3.4. Physical meaning of the apparent contact angle

From the definition of (2.3), it is clear that the apparent contact angle represents
an extrapolation of the large-scale-profile using the static-bath solution. In reality,
however, the interface profile is strongly curved near the contact line and the contact
angle increases to a much larger θcl . This has been shown in figure 6, revealing
the logarithmic evolution of the interface slope close to the contact line. This is
different from the static-bath solutions, for which the slope decreases monotonically
when approaching the contact line (figure 6b, dashed curve). Another way to define
a typical contact angle in the dynamic situation could thus be to use the inflection
point, which yields the minimum slope of the interface. However, when using θa(Ca)
as an asymptotic matching condition for an outer scale solution, as in a quasi-static
theory, it is clear that it only makes sense to use the extrapolated version.

4. Linear stability within the hydrodynamical model
We now turn to the actual linear stability analysis within the hydrodynamic model.

This section poses the mathematical problem and addresses some technical issues
related to asymptotic boundary conditions. The numerical results will be presented in
§ 5.

4.1. Linearized equation and boundary conditions

We linearize (3.5), (3.6) about the basic profile h0(z), writing

h(z, y, t) = h0(z) + ε h1(z) e−σ t+iqy, (4.1)

κ(z, y, t) = κ0(z) + ε κ1(z) e−σ t+iqy, (4.2)

Uz(z, y, t) = ε Uz1(z) e−σ t+iqy, (4.3)

Uy(z, y, t) = ε Uy1(z) e−σ t+iqy. (4.4)
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Figure 6. (a) Variation of the slope h′
0 as a function of the distance to the contact line, for

different values of Ca. (b) The profile h′
0 for the critical solution (solid line), compared to the

static bath with θa = 0 (dashed line).

Here, we used the basic velocity U0 = 0, so that the velocity is of order ε only. The
linearized equation is not homogeneous in z, owing to h0(z), so the eigenmodes are
non-trivial in the z-direction. From the y-component of (3.6), we can eliminate Uy1 in
terms of κ1, as

Uy1(z) = 1
3
iqh0(h0 + 3ls)κ1(z). (4.5)

It is convenient to introduce the variable

F1(z) = h0(z)Uz1(z), (4.6)

which represents the flux in the z-direction at order ε (the zeroth-order flux being
zero). Writing the vector

X =

⎛
⎜⎝

h1

h′
1

κ1

F1

⎞
⎟⎠ , (4.7)

we can cast the linearized equation for the eigenmode as

dz X = AX, (4.8)

where dz denotes the derivative with respect to z and the right-hand side is a simple
matrix product. From linearization of (3.4), (3.5) and (3.6), we find

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

q2
(
1 + h′2

0

)
3h′

0κ0

(
1 + h′2

0

)1/2 (
1 + h′2

0

)3/2
0

3Ca

h2
0(h0 + 3ls)

(
2 − 3ls

h0 + 3ls

)
0 0

3

h2
0(h0 + 3ls)

σ 0 q2h2
0(h0 + 3ls)/3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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The eigenmodes and corresponding eigenvalues σq of this linear system are determined
through the boundary conditions. At the contact line, we must obey the boundary
conditions of a microscopic contact angle tan θcl and a zero flux (see (3.8)). To translate
this in terms of the linearized variables, we have to evaluate |∇h| at the position of the
contact line zcl +�z. Along the lines of Appendix B, we find �z = εe−σ t+iqyh1/ tan θcl .
Linearizing |∇h| then yields the boundary conditions for the eigenmode

h′
1 = −

κ0

(
1 + h′2

0

)3/2

tan θcl

h1, (4.9)

F1 = 0. (4.10)

At the side of the bath, z → 0, the conditions become

iqh1 = 0 ⇒ q = 0 ∨ h1 = 0, (4.11)

κ1 = 0. (4.12)

Below, we identify the two relevant asymptotic behaviours at the bath respecting
these boundary conditions.

