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Abstract. The behaviour of dense assemblies of dry grains submitted to continuous shear deformation has
been the subject of many experiments and discrete particle simulations. This paper is a collective work
carried out among the French research group Groupement de Recherche Milieux Divisés (GDR MiDi). It
proceeds from the collection of results on steady uniform granular flows obtained by different groups in six
different geometries both in experiments and numerical works. The goal is to achieve a coherent presentation
of the relevant quantities to be measured i.e. flowing thresholds, kinematic profiles, effective friction, etc.
First, a quantitative comparison between data coming from different experiments in the same geometry
identifies the robust features in each case. Second, a transverse analysis of the data across the different
configurations, allows us to identify the relevant dimensionless parameters, the different flow regimes and to
propose simple interpretations. The present work, more than a simple juxtaposition of results, demonstrates
the richness of granular flows and underlines the open problem of defining a single rheology.

PACS. 45.70.-n Granular systems

1 Introduction

At the frontier between physics and mechanics, the flow of
granular materials has become a very active research do-
main [1–9]. The behaviour of assemblies of grains can be
very complex even in the simple case of dry cohesionless
particles. When the grains are large enough (d > 250µm)
and the surrounding fluid is not too viscous, the particle
interactions are dominated by contact interactions. Capil-
lary forces, van der Waals forces or viscous interactions
can be neglected and the mechanical properties of the
material are only controlled by the momentum transfer
during collision or frictional contacts between grains.

Still, the flows of these dry granular materials are not
easy to describe. They are usually divided in three classes
depending on the flow velocity. First, a quasi-static regime
where grain inertia is negligible. The material is often de-
scribed using soil plasticity models [10,11]. Secondly, a
“gaseous” regime exists when the medium is strongly agi-
tated and the grains are far apart one from another. In this
regime particles interact through binary collisions and a
kinetic theory has been developed by analogy with the ki-
netic theory of gases [12,13]. In between these two regimes
there exists a dense flow regime where grain inertia be-
comes important but where a contact network still exists
that percolates through particles [14]. Up to now no con-
stitutive equations are available in this “liquid” regime
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and no unified framework allows to describe the whole
dynamics from quasi-static to gaseous regime.

The lack of information about the liquid regime and
about the transition between the different regimes has re-
cently motivated many experimental, numerical and the-
oretical works. Different flow configurations have been in-
vestigated from confined flows in channels to free surface
flows on piles, both experimentally and numerically. How-
ever, although important and precise information is now
available about the flow characteristics, it is often diffi-
cult to extract common features and general trends for
granular flows. Configurations are not the same, experi-
mental or numerical conditions varies from one study to
another. In this paper we collect the data from different
groups belonging to a French research network supported
by the CNRS, the Groupement De Recherche Milieux Di-
visés (GDR MiDi). The goal of this network is to exchange
and discuss scientific results among the members of the
French laboratories involved in granular media.

First, we plan to compare the data obtained under
different experimental or numerical conditions, in order
to extract the most robust features. What are the rele-
vant flow characteristics, i.e. thresholds, kinematic pro-
files, effective friction, etc. in the different flow configura-
tions? How do these quantities depend on the details of
the experimental set-up or numerical procedures? Second,
we would like to sort the different flow configurations ac-
cording to the common features and differences that arise
among them. What are the relevant time and length scales
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in the different configurations? Are there underlying com-
mon physical phenomena controlling flow properties in the
different geometries? As a result, we expect to identify
simple and basic features that could help in developing
future model for dense granular flows.

Let us emphasise that this collective work is not a re-
view. New results are presented and the paper does not
pretend to be exhaustive. First, the paper focus only on
steady uniform flows of slightly polydispersed grains, leav-
ing aside very important questions such as avalanche trig-
gering, intermittent flows or segregation. Second, since the
data presented here come from the research group GDR
MiDi and collaborators, many important contributions are
not included. We refer to them in the references. However,
the huge activity in the domain makes the exercise diffi-
cult. We take refuge behind this excuse for all the contri-
butions that have been omitted.

2 Six different configurations

Dense granular flows are mainly studied in six different
configurations (Fig. 1), where a simple shear is achieved
and rheological properties can be measured. These geome-
tries are divided in two families: confined and free surface
flows.

