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The alignments between the vorticity, the vortex stretching vector, the pressure Hessian
eigenvectors and the strain rate eigenvectors are computed and discussed in the case of the Burgers’
vortex and the Burgers’ layer. It is shown that the main physical properties of these models can be
deduced from these alignments. Following this example, the alignments between these vectors in
turbulent flows are interpreted as dominated by stretched, coherent and locally quasi-bidimensional
regions. This induces a new and safer classification for the strain rate and the pressure Hessian
eigenvalues. ©1997 American Institute of Physics.@S1070-6631~97!02803-1#
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I. INTRODUCTION

The complexity of turbulence has induced many diffe
ent approaches to the problem. In particular, two comp
mentary visions dominate turbulence studies. On the
hand, theglobal approachis linked to the unpredictability,
the quasi-random aspect and the disorder of turbulent fl
and is thus essentially based on statistics. On the other h
the direct observation of coherent structures, b
numerically1–5 since Siggia1 and experimentally by Douad
et al.,6 has suggested an alternative approach, focused
coherent structures and thus linked to the coherent and
dered part of turbulent flows. Such astructural approachhas
for example been followed by Jimenezet al.7 who studied in
numerical simulations some of the characteristics~radius and
Reynolds number! of the strong vortices embedded in th
turbulent flow.

In this sense, a statistic on the angle between two
namical vectors is relevant to the global approach. Amo
these statistics, we are interested in those involving the v
tors linked to the vorticity and the stretching dynamics. W
will thus first make a short theoretical presentation of th
interesting dynamical vectors, before recalling the results
tained by several authors on their alignments.

An alternative to the description of flows in terms
velocity vW and pressure gradient~Navier–Stokes equation! is
to use the velocity derivatives which reflect the local stru
ture of the flow. Considering the velocity gradient tens
one can construct the rate of strain tens
s i , j5(] iv j1] jv i)/2 and the vorticityv i5« i , j ,k] jvk which
can be regarded as two basic local quantities.

For an incompressible fluid governed by Navier–Stok
equations, we find the vorticity equation,

Dv i

Dt
[] tv i1uj] jv i5wi1nDv i , ~1!

wherewW is the vortex stretching vector (wi5s i , jv j ). This
vector, which corresponds to the action of the strain on
vorticity, is the source term of Eq.~1!. Rather than the strain
equation, let us consider the evolution of the vortex stret
ing vector:
Phys. Fluids 9 (3), March 1997 1070-6631/97/9(3)/735/8/
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Dwi

Dt
[] twi1uj] jwi5c i1n~Dwi22]ks i , j]kv j !, ~2!

wherecW is the stretching induction vector(c i[2P i , jv j )
andP the pressure Hessian (P i , j[] i , j

2 P). It must be noted
that Eqs.~1! and~2! are formally similar. However, while the
vortex stretching vectorwW is a local quantity,cW is non-local
since the pressure Hessian can only be obtained by sol
the Poisson equation:

DP[P i i5~v22s2!/2, ~3!

wheres2[2s i , j
2 andv2[v i

2 . One can find further details
in Okhitaniet al.8 who studied, in an Eulerian case, the ro
of the pressure HessianP in non-local processes. Unde
standing the physics of vorticity stretching and stretch
induction directly from Eqs.~1! and ~2! is quite difficult. A
good way of getting some information on these processe
thus to study the alignments between the dynamical vec
involved in these equations (vW , wW andcW ). SincewW is con-
structed ons and vW , and cW on P and vW , the alignments
between the vorticityvW and the eigenvectors ofs andP are
also interesting. In particular they indicate which parts of t
strain and the pressure Hessian are active. There are u
tunately only two of these alignments well established
laboratory and numerical turbulence experiments. The ali
ment between the vorticityvW and the strain rate eigenvecto
has been first studied by Ashurstet al.9 numerically and later
by Tsinoberet al.10 experimentally. The alignment betwee
the vorticityvW and the stretching vectorwW has been investi-
gated by Tsinoberet al.10 in experiments and by Shtilma
et al.11 in Navier–Stokes simulated turbulence. There
however one numerical simulation by Nomura and Pos12

where the statistics of the angles between the vorticity
the pressure Hessian eigenvectors are computed.