4.2. Shooting: asymptotic behaviours at bath

The strategy of the numerical algorithm is to perform a shooting procedure from the
bath to the contact line, where we have to obey the two conditions (4.9) and (4.10).
We thus require two degrees of freedom, one of which is the sought for eigenvalue σ .
Since the problem has been linearized, the amplitude of a single asymptotic solution
does not represent a degree of freedom: we can use the relative amplitudes of two
asymptotic solutions as the additional parameter to shoot towards the contact line.
We must thus identify two linearly independent solutions that satisfy the boundary
conditions (4.11), (4.12).

There are two asymptotic solutions of the type:

h1 = zα

(
1 +

3Ca

2(α + 1)2
1

ln2(z/c)

)
, (4.13a)

h′
1 = αzα−1

(
1 +

3Ca

2(α + 1)2
1

ln2(z/c)

)
, (4.13b)

κ1 =
−6Ca

α + 1

zα+1

ln3(z/c)
, (4.13c)

F1 =
σ

α + 1
zα+1 . (4.13d)

These exist for the two roots of

α2 + 2α − q2 = 0 ⇒ α± = ±
√

1 + q2 − 1 . (4.14)

Since we want h1 to be bounded, only the solution α+ is physically acceptable. The
mode h1 ∝ zα+ has precisely the well-known Laplacian structure of exp(−qx + iqy)
when transformed in the frame where the bath is horizontal (see Appendix A). This
mode thus corresponds to a zero curvature perturbation of a static bath, with no
liquid flow. Indeed, no flux crosses the bath as F1 → 0.

However, the motion of the contact line implies that liquid is being exchanged with
the liquid reservoir, so we require an asymptotic solution that has a non-zero value
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of F1. We found that the corresponding mode has the following structure:

h1 = −q2L(z)

z
+

1

ln3(z/c)
, (4.15a)

h′
1 =

q2L(z)

z2
+

q2

z ln3(z/c)
− 3

z ln4(z/c)
, (4.15b)

κ1 = q2(1 + q2)L(z), (4.15c)

F1 = 1
3
q2(1 + q2). (4.15d)

where L stands for

L(z) =

∫ z

0

dt
−1

ln3(t/c)
. (4.16)

This integral can be rewritten in terms of a logarithmic integral using partial integra-
tion, but this does not yield a simpler expression.

For completeness, let us also provide the fourth asymptotic solution of this fourth-
order system:

h1 =
1

z

(
1 − 3Ca

1 + q2

1

ln2(z/c)

)
, (4.17a)

h′
1 = − 1

z2

(
1 − 3Ca

1 + q2

1

ln2(z/c)

)
, (4.17b)

κ1 = −(1 + q2)

(
1 − 3Ca

1 + q2

1

ln2(z/c)

)
, (4.17c)

F1 = σ ln(z/c), (4.17d)

which clearly violates the boundary conditions (4.11) and (4.12).
To summarize, there are two asymptotic solutions that are compatible with the

boundary conditions at the bath. Their relative amplitudes can be adjusted to satisfy
one of the two boundary conditions at the contact line. The numerical shooting
procedure allows us to find the eigenvalue σq for which also the second boundary
condition is obeyed.

5. The dispersion relation
5.1. Numerical results

Let us now discuss the dispersion relation of contact-line perturbations obtained
within the hydrodynamic framework. For fixed microscopic parameters, the relaxation
rate depends on the capillary number Ca and the dimensionless wavenumber q that
has been normalized by the capillary length. This relation will be represented by the
function σq(Ca), which has the dimension of the inverse time-scale γ /(ηlγ ). From the
definition (4.1), it follows that σ is positive for stable solutions.

The dispersion relations are summarized by figure 7, displaying σq for various
values of Ca. For values well below the critical speed Cac, we find that the relaxation
increases with q , in a manner consistent with the quasi-static prediction that σ ∝ |q|
for large q . The crossover towards this linear scaling happens around q ≈ 1, and is
thus governed by the capillary length.
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(b)
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Figure 7. Dispersion relation obtained numerically. (a) Relaxation rates σ as a function of
q , in units of γ /(ηlγ ) and 1/lγ , respectively. The various curves correspond to values of Ca

ranging from 0 to 7.5 × 10−3 increasing by steps of 0.5 × 10−3, plus Cac . (b) The same but
close to the critical capillary number: from top to bottom, Ca = 0.0075, Ca = 0.0075687 and
Ca 	 Cac = 0.00758751.

