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Boundary Conditions in the Vicinity of a Dynamic Contact Line: Experimental Investigation
of Viscous Drops Sliding Down an Inclined Plane
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To probe the microscopic balance of forces close to a moving contact line, the boundary conditions
around viscous drops sliding down an inclined plane are investigated. At first, the variation of the contact
angle as a function of the scale of analysis is discussed. The dynamic contact angle is measured at a scale
of 6 �m all around sliding drops for different volumes and speeds. We show that it depends only on the
capillary number based on the local liquid velocity, measured by particle tracking. This velocity turns out
to be normal to the contact line everywhere. It indirectly proves that, in comparison with the divergence
involved in the normal direction, the viscous stress is not balanced by intermolecular forces in the
direction tangential to the contact line, so that any motion in this last direction gets damped.
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It has been known from the 19th century that the shape
of a sessile drop is controlled by the balance between
capillary forces and gravity, together with a boundary
condition on the equilibrium contact angle �e between
the liquid and the solid. Minimizing the free energy, one
obtains the drop shape and the Young-Laplace equation
cos�e � ��sg � �ls�=� relating �e to the surface tensions
�sg, �ls, and �lg � � between the solid (s), the liquid (l),
and the gas (g). By contrast, there is a lack of understand-
ing of this shape and, in particular, of the boundary con-
ditions at the contact line [1], as soon as the drop moves.

A first difficulty appears already with classical hydro-
dynamics, which predicts an unbalanced divergence of the
viscous stress in the vicinity of the contact line that should
prevent any motion [2]. Then, one usually invokes the
presence of nanometric molecular effects (slip length,
van der Waals forces exerted by substrate molecules, mo-
lecular kinetic, diffuse nature of the interface, etc.) to
explain the common observation that drops can move [3–
8]. Macroscopically, the balance between capillary and
viscous forces results in a deviation of the contact angle
from its equilibrium value. The situation usually consid-
ered theoretically is a two-dimensional liquid film advanc-
ing or receding on a substrate. The dynamical angle � is
therefore related to the capillary number Ca � 	U

� defined
as the speed U rescaled by the surface tension � and the
viscosity 	 of the liquid. This relation has been previously
determined experimentally in the case of total [9] and
partial wetting [10]. It actually depends on the scale at
which the measurements are performed [11]. This depen-
dence will be checked profiling a drop with a resolution of
30 �m.

Our aim, however, is to determine what the correct
boundary conditions are in the fully three-dimensional
case. What happens if the contact line makes an angle
with respect to the overall direction of propagation and
thus to the velocity far from it? What determines the
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contact angle around a moving droplet, whose contact
line continuously changes direction? Does the flow inside
the droplet look like a caterpillar, the fluid velocity being
aligned in the direction of motion? Here we investigate the
boundary conditions (contact angle and velocity) of an
inclined moving contact line in the most general case,
aiming at deducing microscopic information from these
macroscopic measurements.

Experimental setup.—Drops of controlled volume are
deposited at the top of a glass plate inclined by an angle �.
The liquid used is silicone oil (	 � 50 cP and � �
0:02 Nm�1), and the glass plate is covered with a fluoro-
polymer (FC725 sold by 3M) to be in condition of partial
wetting. The irregularities of coating have a size around the
optic wavelength (a few iridescence fringes visible over
1 cm). The wetting hysteresis is then about 7�, which is
quite small and probably due to chemical heterogeneity.
The size of the drops and the inclination angle � determine
the capillary number, which is measured directly. The
shape of droplets sliding down such a plate has already
been investigated with the same setup [12]. They are
rounded at small Ca, a corner appears at the back for a
critical value Cac, and, above, drops start to pearl. We re-
covered the same shape transition for larger drops flattened
by gravity, i.e., for puddles of about 1 cm3. Typical ex-
amples are displayed in Figs. 3(a) and 1(b) (a puddle with a
corner at the back and a rounded puddle, respectively).