To summarize the results obtained in these studies, th
is a tendency for alignment between the vorticityvW and the
intermediate eigenvectorsW 2 of the rate of strain tensors,
and betweenvW and the vortex stretching vectorwW in turbu-
lent flows. Moreover, Nomura and Post12 found a trend for
alignment betweenvW and the smallest pressure Hessian
735$10.00 © 1997 American Institute of Physics
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genvectorpW 3 , this tendency becoming strong for high vo
ticity regions. These results have led to some important c
clusions. First, the vorticity stretching, closely linked to t

positiveness of the enstrophy generating termwW • vW , is one of
the predominant processes involved in turbulence. Sec
this gives experimental evidence that a great degree of
herence is locally present in turbulent flows.

The aim of this paper is to propose a physical interp
tation of these results. In order to improve the physi
meaning of making statistics on the angles between th
vectors, we choose to first compute them on a simple
ample whose physical content is well known. This proced
has been initiated by Shtilmanet al.11 who compared the
alignments obtained in a direct numerical simulation to th
obtained with its random counterpart having the same ene
spectrum. We thus choose another extreme case which
the contrary, corresponds to a strongly structured flow. Si
the structures embedded in turbulent flows are generally
scribed as tubes or layers of high vorticity, we choose am
the available models describing these structures, the Burg
vortex and Burgers’ layer13 which have the advantage o
being simple analytical solutions of Navier–Stokes equati
and of taking into account the effect of the stretching. So
of the properties of the vorticity, the vortex stretching vect
the strain rate and the pressure Hessian in these parti
flows have already been studied in two previous works. F
vortex layer, Brachetet al.14 computed the three strain eige
values as functions of the ratio between the local vortic
and the stretching. In the case of a Burgers’ layer, Okhit
et al.8 showed that the two smallest eigenvectors of the p
sure Hessian are equal and that the vorticity is aligned w
one of them. Furthermore, when the vorticity is larger th
the stretching~e.g., near the center of a strong shear lay!,
the remaining principal axis ofs andP are at an angle o
p/ 4 from each other. In the present work, we will comple
these two studies of Burgers’ models, by computing syste

atically the alignments betweenvW , wW , cW and the eigenvalue
of s and P. We will then show that the main dynamica
properties of these flows can be deduced from these pro
ties of alignment. Our aim is then to give a physical inte
pretation of the alignments statistically observed in turbul
flows, following the same method of deduction. Since
relation between real turbulence and analytical vortices
quite vague, our interest in computing the alignments
model flows is only to make the physical contents of the
statistical tools clearer.

A short presentation of Burgers’ models is made in S
II A of this article. Section II B is devoted to the study of th
alignments and their physical interpretation in these mod
Following these simple examples, a new interpretation of
results obtained in real turbulent flows is proposed in S
II C. In Sec. III, the problems linked with the classificatio
of the eigenvalues ofs and those ofP ~Sec. III A! is dis-
cussed and an alternative procedure for these classifica
is suggested~Sec. III B!.
736 Phys. Fluids, Vol. 9, No. 3, March 1997
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II. ALIGNMENTS STUDY

A. Burgers’ layer and vortex

Both Burgers’ models are exact solutions of Navie
Stokes equations. The velocity field of the Burgers’ vortex
expressed in cylindrical coordinates,r being the radial coor-
dinate andz the axial coordinate. For the Burgers’ layer, th
field is expressed in Cartesian coordinates, with by conv
tion y for the compressive axis,z for the stretching axis and
x for the layer direction axis. The main difference betwe
these two models, apart from the geometry, is the spa
distribution ofs2 andv2. In the layer,s2 andv2 are mixed
while in the vortex,v2 is concentrated in the core ands2 is
mostly distributed on a tubular region around the co
Linked to this property, there is a slight pressure maxim
in the center of the layer, due to the stretching part of
flow and there is a depression near the core of the vorte
the Reynolds number is not too small.