Close to the critical point, however, we find two unexpected features. First, it is
clear from figure 7(b) that the linear regime disappears, or lies outside the range
of our curves. We have not been able to extend the numerical calculation to larger
values of q owing to intrinsic instability of the numerical algorithm (the presented
curves have arbitrary precision). Hence, the crossover value for q , denoted by the
inverse wavelength 1/λcut , increases dramatically close to the transition. Secondly,
we observe a vanishing relaxation rate for the mode q = 0 at Cac, or equivalently a
diverging relaxation time. However, the rates at finite wavelengths remain non-zero
at the transition. This is in contradiction with the quasi-static theory, (2.7), suggesting
that σq vanishes at all length scales at the transition.

To characterize these behaviours in more detail, it is convenient to use an empirical
relation for the numerical curves (Ondarçuhu 1992),

σq 	 σ0 + σ∞

(√
1 + (qλcut )2 − 1

λcut

)
. (5.1)

This form contains the two main features of the dispersion: the relaxation rate for
the zero mode σ0(Ca), and the prefactor in the linear regime σ∞(Ca) ≡ limq→∞ σq/q

already defined in (2.2). The cutoff length λcut then characterizes the cross-over
between the two regimes. The quasi-static prediction would be that λcut ≈ 1 and
σ∞ ∝ σ0, see (2.9). We have found that (5.1) provides an excellent fit for all data. Only
close to the critical point, where the linear regime is no longer observed within our
numerical range, are the values of λcut and σ∞ slightly dependent on the choice for
the fit. The result for σ0 is completely independent of this choice.

Let us first follow the relaxation of the mode q = 0 as a function of Ca. Figure 8(a)
shows that σ0 decreases with Ca, so that the relaxation is effectively slowed down.
When approaching the critical point, this stable branch actually merges with the first
unstable branch shown in figure 4(b), the latter giving negative values for σ0. As a
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Figure 8. (a) Zero mode relaxation rate σ0 as a function of Ca (solid line). The dashed line
shows the quasi-static approximation. (b) The same but plotted in log–log coordinates as a
function of Cac − Ca.

consequence, the relaxation rate has to change sign at Cac, so that σ0 = 0 at this
point. Figure 8(b) shows that the relaxation time diverges as σ −1

0 ∝ 1/
√

Cac − Ca.
As we argue below, this behaviour is a fingerprint of a saddle-node bifurcation. This
scenario is repeated when following the higher branches of figure 4(b). Indeed, we find
a succession of saddle-node bifurcations at which σ0 changes sign. In figure 8(a), this
manifests itself as an inward spiral, so that the solution with zcl → ∞ has σ =0. The
dotted curve in figure 8(a) has been obtained from the quasi-static prediction, (2.5),
relating σ0 to the curve zcl (Ca) displayed in figure 4(b); the agreement is excellent.

This agreement is in striking contrast to the discrepancy at small wavelengths. These
are represented in figure 9(a) through σ∞(Ca). The comparison with quasi-static theory
(dotted line), reveals a significant quantitative disagreement for all Ca. However, the
most striking feature is that σ∞ diverges near the transition. This suggests that for
large q , the relaxation rates increase faster than linearly, so that the quasi-static theory
breaks down even qualitatively. A direct consequence is then that λcut → 0 (figure 9b).
At the critical point, (5.1) reduces to σq 	 σ∞λcut q2/2 for small q , so that λcut ∝ 1/σ∞.
These results underline the qualitative change when approaching Cac.

5.2. Interpretation

We propose the following interpretation for the behaviour near the critical point.
We have seen that the q = 0 mode is described well through a standard saddle-node
bifurcation, which has the normal form

dA

dt
= µ − A2. (5.2)

For positive µ, this equation has two stationary solutions, namely A± = ± √
µ. Linear

stability analysis around these solutions shows that the A+ solutions are stable while
the A− are unstable, and the corresponding relaxation rates scale as σ = ± 2

√
µ.