The existence of a well defined dynamic contact angle is
not obvious at all, as the viscous stress becomes compara-
tively more and more important as one gets closer to the
contact line, inducing a divergence of the free surface
curvature. In order to determine accurately the variation
of the contact angle with the scale of analysis, we measured
the slope of the free surface using the refraction of a laser
beam [13] (Fig. 1, with a laser beam instead of the sheet). A
red laser diode (635 nm, 5 mW) is collimated on a thin hole
of diameter 10 �m by a small focal lens. The image of the
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FIG. 1 (color online). (a) A side view sketch of the experi-
mental setup. (b) Principle of the dynamic angle measurement. A
laser sheet is refracted at the free surface of the drop and then
illuminates a translucent screen, recorded by a charge-coupled
device (CCD) camera. Two quantities are derived from each
refraction picture, the inclination � of the contact line with
respect to the direction of motion and the maximum deviation �,
which is related to the contact angle. When necessary, the laser
sheet is replaced by a single collimated laser beam.
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hole is focused at the surface of the glass plate using a
projection lens of focal length 50 mm. The laser beam is
orientated perpendicular to the plate (Fig. 1). It is refracted
at the droplet free surface, crosses the droplet and the glass
plate, and finally hits a translucent screen. The position of
the spot is recorded with a fast video camera (FastCam
1024� 512 at 512 Hz), giving an accurate measurement of
the refraction angle. As the droplet moves at a constant
velocity U, the refraction angle as a function of time allows
one to reconstruct the droplet profile and its slope (see
Fig. 2) by solving an integrodifferential problem of geo-
metrical optics—the optical index of the silicone oil (1.4)
and the glass plate (1.5) are measured independently.

A typical profile at large capillary number (Ca � 5:3�
10�3) is shown on Fig. 2. The variation of the slope is not
trivial at all: instead of the linear increase of @xh, with x
expected for a static drop, the curvature is, in the dynami-
cal case, essentially concentrated at the front of the drop.
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FIG. 2. Local slope @xh along the central axis of a moving
droplet. At the maxima of deviation, the slope is still far from the
equilibrium values, tan�ae ’ 1:6 and tan�re ’ 1:3 (not shown).
Inset: droplet profile determined from the measurements, com-
pared to a direct photograph from the side.
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At the back of the droplet, the slope exhibits a sudden
decrease when approaching the contact line by less than
100 �m. This is reminiscent of the balance between cap-
illary and viscous forces, which induces a strong curvature
of the free surface. It corresponds to the assumption usually
made in theoretical studies—and not justified by any
serious argument—that the angle at the nanometer scale
should be the equilibrium angle �e. Surprisingly, the angle
does not decrease close to the front of the droplet, even at a
scale of 30 �m. We therefore observe an asymmetry be-
tween the advancing and the receding contact line. It would
be interesting to know if this asymmetry is expected theo-
retically at this scale. The spatial resolution of the contact
angle measurement is mostly limited by the displacement
of the droplet between two images (4 �m) and the diame-
ter of the laser beam on the plate, i.e., at the waist (‘ �
30 �m). By comparison, using a side view of the droplet,
one can typically resolve only the contact angle to within
‘ � 200 �m. While there is a plateau on the curve at the
rear, allowing the definition of a macroscopic contact
angle, it is not the case at the front. We have thus chosen
to perform the measurements at the lowest scale resolved
experimentally.

In a second set of experiments, we measured the contact
angle all around the puddle, replacing the laser beam by a
laser sheet collimated on the plate [14]. It gives refraction
pictures similar to that shown in Fig. 1(b), from which two
quantities can be extracted: the maximum length � of the
light deviation, which is related to the contact angle � at the
smallest scale resolved, and the angle � between the
contact line and the overall direction of motion. Note that
the light is deflected perpendicularly to the contact line.
The time evolution of the refraction picture—and thus �
and �—is recorded, while the laser scans the entire
puddle. We finally get the contact angle � as a function
of the position around the droplet, parametrized by �. The
scale at which the measurement is performed is no longer
determined by the laser collimation but by the minimal
intensity detectable by the sensitivity of the camera. This
gives a limit value to the curvature of the free surface,
which itself gives a resolution of ‘ � 6 �m. This also
corresponds roughly to the scale at which geometrical
optics break down (10�).

