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Avoided Critical Behavior in Dynamically Forced Wetting
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A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a
critical speed. In this Letter we study the dynamical wetting transition at which a liquid film gets deposited
by withdrawing a vertical plate out of a liquid reservoir. It has recently been predicted that this wetting
transition is critical with diverging time scales and coincides with the disappearance of stationary menisci.
We demonstrate experimentally and theoretically that the transition is due to the formation of a solitary
wave, well below the critical point. As a consequence, relaxation times remain finite at threshold. The
structure of the liquid deposited on the plate involves a capillary ridge that does not trivially match the
Landau-Levich film.
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FIG. 1. (a) Schematic representation of the experiment: a
vertical plate is withdrawn from a liquid bath at constant velocity
Up. Above the transition, a capillary ridge starts propagating
upwards. (b) Photograph of the experiment. The inclined contact
lines are induced by the edges of the plate. This Letter focuses on
the horizontal central zone.
Wetting and dewetting phenomena are encountered in a
variety of environmental and technological contexts, rang-
ing from the treatment of plants to oil recovery and coating.
Yet, their dynamics can not be captured within the frame-
work of classical hydrodynamics—with the usual no-slip
boundary condition on the substrate—since the viscous
stress diverges at the contact line [1,2]. The description of
moving contact lines has remained a great challenge, es-
pecially because it involves a wide range of length scales.
In between molecular and millimetric scales, the strong
viscous stresses are balanced by capillary forces. In this
zone, the slope of the free surface varies logarithmically
with the distance to the contact line so that the interface is
strongly curved, even down to small scales [3,4]. Ulti-
mately, the intermolecular forces due to the substrate in-
troduce the physical mechanism that cuts off this singu-
lar tendency [3–5]. The problem remains highly contro-
versial, however, as none of the existing experiments has
been able to discriminate between the various proposed
regularizations.

The motion of receding contact lines is limited by a
maximum speed beyond which the interface gives way to
liquid deposition. Drops sliding down a window develop
singular cusplike tails that, at high velocities, emit little
drops [6]. Similarly, solid objects can be coated by a non-
wetting liquid when withdrawn fast enough from a liquid
bath [7–9]. The relevant dimensionless parameter for these
experiments is the capillary number Ca � �U=�, which
represents the velocity U, rescaled by viscosity � and
surface tension �. Recently, this wetting transition to liquid
deposition has been interpreted in a full-scale hydrody-
namic model, as a matching problem between the bound-
ary conditions imposed at both ends of the scale range: the
highly curved contact line zone and the macroscopic flow
[10,11]. Above a critical Cac, stationary solutions cease to
exist. It has furthermore been argued, as is generic for
saddle-node bifurcations, that relaxation times should di-
verge at this critical point [12,13].

In this Letter we unravel the nature of the dynamical
wetting transition in the classical setup of a dip-coating
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experiment, in which a plate is withdrawn vertically from a
liquid bath. We demonstrate that the transition occurs
before the predicted critical point, due to the appearance
of a solitary wave that has the structure of a ridge (Fig. 1).
This ridge is very different from the rim observed in
dewetting of thin films [14], both in structure as well as
in its physical origin. This provides a novel perspective on
wetting dynamics, in particular, since we show that the
ridge serves as a sensitive probe for the nanoscale physics
at the contact line.

Experimental setup.—We study the dynamics at the
forced wetting transition by withdrawing a vertical plate
from a bath of nonwetting liquid. The experiments were
performed using a 50 mm� 100 mm silicon wafer coated
with a fluorinated surfactant FC725 (sold by 3M), which is
withdrawn vertically from a bath of silicone oil (viscosity
� � 4:95 Pa s, surface tension � � 0:0203 N m�1, density
� � 970 kg m�3, molecular size 70 nm). The silicone oil
is partially wetting the plate, with a static contact angle
�s � 51:5� for a receding contact line (57� for an advanc-
ing one). The plate velocity Up is controlled within a
4-1 © 2006 The American Physical Society
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micron per second by a stepper motor. In the remainder the
capillary number is based upon the plate velocity, Ca �
�Up=�. Above the transition we have reconstructed the
shape of the entrained film by placing a thin wire parallel to
the plate, a few millimeters from the liquid film. The mirror
image of the wire (reflected in the silicon plate) is distorted
by refraction through the liquid-vapor interface. The dis-
placement of the image of the wire gives the local interface
slope from which we reconstruct the capillary ridge, by
integration.

Experimental results.—We first consider plate velocities
below the wetting transition. After the plate is set into
motion one finds that the contact line evolves towards an
equilibrium height zcl above the liquid reservoir (Fig. 2).
The relaxation of the meniscus toward zcl is exponential
with a well-defined time scale. The entrainment transition
is defined by the plate velocity beyond which the contact
line no longer equilibrates, but continues propagating up-
wards. It has been predicted that the transition is due to a
critical point that is characterized by diverging time scales
at threshold [12,13]. Figure 2 clearly shows, however, that
the relaxation time remains finite in the experiment [15],
even right at the transition (Ca� � 9:1� 10�3 � 2�
10�4). This is a first strong indication that entrainment
already occurs before the critical point at which stationary
solutions disappear.