So indeed, our numerical results for q = 0 are described by the saddle-node normal
form, when taking µ ∝ Ca − Cac and A =

√
2 − zcl .
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Figure 9. (a) Asymptotic relaxation rate σ∞ ≡ limq→∞ σq/q as a function of the capillary
number Ca (solid line). The dotted line shows the quasi-steady prediction, (2.1). (b) Crossover
wavelength λcut as a function of capillary number Ca.

Making an expansion around the critical point that incorporates slow spatial
variations in y, we would expect the following structure

∂A

∂t
= µ − A2 + D

∂2A

∂y2
. (5.3)

Because of the symmetry y → −y, the single derivative of y can never emerge. This
then yields a dispersion relation

σ = σ0 + Dq2 + O(q4). (5.4)

This explains the observation that for finite q the relaxation rates remain finite at the
critical point, even though σ0 = 0. When comparing to (5.1), we find that D = σ∞λcut/2.
This value decreases with Ca but remains finite at the transition. The dependence
D(Ca) appears to extrapolate to zero only about 1% beyond Cac.

6. Discussion
We have performed a hydrodynamic calculation of perturbed receding contact lines,

in which viscous dissipation has been taken into account on all length scales (from
molecular to macroscopic). This goes beyond work by Golestanian & Raphael and
Nikolayev & Beysens (2003), in which all dissipation was assumed to be localized at
the contact line and described by an apparent (macroscopic) contact angle θa .

In the first part of the paper we have revealed the bifurcation diagram for straight
contact lines, which turns out to be much richer than expected from the simplified
quasi-static approach. Instead of a single saddle-node bifurcation at the critical
capillary number Cac, we find a discrete series of such bifurcation points converging
to a second threshold capillary number Ca∗ (figure 4). The latter solutions have been
observed experimentally as transient states towards liquid deposition (Snoeijer et al.
2006). These experiments showed that the wetting transition occurs at Ca∗, and hence
before the critical value Cac at which stationary menisci cease to exist. Since we
have found the lower branch of figure 4 to be linearly stable at all length scales, this



Relaxation of a dewetting contact line. Part 1 79

subcritical transition has to be mediated by some (unknown) nonlinear mechanism.
Let us note that similar experiments using thin fibres instead of a plate suggest
that it is possible to approach the critical point (Sedev & Petrov 1991). It would be
interesting to investigate the bifurcation diagram as a function of the fibre radius r ,
where the present work represents the limit r/ lγ → ∞.

The second part concerned the relaxation of perturbed contact lines. At long
wavelenghts, qlγ � 1, we have found that the relaxation obtained in the hydrodynamic
calculation is very close to the quasi-static prediction. The quasi-static model is based
upon the equilibrium contact-line position at steady state, as a function of the capillary
number: it treats the perturbations as a small displacement of the contact line, �zcl ,
that induces a change in the contact line velocity ∼ dCa/dzcl . A positive (negative)
derivative indicates that the contact line is stable (unstable). This argument does not
involve the apparent contact angle: it holds as long as the interface profile relaxes
adiabatically along stationary or steady meniscus solutions. The long-wavelength
theory therefore relies on a ‘quasi-steady’ assumption, and not so much on the
interface being nearly at equilibruim (quasi-static). We wish to note that the physics
is slightly different for a contact line on a horizontal plane, for which there is no
equilibrium position due to gravity. For an infinite volume, translational invariance
implies that σ0 = 0 (Sekimoto et al. 1987), whereas drops of finite volume have a finite
resistance to long wavelength perturbations. This illustrates the importance of the
outer geometry.