The confined flows are the plane shear geometry
(Fig. 1a) where a shear is applied due to the motion of
one wall, the annular shear (Fig. 1b) where the material
confined in between two cylinders is sheared by the ro-
tation of the inner cylinder and the vertical-chute flow
configuration (Fig. 1c) where material flows due to the
gravity in between two vertical rough walls. Free surface
flows are flow of granular material on a rough inclined
plane (Fig. 1d), flow at the surface of a pile (Fig. 1e)
and flow in a rotating drum (Fig. 1f). The driving force
is in these last three cases the gravity. In the following,
we consider successively the six configurations. The data
comes from different experiments and numerical simula-
tions briefly described in a table at the beginning of each
section. We report for each of them the flowing threshold,
the kinematic properties (velocity V (y), volume fraction
Φ(y) and velocity fluctuation δV 2(y) profiles) and the rhe-
ological behaviour, before discussing the influence of the
various experimental or numerical parameters. Both the
notations and the dimensionless quantities naturally used
to present the results are given in Appendix A.

3 Plane shear flow

3.1 Set-up

In the aim of studying flow rheology, the plane shear
(Fig. 2a) is conceptually the simplest geometry one natu-
rally thinks of. The flow is obtained between two parallel
rough walls, a distance L apart and moving at the rela-
tive velocity Vw. In the following, we note γ̇w = Vw/L the
mean shear rate. In this configuration, the stress distribu-
tion is uniform inside the sheared layer. However, because

g

g g
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Fig. 1. The six configurations of granular flows: (a) plane
shear, (b) annular shear, (c) vertical-chute flows, (d) inclined
plane, (e) heap flow, (f) rotating drum.

of gravity, this homogeneous state is not achieved in exist-
ing experiments [15,16] but is obtained in discrete parti-
cle simulations. Most of the results found in the literature
are obtained imposing the wall velocity and measuring the
shear stress [17–21]. Some are carried out controlling the
shear force applied to the moving wall in order to study
the flow thresholds [22].

In the following, we present results of two-dimensional
discrete particle simulations where Vw is imposed and the
number of grains (size d and mass m) within the cell is
fixed (periodic boundary conditions are used along the
shear direction). The data are summarised in Table 1. In
one case the volume —the cell width L— and thereby the
density ρ —or the volume fraction Φ— are controlled and
the pressure P is measured, while in the other case the
pressure is controlled and the density is measured. Once
the inter-particle contact laws are fixed, the simulations
depend on two parameters: the wall velocity Vw and the
normal stress P or the density ρ. This define a single di-
mensionless number describing the relative importance of
inertia and confining stresses,

I =
γ̇wd
√

P/ρ
. (1)

Both simulations are performed in the limit of rigid grains,
so that the macroscopic timescale L/Vw is much larger
than the microscopic timescales i.e. the elastic and the
dissipative ones. The inter-particle friction coefficient µp
is null when not specified. The roughness of the walls is
made of glued grains similar to the flowing grains.
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Fig. 2. Plane shear. (a) Set-up. (b) Velocity profiles rescaled by the wall velocity from simulations PS1: I between 0.2 and
0.5 (e = 0.8) (black symbols) and PS2: I = 0.23 (e = 0.1, µp = 0.4) (◦). (c) Volume fraction profiles from simulations PS1:
I between 0.2 and 0.5 (e = 0.8) (black symbols) and PS2: I = 0.23 (e = 0.1, µp = 0.4) (◦). (d) Velocity fluctuations profile
normalised by its mean value across the cell from simulations PS1: I between 0.06 and 0.5 (e between 0.6 and 0.98) (black
symbols), and PS2: I = 23 (e = 0.1, µp = 0.4) (◦). (e) Effective friction µeff as a function of I measured at the wall in
simulation PS1: e = 0.1 (•) and e = 0.9 (¥) and inside the flow in simulation PS2: e = 0.1 (◦), e = 0.9 (¤), both for µp = 0.
(4) correspond to simulations PS2 with 0.1 < µp < 0.8. Inset: same curves in linear-linear representation. (f) Mean volume
fraction 〈φ〉 as a function of I from simulations PS1: e = 0.1 (•) and 0.8 (¥) and PS2: e = 0.1 (◦) and 0.9 (¤). Inset: same
curves in linear-linear representation. (g) Relative velocity fluctuations as a function of I from simulations PS2: e = 0.1 and
0.9, µp = 0, 0.4 and 0.8.