The velocity field depends on three non-independent
rameters: the maximal vorticityv0 ~e.g., the vorticity at the
origin!, the stretchingg[s i , jv iv j /v

25]zvz which is uni-
form, and the size of the core. The link between these
rameters comes from the dynamics of these solutions.
stretching tends to concentrate the vorticity while the visc
ity diffuses it. The viscous equilibrium between these p
cesses fixes the size of the core which scales on the vis
lengthL5(n/g)1/2. The stretching is constant in space a
time. This can be interpreted as an equilibrium between
effects. The stretching is injected at infinity and advec
towards the center, while the stretching induction tends
reduce it. This uniform stretching is the main unphysic
property of these models, because the velocity and the p
sure do not converge at infinity. A usual trick to escape t
problem is to consider that in a large Reynolds number fl
the stretching part can be neglected. However the stretc
is negligible neither in the center of the structure nor far fro
it. Thus, we will not neglect it.

Using the turnover timeT5v0
21 as a characteristic time

the Reynolds number is Re[L2/nT5v0 /g. For conve-
nience in the drawing of the figures, we introduce quantit
made dimensionless usingL andT and noted with a star. The
dimensionless velocity field for the Burgers’ vortex is

vW *5S 2
r *

2Re
, 2

12exp~2r *
2
/4!

r *
,
z*

Re
D

~r ,u,z!

, ~4!

and for the Burgers’ layer is

vW *5S 2Ap

2
erfS y*A2D ,2 y*

Re
,
z*

ReD
~x,y,z!

. ~5!

For the two Burgers’ models, thez axis is a principal
direction of both the pressure HessianP and the strain tenso
s. The corresponding eigenvalues are, respectiv
pz52g2 (pz*521/Re2) andsz5g (sz*51/Re). By con-
vention, we can definep1 as the largest remaining eigen
value ofP andp2 as the smallest and similarlys1 as the
largest remainings eigenvalue ands2 as the smallest. This
classification has a clear physical meaning sincepz andsz

only depend on the stretching part of the flow. However,
B. Andreotti
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notation which is generally used for turbulent flows is t
order the eigenvalues ofP and s by increasing values:
p1>p2>p3 ands1>s2>s3 . We will thus first describe
the correspondence between these two classifications.

For the two Burgers’ models,P is already diagonal in
the simplest basis~see Fig. 1!. In the vortex case,pW 2 and
pW 1 are, respectively, radial and tangential. In the layer cas
pW 2 andpW 1 are aligned with thex andy axis. For the Bur-
gers’ layer, the pressure Hessian is rather simple: the eig
values are constant in space and the largest one
p15p150, the two others being equalp25p35pz5p2

52g2 (p*521/Re2). For the Burgers’ vortex, Fig. 2
shows the profile of the eigenvalues of the pressure Hessi
p1 andp2 are related to the radial variation of the pressur
In the Burgers’ vortex, at a fixedz, the value of the pressure
as a function ofr and u is, near the core, an inverted bel
shaped surface.p1 andp2 at a point are linked to the two
principal curvatures of this surface~radially and tangen-
tially!. The intersection of this surface with a meridian plan
is a bell curve~the generating curve!. p2 corresponds to its
curvature: it is maximum and positive at the center and neg
tive around it~Fig. 2!. On the contraryp1 is positive around