Fluid velocity and dynamical angle at the contact
line.—The relation between the dynamic contact angle
and the capillary number is plotted in Fig. 3. The first
series of measurements (solid symbols) correspond to the
classical situation of a contact line perpendicular to the
direction of motion, i.e., to the plane slope. At the drop
front (� � �=2), the contact line is advancing, and at the
rear (� � ��=2), it is receding. The corresponding con-
tact angles are measured using the maximum deviation of a
laser spot, for different inclination angles � and different
drop volumes. They collapse on a single curve, when
plotted as a function of the capillary number (�Ca for
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FIG. 3. (a) Contact angle � measured at the front and the back
of different puddles as a function of the capillary number Ca
(solid symbols) and around a single puddle as a function of ca �
Ca sin� (open symbols). Note that there does not exist any
receding contact line below the critical capillary number Cac ’
5� 10�3. The solid line corresponds to the best fit by a Cox-
Voinov relation for receding contact lines. (b) Superimposition
of the contact angle ��ca� around puddles sliding at different
capillary numbers (Ca � 2:7� 10�3, Ca � 4:9� 10�3, and
Ca � 9:0� 10�3). The slight change between the curves in (a)
and (b) results from the coating of a new glass plate.
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FIG. 4. (a) Visualization of a puddle from the top. Black points
are little particles in the puddle. (b) Traces left by the particles
while the sliding of the drop superimposed on the puddle’s
contour. (c) Velocity field in the frame of reference of the plate,
measured by particles tracking.
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receding lines), indicating that this relationship is local
and does not depend much on the bulk (in particular,
the curvature at the top of the drop). As previously ob-
tained [9,10,15], � is related to Ca by a piecewise linear
relationship, within the experimental error bars. For nega-
tive capillary numbers, we have compared the measure-
ment to the Cox-Voinov prediction [3,4], �3 � �3e�
9 ln�‘=a�Ca, as suggested by the presence of a strong
decrease of the surface slope close to the contact line
(Fig. 2). It gives a nanometric regularization scale a of
the order of 1 Å, as obtained from measurements at the
scale of the drop [15]. On the other hand, the same relation
does not hold—with the same a—for advancing contact
lines, which is reminiscent of the asymmetry observed on
the slope profile (Fig. 2).
02450
For the sake of comparison, the contact angle ����
around a single puddle of capillary number Ca �
9� 10�3 is also plotted in Fig. 3(a) (open symbols). The
best collapse is obtained when � is plotted as a function of
a local capillary number ca � Ca sin�, previously intro-
duced in the context of corner formation [12,16,17].
Finally, we have varied the speed U of drops by changing
the inclination angle �. Again the resulting curves ��ca�
collapse on the same master curve [Fig. 3(b)]. So, a solid
conclusion can be drawn: the mesoscale dynamic contact
angle only depends on the capillary number based on the
normal velocity of the contact line u � U sin�.

This first boundary condition already imposes strong
constraints on the shape of the drops. Turning around a
drop, the whole curve between Ca at the front (� � �=2)
and �Ca at the rear (� � ��=2) is explored. The exis-
tence of an hysteresis implies the existence of a straight
portion of contour along the steepest slope of the plane
� � 0 where the contact angle covers the hysteresis range
[region between the dashed lines in Fig. 3(a)]. Increasing
the hysteresis will thus simply lengthen the drop like a
‘‘stretched limousine.’’ Another striking consequence con-
cerns the transition towards the formation of a corner at the
back of the drop [12,15,16]. At high capillary numbers, the
contact line tilts at the rear, reducing the local capillary
number ca to its critical value Cac. So, according to the
boundary condition, the contact angle remains constant
and equal to a non-null value �c. This provides a rigorous
basis to the idea of Blake and Ruschak [16] and Podgorski
et al. [12] that the drop shape change occurs in order
to avoid the wetting transition. Now the corner geome-
try is fully characterized by the opening angle � �
arcsin�Cac=Ca� and the contact angle �c.