3.2 Kinematic properties

3.2.1 Velocity profiles

Figure 2b displays the velocity profiles obtained in differ-
ent flow regimes. As long as I remains small (smaller than
say 0.1), the velocity profile v(y) is linear. Accordingly the

shear rate is uniform and imposed by the geometry:

γ̇ = γ̇w =
Vw
L

. (2)

For larger I, a slip velocity appears at the boundaries and
the profile becomes slightly S-shaped.
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Table 1. Data sources for plane shear flows. MD is for molecular dynamics.

# Exp/Num 2D/3D Material Boundary conditions Refs.
PS1 Num (MD) 2D polydisperse spheres (±10%) µp = 0 fixed volume (L = 15) [23,24]
PS2 Num (MD) 2D polydisperse disks (±20%) fixed pressure (L = 20→ 100) [24–26]

3.2.2 Volume fraction profile

The above two regimes correspond to a dense flow regime
at small I and a collisional dilute regime at larger I as
shown in Figure 2c. The volume fraction profiles Φ(y) are
plotted for different I. For small I, Φ is uniform across the
shear cell —apart from oscillations due to ordering close
to the wall. By contrast, for larger I, a significant decrease
of Φ is observed close to the walls so that it is no longer
uniform.

The transition is evidenced on Figure 2f, where the
average volume fraction is plotted as a function of I. 〈Φ〉
reaches its maximum, 0.85, in the quasi-static limit I ' 0,
decreases gently linearly with I down to 0.80 for I ' 0.1
and decreases more rapidly for larger I. Small I corre-
sponds to the dense flow regime, associated to a network of
enduring contacts [27], and large I corresponds to the dy-
namic inertial regime, associated to binary collisions [23].

3.2.3 Velocity fluctuations profile

The velocity fluctuations profiles are shown in Figure 2d,
where δV 2 is normalised by its mean value across the
shear cell. Here again the profiles are uniform for small
I, whereas a significant increase of the fluctuations is ob-
served close to the walls for larger I.

Figure 2g shows that the root mean square (rms) ve-
locity exhibits an interesting scaling with both shear rate
and pressure. The following scaling law is observed:

〈δV 2〉 ∝ dγ̇w

√

P

ρ
. (3)

The velocity fluctuations depend on both the shear rate
and the confining pressure. This means that the relative
velocity fluctuations depends on the sole dimensionless
number I:

√

〈δV 2〉
γ̇wd

∝ I−1/2 . (4)

Let us underline that the above scaling for the mean value
of the velocity fluctuations is valid up to the largest value
of I, although in this regime the velocity profiles are not
uniform across the channel.

3.3 Effective friction

The effective-friction coefficient µeff is defined either as
the ratio of shear to normal force at the wall, or as the
ratio of the shear stress to the pressure inside the mate-
rial. Both definitions give approximately the same results.

Figure 2e displays the effective friction for two different
simulations and different values of the restitution coeffi-
cient e and interparticle friction µp. It shows that µeff
starts from a finite value µs, corresponding to the internal
Mohr-Coulomb friction [10], remains approximately shear
rate independent in the quasi-static regime (I < 10−3),
and increases for larger values of I [17,18,28,21] up to
some threshold where the flow leaves the dense regime.
Above this threshold µeff saturates or even slightly de-
creases. This threshold value depends on the restitution
coefficient e as observed in inset of Figure 2e. Whereas for
e = 0.9 the transition occurs for I ' 0.1, for e = 0.1 the
dense flow regime extends up to the maximum value of I
explored in the simulation.

3.4 Parametric study

We now discuss the influence of the microscopic coeffi-
cients, namely the restitution coefficient e and the inter-
particle friction µp. The major result is that in the dense
flow regime, the volume fraction, the velocity profiles and
the effective friction neither depend on e nor µp as long as
µp is of order 1 (say larger than 0.1). If µp = 0 one sim-
ply observes (see Fig. 2e) a shift of the effective friction
towards lower values [25,26]. However, as already men-
tioned, the transition from the dense flow regime to the
dilute collisional one depends on the restitution coefficient
e [23]. This is clearly observed on the effective-friction de-
pendence on I (inset of Fig. 2e) as well as on the volume
fraction dependence on I (inset of Fig. 2f).