FIG. 1. Sketches showing the velocityvW ~solid vectors!, the vorticity vW

~dashed vectors!, the pressure Hessian eigenvectorspW z , pW 1 andpW 2 ~dotted

vectors! and the strain rate eigenvectorssW z , sW 1 and sW 2 ~dotted–dashed
vectors! for a Burgers’ vortex~a! and a Burgers’ layer~b!.
Phys. Fluids, Vol. 9, No. 3, March 1997
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~and maximum at! the center: it corresponds to the curvatu
around the axis of revolution of this cylindrical surface. F
from the core, there remains only the stretching part of
flow so that bothp1 and p2 converges to2g2/4. The
description in terms ofp1>p2>p3 is thus slightly more
complicated becausepz andp2 can cross each other.p1 is
always equal top1 , but p2 ~andp3) can be eitherpz or
p2 . Near and far from the core the smallest eigenvaluep3

is thus equal topz andp2 is equal top2 . For sufficiently
high Reynolds number vortices, between these two regio
p3 becomes equal top2 ~and p2 to pz). Following the
same approach as used for the pressure Hessian, we
consider the correspondence between the two classifica
of the eigenvectors of the strain rate. For both the Burge
vortex and the Burgers’ layer, Fig. 3 shows the profile of t
s eigenvalues. For the smallest eigenvalue, there is no
biguity: s3 is always equal tos2 . In both cases, far from
the center it only remains the stretching part of the flow:
largest eigenvalues1 is equal tosz and the intermediate
eigenvalues2 is equal tos1 . Elsewhere in the flow, the
result depends both on the model and on the Reynolds n
ber. We reduce the discussion to vortices and layers of la
circulation. In the Burgers’ vortex, without the stretchin
part, the core is a quasi-solid-body rotation, i.e. witho
strain. Thuss1 is also equal tosz ~and s2 also equal to
s1) around the origin and far from the core. The comp
nents due to the vortex or to the layer dominates in the
termediate region, so that in these places the highest ei
values1 is s1 ~and the intermediates2 is sz).

B. Alignments in Burgers’ solutions

The question is now to look at the alignment betwe
vW , wW , cW and the eigenvalues ofs andP. In both Burgers’
models, the vorticityvW is everywhere aligned with thez axis
and is thus an eigenvector of the pressure HessianP and of
the strain tensors. There is thus a strict alignment betwee

FIG. 2. Profiles of the dimensionless pressure Hessian eigenvalues
Re550 Burgers’ vortex,pz* ~solid line!, p1* ~dotted–dashed line! andp2*
~dashed line!. pz* is constant and equal to21/Re2 • p1* andp2* tend to
21/4Re2 at infinity. Note the two crossovers betweenp2* andpz* , one near
the core and the other far from it.
737B. Andreotti
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the vorticityvW , the vortex stretching vectorwW (wW 5gvW ) and
the stretching induction vectorcW (cW 52g2vW ).

The case of the eigenvalues ofs andP, as seen in Sec.
II A, is less simple.vW is aligned either withpW 2 or pW 3 and is
orthogonal everywhere topW 1 . In order to quantify this, we
study the respective probabilityin spaceto havevW aligned
with the smallest eigenvectorpW 3 or the intermediate,pW 2 .
Since the velocity field of these model flows extends to
finity, we limited our average to a region around the cen
of the structure. We define this region, using the modulus
the vorticity, as the set of points wherev.av0 . For the
Burgers’ vortex, this set corresponds to the zone wh
r *,r a*5(24ln(a))1/2 and for the Burgers layer to the zon
wherey*,ya*5(22ln(a))1/2. Whena tends to 1, we just
consider the core. On the contrary, whena tends to 0, we
consider all the flow. Figure 4 shows the probability ofvW

being aligned with the smallest eigenvectorpW 3 as a function
of a for various Reynolds numbers. For a large Reyno