We unravel the mechanism that is responsible for this
avoided critical behavior by following the interface profile
during entrainment. Surprisingly, the dynamics above the
transition does not immediately give rise to a flat ‘‘Landau-
Levich’’ film [16], but involves an intermediate ridgelike
structure that propagates upwards (Fig. 1). The evolution
of the free surface as a function of time is shown in Fig. 3.
One first observes the formation of a ridge, right behind the
contact line, which after a short transient stage evolves
towards a flat zone of constant thickness hr. This plateau
stretches in the course of the experiment. The contact line
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FIG. 2. Evolution of the contact line. Right: Below the entrain-
ment threshold, the contact line equilibrates at a height zcl.
Above the transition, the liquid bath matches to the Landau-
Levich film of thickness hLL. Left: Even right at the transition,
the contact line still relaxes exponentially towards zcl with a
finite relaxation time.

17450
moves upwards at a constant velocity Ucl. This front of the
entrained liquid does not directly match onto the Landau-
Levich film but involves a sharp capillary jump. This jump
propagates upwards with a well-defined velocityUj, which
is lower than Ucl, while the shape of the shock remains
unaltered. The Landau-Levich film that matches to the bath
only appears behind this capillary shock (the bath is not
shown in the figure). Note that very similar structures play
a crucial role for the stability of advancing contact lines,
driven by Marangoni forces [17].

The photograph of Fig. 1(b) reveals that there is no
liquid entrainment at the edges of the plate. This gives
rise to inclined contact lines at the sides that have a lower
upwards velocity. As a consequence, the sharp corners
intersecting the horizontal contact line move inward and
ultimately meet to form a single corner [7]. Similar corner
structures have been observed at the rear of sliding drops
[6]. In the remainder we focus on the horizontal zone in the
middle of the plate.

Theory for the ridge.—The remarkable structure of the
liquid interface can be understood in terms of a matching
among 3 zones: (i) the contact line leaving a flat film,
(ii) the Landau-Levich film connected to the bath,
(iii) the capillary jump matching the two flat zones. This
is illustrated in Fig. 4, showing a piecewise reconstruction
of the free surface. We show below that the thickness of the
ridge, hr, is solely determined by the physics at the contact
line and that, in general, this does not match the Landau-
Levich thickness hLL. The emergence of a capillary shock
matching the two film solutions is then a generic feature of
free surface flows. The conditions under which these
shocks occur have been discussed in detail for contact lines
driven by Marangoni forces [17,18] and countercurrent
two-phase flows [19].

Since each of these structures propagate with a well-
defined velocity, we consider profiles h�z� ct�. These
profiles are computed numerically (using a semi-implicit
algorithm), within the framework of lubrication theory,
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FIG. 3. Temporal evolution of the free surface at Ca � 32�
10�3, determined by placing a thin wire in front of the plate. The
contact line propagates upwards at a velocity Ucl larger than that
of the capillary jump Uj. Note that the jump maintains a constant
shape throughout the experiment.
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FIG. 5. Rescaled velocities of the contact line Ucl and the
capillary jump Uj, and relative velocity Up �Ucl, as a function
of Ca based on the plate velocity. The entrained contact line
maintains a constant velocity with respect to the plate. This
velocity coincides with the entrainment threshold (solid line),
indicating that the entrainment transition is due to the appear-
ance of the ridge rather than to the disappearance of the static
meniscus solution. The velocity of the jump with respect to the
plate is well predicted by Eq. (4) (dashed line).
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FIG. 4. (a) Cross section of the interface computed numeri-
cally from Eqs. (1) and (2), at Ca � 17� 10�3; we have shown
that hr does not depend on Ca. (b) hr versus microscopic contact
angle �cl. To reproduce the experimental hr � 0:165l� using the
static angle �s � 51:5�, we fixed ls=l� � 1:3� 10�5 (see text).
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which is the standard tool for free surface flows [20]:

@th	 @z�hU� � 0; (1)

�@z�� �g	
3��Up �U�

h�h	 3ls�
� 0: (2)

� denotes the curvature of the interface, whileU�z; t� is the
(depth-averaged) fluid velocity inside the film. The first
equation is mass conservation, while the second represents
the force balance between surface tension �, gravity �g,
and viscosity �, respectively—in the experiments the
Reynolds number is typically Re � 10�10, so that inertial
effects are negligible. For simplicity we have chosen to
resolve the viscous singularity at the contact line using a
standard Navier slip condition with microscopic slip length
ls [21–23].