As a conclusion, for usual granular materials (e not too
close to 1 and µp not to small), the flow properties (ve-
locity, dilatancy and effective friction) in the dense regime
are controlled by the dimensionless number I only.

4 Annular shear flow

4.1 Set-up

The annular shear cell is the classical geometry used for
studying rheological properties of complex fluids. In the
case of granular materials, it has been extensively stud-
ied both experimentally [28–33] and in discrete particle
simulations [34,35].

In this geometry (Fig. 3a), a layer of height W of gran-
ular material is sheared between two coaxial rough cylin-
ders, with a distance L (Taylor-Couette cell). The rough-
ness of the walls is made of glued grains, similar to the
flowing grains. The outer cylinder (radius Ro) is fixed. The
inner cylinder (radius Ri) is moving at a rotation rate Ω
so that the velocity at the inner wall is Vw = ΩRi. As we
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Fig. 3. Annular shear. (a) Set-up. (b) Effective friction as a function of the shear rate from experiment AS1. Up stress ramp (•)
and down stress ramp (◦). Linear and logarithmic scale (inset). (c) Velocity profiles, for various shear rate from experiments
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Inset: Profiles of the rescaled fluctuations.
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Table 2. Data sources for annular shear flows. MRI is for Magnetic Resonance Imaging, XT for X-ray tomography, HSI for
high-speed imaging, I for imaging. In experiment AS4, the granular material is sometimes fluidised.

# Exp/Num 2D/3D Bulk particles Ri/d L/d W/d Refs.
AS1 Exp 3D polystyrene beads 50 22 180 [36,26]

(Rheometry) (d = 0.25 mm)
AS2 Exp 3D mustard seeds 15 17.5 80 [26]

(MRI - hh) (d = 2 mm)
AS3 Exp 3D mustard - poppy seeds 14–32 9–19 33–75 [32]

(MRI, XT - hh) (d = 1.8 mm-0.8 mm)
AS4 Exp 3D glass beads 68 16 NA [33]

(HSI - fs) (d = 0.75 mm)
AS5 Exp 3D sand 100 100 100 [37]

(I - bs) (d = 1 mm)

will see below, in this geometry the shear is localised on
a few particle layers close to the inner wall. Accordingly,
we choose γ̇w = Vw/d as the characteristic shear rate.

The gravity acts in the transverse direction z. There is
usually a free surface, but the material may also be con-
fined vertically, so that it becomes possible to control the
pressure [37]. The stress distribution is characterised by an
hydrostatic-pressure gradient along the z-direction: due to
the shear, the wall friction is mobilised perpendicularly to
the gravity so that the Janssen effect is inactive [28,26].
In the xy plane, the normal stress P is uniform given that
centrifugal effects are negligible. The shear stress τ de-
creases as 1/(y +Ri)

2.
In this section, we present results from five exper-

iments, whose characteristics are summarised in Ta-
ble 2. Two kinds of experiments are performed depending
whether the motion of the inner cylinder is controlled by
imposing the torque Γ or the rotation rate Ω.

4.2 Flow thresholds

The flow thresholds are measured by first increasing, then
reducing the torque applied to the inner cylinder. Fig-
ure 3b displays the effective friction µeff versus the di-
mensionless characteristic shear rate γ̇w

√

d/g. The effec-
tive friction is obtained from the torque measurements
assuming an hydrostatic pressure distribution:

µeff =
τw
Pw

with τw =
Γ

2πR2
i W

and Pw =
1

2
ρgW .

(5)
After a strong pre-shear, a stress ramp is applied starting
from a solid state. Small stick-slip motions are observed
before the flow starts at a critical torque, with a sudden
jump of the rotation velocity. Above this critical torque,
continuous steady flows are observed [18,38] and γ̇w in-
creases with τw. When slowly decreasing the torque, the
stress-strain relation is first reversible. Further decreasing
the torque, the flow is sustained down to a lower criti-
cal stress where the flow abruptly stops. As a result, the
flowing transition is strongly hysteretic [36,26].