FIG. 3. Profiles of the dimensionless strain rate eigenvalues for a Re550
Burgers’ vortex~a! and for a Re550 Burgers’ layer~b!, sz* ~solid line!,
s1* ~dotted–dashed line! ands2* ~dashed line!. In both models,sz* is con-
stant and equal to 1/Re. In the Burgers’ vortex,s1* ands2* tend to21/2Re
in 0 and at infinity. In the Burgers’ layer,s1* tends to 0 ands2* to 21/Re at
infinity. Note the crossovers betweens1* andsz* .
738 Phys. Fluids, Vol. 9, No. 3, March 1997
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number, the largest probability is to findvW aligned withpW 3 .
However, this probability is not equal to one as we alwa
found a region far from the center where it is probable to fi
vW aligned withpW 2 . vW is aligned with the largest eigenvecto
sW 1 both close to the center and far from it and is aligned w
the intermediate eigenvaluesW 2 in the tubular region in be-
tween. For a Burgers’ layer,vW is aligned with the interme-
diate eigenvaluesW 2 around the center and aligned with th
largest eigenvectorsW 1 far from it. In both models,vW is al-
ways perpendicular tosW 3 . As for the pressure Hessian, w
present in Fig. 5 the probability ofvW being aligned with the
intermediate eigenvectorsW 2 on the set of points defined b
v.av0 as a function ofa. In both cases, this probability
tends rapidly towards 1 when the Reynolds number
creases. The vorticity is thus mainly aligned with the inte
mediate eigenvectorsW 2 .

C. Interpretation of turbulence results with the help
of the interpretation of Burgers’ models results

Before revisiting the alignments obtained in turbule
flows, it is interesting to notice that the main physical pro
erties of the Burgers’ vortex and the Burgers’ layer can
deduced from these alignments. Indeed, they first show
these model flows are structured, in the sense that the vo
ity and the strain are strongly correlated. The alignment
tweenvW , wW andcW reveals that they correspond to regio
where the vorticity stretching and the stretching inducti
are important. The vorticity is aligned with one eigenvec
of s and one ofP. The corresponding eigenvalues are th
linked to the stretching while the remaining eigenvalues
inactive and thus almost linked to the shear due to the v

FIG. 4. Probability in spacePa(vW //pW 3) of alignment between the vorticity

vW and the smallest pressure Hessian eigenvaluepW 3 . This probability is
computed for a Burgers’ vortex on the set of points defined byv.av0 , for
Re53 ~dotted line!, Re55 ~dashed line! and Re51` ~solid line!. For a
Burgers’ layer~BL! this probability is 1~dotted–dashed line!. This prob-
ability tends to 1 whena tends both to 0~all the flow! and to 1~near the
core!. Note that the complementary to 1 is the probability of alignment w

pW 2 .
B. Andreotti
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ticity concentration. Finally, the ‘‘stretching’’ eigenvalue
are small compared to the ‘‘shear’’ ones, indicating a lo
quasi-bidimensionality.

We can now turn to the alignments statistically observ
experimentally10 and numerically9,11,12 in turbulent flows.
Let us first summarise these results. It is found both in r
and simulated flows10,11 that the vortex stretching vectorwW

and the vorticityvW have a strong tendency for alignment~the
probability density distribution~pdf! of the cosine of the
angle betweenwW andvW has a strong maximum for the valu
1!. The vorticity also exhibits a strong tendency for alig
ment with sW 2 , and s2 is most often positive.9,10 Further-
more, the vorticity exhibits a strong tendency for orthogon
ity to sW 3 and there is almost no correlation at first sig
betweenvW and sW 1 . This last pdf has a slight double we
shape~a cosine of 0 or 1 is more probable than an interm

FIG. 5. Probability in spacePa(vW //sW 2) of alignment between the vorticity

vW and the intermediate strain rate eigenvaluesW 2 . This probability is com-
puted on the set of points defined byv.av0 , for a Burgers’ vortex~a! for
Re512.5 ~dotted line!, Re525 ~dashed line!, Re550 ~dotted–dashed line!
and Re5500 ~solid line! and for a Burgers’ layer~b! for Re53 ~dotted line!,
Re55 ~dashed line! and Re510 ~dotted–dashed line! and Re550 ~solid
line!. This probability tends to 1 everywhere, except in 0 for both mod
and in 1 for the Burgers’ vortex. Note that the complementary to 1 is