The second boundary condition, which had not been
investigated so far, governs the fluid velocity at the inter-
face. To visualize the flow inside the drops, small dye
particles are poured on the plate in front of the drop
[Fig. 4(a)]. When the drop slides over the particles, the
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dye is entrained and marks trajectories along the drop free
surface and back to the surface of the plate (null velocity
in the frame of reference of the plate). This technique
ensures the absence of particles in the bulk. Using particle
tracking we measured the whole surface velocity field
[Fig. 4(c)]. It turns out that the trajectories are deflected
toward the contact line and meet it perpendicularly
[Figs. 4(b) and 4(c)]. In the steady state, this means that
the local speed of the liquid is normal to the contact line
and equal to u � U sin�. This justifies the observation that
the contact angle � depends only on the local capillary
number ca � 	u=� and is insensitive to the direction of
motion far from the contact line.

Microscopic interpretation.—The deviation of the
contact angle from its equilibrium value is basically due
to the divergence of the viscous stress when approach-
ing the contact line, i.e., when the flow height h tends to
0. As the Reynolds number tends to 0, we are almost at
an equilibrium of viscous forces, capillary forces, and
other forces acting on a nanometric scale (slip length,
intermolecular forces, evaporation, etc.). Considering an
infinitesimal volume of height h and section dxdy, it is
easy to see that the energy injection rate by gravity,R
V � ~g sin� ~u ’ �gUhdxdy, becomes negligible with re-

spect to viscous dissipation, 	
R
V�ru�2 ’ 	U2=hdxdy,

as h ! 0. The work produced by surface tension,
�
R
@V �u ’ �

R
V r��u� ’ ��Udxdy, can be of the same

order of magnitude, provided the curvature � diverges
as 1=h, and nanoscale forces may also counteract the
viscous forces. The important point, however, is that in
the common situation, most properties vary slowly in the
direction tangent to the contact line (say, at the macro-
scopic scale) while they vary very rapidly in the normal
direction. It is the case, for instance, of the surface curva-
ture � which drastically changes from the micrometric to
the millimetric scales along the normal direction (Fig. 2).
We can thus neglect any effect associated with the variation
of curvature along the contact line, which means that the
geometry of the problem can be considered as symmetric
with respect to the plane normal to the contact line. Except
for the viscous stress, which has the direction of the local
velocity ~u, all the forces important at small scale are thus
normal to the contact line. So any fluid motion in the
direction tangential to the contact line are efficiently
damped by the viscosity, with a time scale h�2=� ’ 1 �s
for the scale of analysis used here, and the fluid velocity is
normal to the contact line. Let us emphasize that this
symmetry argument is valid whatever the mechanism bal-
ancing the viscosity is. In the hydrodynamic approach, it is
the gradient of curvature, whose ratio of normal to tangen-
tial component is of the order of the ratio between the
macroscopic to the microscopic scale (103–106). If one
introduces the intermolecular forces through a disjoining
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pressure ��h�, its gradient ~r� � �0�h� ~rh is again along
the normal direction. The only exception is the case in
which there are strong variations along the contact line,
namely, the corner at the rear of a drop. Further work is
needed to understand the hydrodynamics in this situation
and to measure the scale at which this singularity gets
regularized [17].

In summary, we have investigated the boundary condi-
tions at an inclined moving contact line. As in the static
case, the aim is to solve a macroscopic problem, hiding the
microscopic effects into a dynamic contact angle. Once
one has fixed the scale ‘ at which the boundary condition is
given, we have demonstrated experimentally that there
exists a unique relation between the dynamic contact angle
and the local capillary number ca � 	u=� based on the
liquid velocity at the point considered. Moreover, fluid
velocity is everywhere normal to the contact line. The
challenge is now to use these boundary conditions to
determine the shape of sliding droplets and the velocity
field inside them, and to understand the formation of a
corner at a critical capillary number.

We wish to thank J. Snoeijer and R. V. Roy for helpful
discussions.
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