For small wavelengths, qlγ � 1, we found that the quasi-static theory breaks
down. Away from the critical point, we still observe the scaling σ ∝ |q|, as
proposed by Joanny & Gennes (1984). This scaling reflects the ‘elasticity’ of contact
lines, representing an increase of surface area, and thus of the surface free energy,
proportional to |q|. Quantitatively, however, the quasi-static approximation is not able
to capture the hydrodynamic calculation. The disagreement even becomes qualitative
close to the critical point: finite wavelength perturbations do not develop the diverging
relaxation times predicted by Golestanian & Raphael (2001a). Also, the scaling σ ∝ |q|
is found to cross over to a quadratic scaling σ ∝ q2.

These results have a clear message: viscous effects have to be treated explicitly
when describing spatial structures below the capillary length. Namely, the viscous
term in (3.3) becomes at least comparable to gravity at this scale. Therefore, we
can no longer assume that viscous effects are localized in a narrow zone near the
contact line: the perturbations become comparable to the size of this viscous regime.
However, even if contact-line variations are slow, a complete description still requires
a prediction for zcl (Ca), or equivalently θa(Ca). As was shown by Eggers (2004),
this relation is not geometry-independent so one can never escape the hydrodynamic
calculation.

Our findings provide a detailed experimental test that, on a quantitative level, are
relatively sensitive to the microscopic physics near the contact line. In our model, we
have used a simple slip law to release the singularity, but a variety of other mechanisms
have been proposed previously. The other model parameter is the microscopic contact
angle θcl , which we have simply taken as constant in our calculations. In a forthcoming
paper Delon et al. 2007 we present experimental results and show to what extent the
model is quantitatively accurate for the dynamics of contact lines.

We wist to thank J. Eggers for fruitful discussions and P. Brunet for useful sugges-
tions on the paper. J.H. S. acknowledges financial support by a Marie Curie European
Fellowship FP6 (MEIF-CT2003-502006).
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Appendix A. Perturbation of the static bath away from the plate
At large distances from the plate, the behaviour of the static bath is more con-

veniently described through the function zsurface(x, y) = ẑ(x, y). Denoting x as positive
away from the plate, we find asymptotically that ẑ = ẑ′ = ẑ′′ = 0 as x → ∞. The
equation for the static interface then simplifies to

∇2ẑ = ẑ, (A 1)

where we have put lγ = 1. The basic profile is simply exponential

ẑ0 = Ae−x, (A 2)

while transverse perturbations eiqy decay along x as

ẑ1 = e−
√

1+q2x. (A 3)

We can thus write

ẑ = Ae−x + εeiqy(e−x)
√

1+q2

, (A 4)

and compare this to the representation xsurface = h(z, y)

h = − ln(z/c) + εeiqy h1(z). (A 5)

Inserting this x = h(z, y) into (A 4), and identifying ẑ = z, we obtain to lowest order
in ε

z =
Az

c
(1 − εeiqy h1(z)) + εeiqy

(
Az

c

)√
1+q2

, (A 6)

so that A/c = 1 and h1(z) = zα , with α =
√

1 + q2 − 1. So, the exponential relaxation
in the frame (x, y) translates into a power law for h1(z).

Appendix B. Quasi-static approximation
In this Appendix, we derive the quasi-static results summarized in § 2. To perform

a linear stability analysis, we write the interface profile as

h(z, y, t) = h0(z) + ε h1(z) e−σ t+iqy, (B 1)

κ(z, y, t) = κ0(z) + ε κ1(z) e−σ t+iqy, (B 2)

where κ is twice the mean curvature of the interface. In the quasi-static approach, the
basic profile h0(z) can be solved from a balance between capillary forces and gravity, so
that the scale for interface curvatures is the capillary length lγ =

√
γ /ρg. If we consider

modulations of the contact line with short wavelengths, 1/q � lγ , we can thus locally
treat the unperturbed profile as a straight wedge, h0(z) = (zcl − z) tan θa , where the
position of the contact line is denoted by zcl . Since gravity plays no role at these small
length scales, we can easily show that the perturbation should have zero curvature,
i.e. κ1(z) = 0. In the limit of small contact angles, for which we can simply write