probability of alignment withsW 1 .
Phys. Fluids, Vol. 9, No. 3, March 1997
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diate value!: this property can be interpreted as a mixing
alignment and orthogonality betweenvW andsW 1 . vW has thus
a strong tendency to be aligned with a strain rate eigenve
(sW 1 or sW 2). On the contrary, for an artificial random field
e.g., where the one point distribution of the velocity
Gaussian,11 there is strictly no correlation between the vo
ticity and the strain. In this case, all the directions ofvW in
comparison to the strain rate eigenvectors basis are equ
probable and the pdfs of the angles betweenvW andsW 1 , sW 2

andsW 3 are symmetrical and almost flat. Moreover, Nomu
and Post12 compared in a NSE simulated turbulence, the a
erage cosines of the angles between the vorticity and
three eigenvectors of the pressure Hessian on regions of
vorticity and for the whole flow. While there is no stron
tendency for alignment in the whole flow, in regions of hig
vorticity, there is a trend for alignment betweenpW 3 andvW

and for orthogonality betweenpW 1 andvW .
Our aim is to propose a physical interpretation of the g

between the results obtained in real turbulent flows and
an artificial random field. Indeed, in our opinion, these
sults correspond to a statistical mixing between regio
where the flow is quasi-random and coherent regions wh
vW and s are correlated. The alignment betweenwW and vW

indicates that the vorticity is driven by the stretching in the
coherent regions. IfwW is roughly aligned withvW , we can
deduce fromwi5s i , jv j that vW ~andwW ) is close to be an
eigenvector of the strain. As this eigenvector of the strain
aligned withvW , the corresponding eigenvalue can thus
interpreted as the real stretching applied tovW . On the con-
trary, the two other eigenvectors~perpendicular tovW ) are
almost inactive and thus correspond to ‘‘shear’’ strain eig
values. If these two ‘‘shear’’ eigenvalues are larger than
‘‘stretching’’ eigenvalue~it is the case when the vorticity is
large compared to the stretching!, then the vorticity is
aligned withsW 2 . The important point is thus more the align
ment ofvW with one of the strain eigenvectors than havin
this alignment withsW 2 rather thansW 1 or sW 3 . The alignment
of vW with the smallest absolute eigenvalue of boths andP
may in fact be interpreted as small variations along the v
ticity direction and as the signature of the local qua
bidimensionality of the flow.

There is not enough available information on the pr
sure Hessian to give a similar interpretation. However,
will give in Sec. III B some predictions on its behavio
which are coherent with the existing measurements
which should be checked in numerical and laboratory exp
ments.

III. FOR A NEW CLASSIFICATION OF STRAIN RATE
AND PRESSURE HESSIAN EIGENVALUES

A. Problems

The physical interpretation of the alignments betwe
the vorticity and the eigenvectors of the pressure Hessian
the strain tensor gives some feedback for the constructio
these tools. We found that some problems arise from
classification of the eigenvalues by order: there can b

s
e

739B. Andreotti
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crossover between two eigenvalues with different phys
meanings. For instance in the Burgers’ models~see Sec.
II B !, there are crossovers betweens2 ands1 and between
p3 andp2 for large Reynolds numbers. This type of eige
value ordering can have even more disastrous conseque
Let us consider for instance the pressure Hessian terms
pressed in the strain rate eigenvectors basis.12We express the
pressure Hessian in thes orthonormal basis (sW 1 ,sW 2 ,sW 3):

p5S p11 p12 p13

p12 p22 p23

p13 p23 p33
D

~sW 1 ,s
W
2 ,s

W
3!

. ~6!

These pressure Hessian terms can be expressed as
tions of the eigenvectors and eigenvalues ofP ands. We
thus also consider theP orthonormal basis (pW 1 ,pW 2 ,pW 3).
Then there may be a problem on the orientation of the eig
vectors. Take for examplep11 for the diagonal terms and
p12 for the non-diagonal ones~the others are obtained b
replacing, respectively, the indexes!:

p115~sW 1 .pW 1!
2p11~sW 1 .pW 2!