Dimensional analysis of Eq. (2) reveals that the capillary
length l� �

������������
�=�g

p
is the relevant length scale of the

problem. The relevant velocity scale is �=�, which also
appears in the capillary number Ca � �Up=�.

From Eq. (2) it clear that a flat film (curvature � � 0)
can in principle exist for arbitrary thickness

hfilm � l�
��������������������������������
3�Up �U��=�

q
: (3)

The fluid velocity inside the film adjusts itself such that the
upwards viscous drag balances the weight of the film. A
thickness gets selected only once an additional condition is
17450
imposed. Landau and Levich [16] studied the problem of
an infinite flat film that is entrained along the plate out of
liquid reservoir. In this case, the matching to the bath
results into the scaling hLL / l�Ca2=3.

Similarly, the additional condition of a contact line, now
at the upper end of the film, provides a selection of the
ridge height hr. This can be seen by following the solutions
with initial conditions close to the flat film, h�z� � hr�1�
�e�sz�, toward the contact line: each hr will yield a single
value for the microscopic contact angle �cl. Or vice versa,
the height of the ridge is uniquely determined by this angle,
i.e., hr��cl�. This dependence has been plotted in Fig. 4(b),
for a fixed value of ls.

We emphasize that the height of the ridge and of the
Landau-Levich film are determined by independent physi-
cal mechanisms, so that in general hr � hLL. Close to the
transition we always find that hr > hLL. The matching
between these films involves an intermediate structure,
which we write as h�z�Ujt�. From mass conservation
between the two films, one derives [18]

�
�Uj � Ca�

h2
r 	 hrhLL 	 h

2
LL

3l2�
; (4)

which nicely fits the experimental data for the jump veloc-
ity Uj (Fig. 5). Here, hLL has been taken according to the
Landau-Levich scaling, while hr has been calibrated from
the experiment (see below).

The threshold velocity for entrainment.—We now show
that the threshold of entrainment is not determined by the
critical point at which stationary meniscus solutions dis-
appear, but by the observed ridge structure. To do so, we
4-3
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measured the velocities Ucl, Uj in the reference frame of
the liquid reservoir (Fig. 5). The crucial quantity is the
relative velocity between the plate and the entrained con-
tact line, which rescaled by �=� simply reads

Ca � � �Up �Ucl�
�
�
�

1

3
�hr=l��

2: (5)

The relation with hr follows from Eq. (3). As we have seen
that hr is solely determined by �cl, the relative velocity Ca�

should be completely independent of Ca. This is confirmed
by Fig. 5: upon increasing the plate velocity, the contact
line will move faster in the lab frame in order to maintain a
constant velocity difference with respect to the plate. The
observed value Ca� � 9:1� 10�3 implies hr � 0:165l�.
As Eq. (5) for flat films can be obtained directly from the
Navier-Stokes equations, this result does not depend on
any hypothesis for the contact line.

We find experimentally that the threshold for entrain-
ment precisely coincides with Ca� (Fig. 5). This observa-
tion is in striking contrast with theoretical predictions that
the transition occurs at a critical Cac, at which the sta-
tionary meniscus solutions disappear. We numerically find
from Eq. (2) that the ridge velocity Ca� is typically 15%
smaller than this critical Cac (see also Ref. [24]). Hence,
the transition is precritical in the sense that the critical
point is avoided through the moving ridge solution. The
dynamics of the film is such that this solution nucleates as
soon as it is possible, i.e., for Ucl � 0. This explains the
observation of Fig. 2, which showed that relaxation times
remain finite even right at the transition.

Discussion.—We have shown that for nonwetting
liquids, the deposition of a Landau-Levich film involves
a remarkable ridgelike structure. This ridge emerges due to
a mismatching between the liquid reservoir and the contact
line zone at the front of the film. Secondly, we have shown
that the threshold velocity for the entrainment transition is
determined by the ridge velocity Ca�, and not by the
bifurcation at which stationary menisci solutions disappear
[25]. Therefore, the transition is characterized by finite
relaxation times, and the critical point is avoided. This
appears to be in contrast with measurements by Sedev
and Petrov [9], on the dewetting of fibers of radii well
below the capillary length. They claim that the transition
occurs when the interface, at large scale, takes the critical
shape corresponding to a perfectly wetting liquid. This
difference may be due to the curvature of the fibers, which
introduce a new parameter: when the radius of the fiber
becomes comparable to l�, the relative values of Ca� and
Cac will change. Our preliminary experiments on forced
wetting of thin fibers reveal that the ridge structure does
persist around the transition.

Another interesting perspective is that the ridge proper-
ties originate directly from the physics at the contact line,
17450
in particular, from the slip length ls and the microscopic
contact angle. Whether or not one should recover the static
angle �s at this ultimate scale is hotly debated. While in the
presented lubrication model one requires a reasonable
value for the slip length (about 20 nm) to reproduce the
experimental ridge velocity from a slope �s, this obviously
remains an important open problem.
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