κ1 	 ∇2(h1(z) e−σ t+iqy), (B 3)

we directly find that κ1 = 0 leads to a perturbation decaying exponentially along
z, as h1(z) = e−|q|(zcl −z). The length scale of the perturbation is then simply 1/q .
This can be generalized using the full curvature expression (3.4): inserting the
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linearization (B 1), and taking ∂zh0 = tan θa , ∂zzh0 = 0, we find

κ1 = (cos θa)
3/2

(
∂zzh1 − q2

cos2 θa

h1

)
. (B 4)

Hence, the condition that κ1 = 0 yields:

h1(z) = e−|q|(zcl −z)/cos θa . (B 5)

From figure 3(a) it is clear that the ‘advanced’ part of the contact line, with positive
�z, has a smaller apparent contact angle than the wedge. The remaining task is to
relate the quantities ε, �z and �θ , and to impose the correct boundary condition
through θa(Ca). We now introduce the representation

h(z, y, t) = h0(z − �z) + εĥ1(z − �z) e−σ t+iqy, (B 6)

in which the position of the contact line is explicitly shifted to z = zcl + �z, so that
ĥ1(zcl ) = 0. Linearizing this equation around z = zcl , this can be written as

h(z, y, t) = h0(z) + ε

(
ĥ1(z) e−σ t+ iqy −

[
dh0

dz

]
z=zcl

�z

ε

)
+ O(ε2)

= h0(z) + ε

(
ĥ1(z) e−σ t+ iqy + tan θa

�z

ε

)
+ O(ε2). (B 7)

Comparing to (B 1) with h1(zcl ) = 1, we thus find that to lowest order �z =
εe−σ t+iqy/ tan θa . Writing ∂h/∂z = −(tan θa + � tan θ), we furthermore find from (B 1)

� tan θ = − |q|
cos θa

εe−σ t+iqy = −|q| tan θa

cos θa

�z. (B 8)

The final step is to use the empirical relation between θa and Ca to relate the variation
in contact angle to a variation in the contact-line velocity, Ucl = U − d�z/dt:

d�z

dt
= −γ

η
�Ca = −γ

η

(
d tan θa

dCa

)−1

� tan θ

=
|q|γ
η

tan θa

cos θa

(
d tan θa

dCa

)−1

�z. (B 9)

This indeed results in an exponential relaxation �z ∝ e−σ t with a relaxation rate
given by (2.1).

For contact angles close to π/2, we can analytically solve the crossover from small
to large wavelengths (Nikolayev & Beysens 2003). In this case, the basic profile is
nearly flat in the x-direction. Characterizing the free surface by zsurface(x, y), we easily

find that perturbations of the contact line decay along x over a distance 1/
√

q2 + 1/l2γ

(see Appendix A). Hence,

σq

σ0

	
√

1 + (qlγ )2 for θa ≈ π/2. (B 10)

This is consistent with (2.7), since g(π/2) = 1.
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Ramé, E., Garoff, S. & Willson, K. R. 2004 Characterizing the microscopic physics near moving
contact lines using dynamic contact angle data. Phys. Rev. E 70, 0301608.

Rio, E., Daerr, A., Andreotti, B. & Limat, L. 2005 Boundary conditions in the vicinity of a
dynamic contact line: experimental investigation of viscous drops sliding down an inclined
plane. Phys. Rev. Lett. 94, 024503.



Relaxation of a dewetting contact line. Part 1 83

Sedev, R. V. & Petrov, J. G. 1991 The critical condition for transition from steady wetting to film
entrainment. Colloids Surfaces 53, 147–156.

Sekimoto, K., Oguma, R. & Kawasaki, K. 1987 Morphological stability analysis of partial wetting.
Ann. Phys. 176, 359–392.

Snoeijer, J. H., Delon, G., Fermigier, M. & Andreotti, B. 2006 Avoided critical behavior in
dynamically forced wetting. Phys. Rev. Lett. 96, 174504.

Thompson, P. A. & Robbins, M. O. 1989 Simulations of contact-line motion: slip and the dynamic
contact angle. Phys. Rev. Lett. 63, 766–769.

Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11, 714–721.