2p21~sW 1 .pW 3!
2p3 , ~7!

p125p215~sW 1 .pW 1!~sW 2 .pW 1!p11~sW 1 .pW 2!~sW 2 .pW 2!p2

1~sW 1 .pW 3!~sW 2 .pW 3!p3 . ~8!

The diagonal termsp11, p22, p33 are defined in a
univocal way. On the other hand, the signs of the n
diagonal terms depend on the construction of the b
(sW 1 ,sW 2 ,sW 3) @but not on (pW 1 ,pW 2 ,pW 3)]. There are in fact
eight possibilities for defining the strain eigenvectors ba
depending on the directions chosen for these eigenvec
(6sW 1 ,6sW 2 ,6sW 3). If the direction of the basis vectors ar
arbitrarily chosen, the average over a homogeneous turbu
flow of the non-diagonal terms should be zero. Indep
dently of the classification chosen, a univocal construction
the eigenvectors basis must be chosen.

In order to investigate the impact of the classification
order, we return to the Burgers’ vortex: the radial profile
the pressure Hessian terms, expressed in the b
(sW 1 ,sW 2 ,sW 3), are plotted in Fig. 6. The profiles of these term
are not continuous at the point wheres2 ands1 cross each
other: there is an inversion betweenp11 and p22 and be-
tweenp13 andp23 (p23 falls to zero after the crossing point!.
More generally, with the classification by order, the eige
values are continuous in space and time even at some c
ing point, but not the eigenvectors. This evidently reacts
all the statistics based on the eigenvectors.

B. Alternative classification of the eigenvalues

It is thus better, in order to do statistics, to find a cri
rion of classification of the eigenvalues with a consta
physical meaning. The case of the Burgers’ models is ra
simple because the vorticity is an eigenvector of both
strain rate and the pressure Hessian (vW , wW andcW are thus
strictly aligned!. The s andP physical bases are in thes
cases (sW 2 ,sW 1 ,sW z) and (pW 2 ,pW 1 ,pW z) as defined in Sec
740 Phys. Fluids, Vol. 9, No. 3, March 1997
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II B. We thus propose an alternative classification of the
genvalues which is the equivalent for turbulent flows. T
construction will be explained in the case of the strain ba
but can similarly be applied to the pressure Hessian one

Our main assumption is that the vorticity locally orie
tates the space. We thus definesW z as the eigenvector which
makes the smallest angle with the vorticityvW , sW 1 as the
largest remaining eigenvector andsW 2 as the smallest. To
orientate the basis, we can choose the cosine of the a
betweensW z andvW positive. We have seen in the previou
paragraph that the orientation of the whole base can be
portant, so we propose to construct by convent
(sW 2 ,sW 1 ,sW z) as a direct basis. With this convention, th
range of the cosine of the angle betweenvW and sW z is

@1/A3, 1# and betweenvW and sW 1 or vW and sW 2 will be
@21/A2, 1/A2#. The natural point of comparison to stud
the alignment in a real flow is the case of a random fi
wherevW ands are perfectly decoupled. The pdf of the c
sine of the angle between the vorticityvW andsW z , or vW and
sW 2 in this case, is plotted in Fig. 7. By construction, the
pdfs are not flat anymore:vW tends to align withsW z and to be
orthogonal tosW 1 andsW 2 . In the case of the Burgers’ mod
els, these pdfs are a Dirac distribution in 1 forsW z and a Dirac
distribution in 0 forsW 1 andsW 2 . By construction, there will
also be a correlation between the alignment ofvW andsW z and
the alignment ofvW andwW since

wW 5sz~sW z .vW !sW z1s1~sW 1 .vW !sW 11s2~sW 2 .vW !sW . ~9!

The advantage of this classification is to solve the pr
lems of spatial discontinuity and of physical meaning in t
coherent regions, where the statistics of alignment are n
random. These problems are thus pushed back to quasi-i

FIG. 6. Profiles of the dimensionless pressure Hessian terms express

the strain rate basis (sW 1 ,sW 2 ,sW 3) for a Re550 Burgers’ vortex:p11* ~solid
line!, p22* ~dashed line!, p13* ~dotted–dashed line! andp23* ~doted line!. Note
the discontinuity of this curves at the radius where the strain eigenva
cross over.
B. Andreotti
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on
herent regions where there is no strong tendency for al
ment but where the statistics should be comparable to th
obtained for a random field.

This new classification of the strain and the press
Hessian eigenvalues, strongly linked to the physical interp
tation proposed in Sec. II C, should be validated by furt
studies. In particular, we can make some predictions on
alignments which have not been measured yet. Indeed, t
should be a strong tendency for alignment between the
ticity vW and the ‘‘stretching’’ eigenvector of the strainsW z

and betweenvW and the ‘‘stretching’’ eigenvector of the pres
sure HessianpW z , in comparison to the random case~Fig. 7!.
There thus should also be a statistical alignment between
stretching induction vectorcW , vW andwW . Moreover, we think
that these alignments occur in the same regions. It wo
thus be useful to compute the statistics of alignment betw
vW , cW , sW z andpW z conditioned on the angle betweenvW and
wW . It would also be interesting to consider the statistics c
ditioned on the vorticity since the structures of high vortic
are likely to be these regions of strong alignment. Anot
interesting point is the statistics of alignment betweenvW and
the ‘‘shear’’ eigenvalues (sW 1 , sW 2 , pW 1 and pW 2). On a
qualitative level,vW should be statistically perpendicular
sW 1 , sW 2 , pW 1 andpW 2 . Moreover, if the assumption that th
space is locally oriented byvW is true, the pdfs of the angle
of vW with sW 1 and withsW 2 should be equal, as the pdfs of th
angles ofvW with pW 1 and withpW 2 .

IV. CONCLUDING REMARKS

The statistics of alignment between the vorticityvW , the
vortex stretching vectorwW , the stretching induction vecto
cW and the eigenvectors of the strain and the pressure Hes

FIG. 7. Probability density distributions of the cosine of the angle betw

the vorticity vW and the eigenvectors of the strain tensorsW z ~solid line!,

sW 1 andsW 2 ~dashed line! for a random Gaussian field, using the conventi

cos(vW ∧ sW z).ucos(vW ∧ sW 1)u, cos(vW ∧ sW z).ucos(vW ∧ sW 2)u ands1.s2 .
Phys. Fluids, Vol. 9, No. 3, March 1997
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have been computed in Burgers’ models, in order to inve
gate the physical meaning of such statistics. We showed
it is possible to deduce their physical nature from these pr
erties of alignment. Following the same method, we ha
proposed a new interpretation of the alignments observe
turbulent flows. The gap between the results obtained in
flows and those obtained in an artificial random flow is
proof of the local coherence of the former. So, we assum
that this difference is concentrated in the coherent regions
those regions, the vorticityvW tends to align with the vortex
stretching vectorwW and the ‘‘stretching’’ eigenvalue of the
strainsW z , and to be perpendicular to two ‘‘shear’’ eigenve
tors of the strain,sW 2 and sW 1 . sz and pz , the pressure
Hessian eigenvalue aligned withvW , are small, indicating a
local quasi-bidimensionality. This interpretation of turb
lence results induced a test for the usual classification
order of theP and s eigenvalues: we found that there i
with this convention, a ‘‘mixing’’ in statistics of eigenvalue
having different physical meanings. We thus introduced
new and safer classification of the eigenvalu
(sW 2 ,sW 1 ,sW z) and (pW 2 ,pW 1 ,pW z), which is based on the
alignments with the vorticity. We finally made some pred
tions for the alignments which have not yet been comput
there should be, in some coherent regions of turbulent flo
a strong tendency for alignment betweenvW , wW , cW , sW z and
pW z . If this was verified in further numerical simulations, th
main problem would be to explain the mechanisms wh
lead to these alignments.
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