4.3 Kinematic properties

In the experiments reported here, the flow structure has
been investigated. The different profiles have been mea-
sured either at the free surface (fs) or at the bottom sur-
face (bs) through a glass window, or well inside the ma-
terial, at half height (hh), using sophisticated techniques
(magnetic resonance imaging or X-ray tomography) (see
Tab. 2).

4.3.1 Velocity profiles

Figure 3c gathers measurements of velocity profiles in
three experiments with different gaps L/d and different
shear rates. The profiles are qualitatively similar in all ex-
periments. The shear is localised near the moving wall, and
the width of the shear layer is of the order of five grains.
Layering in the first layers is apparent for round grains.
In each experiment, the shape of the velocity profile does
not depend on the shear rate γ̇w.

Both exponential and Gaussian fits have been pro-
posed for the velocity profiles [31–33]. Figure 3d shows
that the velocity decays slightly faster than exponential.
Also the logarithmic plot of the velocity profile versus

(y/d)2 (Fig. 3e) shows that the velocity profile is rather
Gaussian when not too close to the wall. However, the
slopes and thus the shear band characteristic sizes are very
scattered among the different experiments. Finally, let us
mention that the velocity profiles measured far from the
wall during the transient establishment of the flow (see
inset of Fig. 3c) recover an exponential tail. These mea-
surements also show that the shear is localised closer and
closer to the wall while the flow establishes itself.

4.3.2 Volume fraction profiles

As shown in Figure 3f, the volume fraction slightly in-
creases with the distance to the inner wall. Also the lay-
ering of the material close to the inner wall is more im-
portant for rounder particles (mustard seeds compared to
poppy seeds).
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4.3.3 Velocity fluctuations profiles

As shown in Figure 3g the velocity fluctuations decrease
exponentially with the distance to the moving wall on a
typical length scale larger than the size of the shear band.
This characteristic length remains constant when varying
the wall shear rate. By contrast, the typical fluctuations
level is shifted upwards with the wall shear rate. The typ-
ical velocity fluctuations δV 2(y) do not scale simply with
V 2
w , but rather with the wall velocity as shown in inset of

Figure 3h. The shift between the profiles is indeed reduced
when δV 2(y) is rescaled with Vw

√
gd.

In order to relate the local velocity fluctuations to
the local shear rate, Figure 3h displays the relative fluc-
tuations level

√

δV 2(y)/γ̇d measured at the free surface

as a function of the dimensionless shear rate γ̇(y)
√

d/g.
The data are compatible with a local relationship between
these two quantities. The exponent [33] has been recovered
numerically in [26].

5 Vertical-chute flow

5.1 Experimental set-up

Flows in silo have been extensively investigated, motivated
by their numerous practical applications [39–47]. In its
most simplified geometry, the container reduces in three
dimensions to a cylinder of diameter L and in two di-
mensions to two parallel walls separated by a distance L
(Fig. 4a). Gravity drives the material down between the
walls. Far from the free surface and from the bottom, the
flow is uniform along the x-direction. The flow rate Q can
be controlled either by an aperture at the bottom of the
device, whose opening is precisely controlled, or by mov-
ing the bottom retaining wall at a controlled velocity. The
walls are made rough by gluing particles at the walls.

In this geometry the stress distribution is given by the
equilibrium. If the column is high enough, Janssen effect
imposes that stresses are independent of the x position.
Under this assumption, the normal stress σxx is a constant
whereas the tangential stress varies linearly with the dis-
tance to the walls: σxy = 2τwy/L, where τw is the shear
stress at the wall. No shear stress exists along the symme-
try axis y = 0. Data used in this section are summarised
in Table 3.

5.2 Kinematic properties

5.2.1 Velocity profile

Typical velocity profiles obtained in quasi-static regime
are plotted in Figure 4b. The velocity is rescaled by the
maximum velocity in the centre of the channel. In both
experiments and numerical simulations, the profiles are
characterised by a plug region in the centre part of the
channel where the velocity is constant and the material
not sheared. Variation of the velocity is localised in two

shear zones close to the rough walls. The thickness of the
shear zones is of the order of 5 to 10 particles diameters
in 2D or 3D, both in experiments and simulations.

In some specific cases, intermittent flow occurs [48] or,
for much larger flow rates, density waves are observed [47],
which might be related to the role played by the air
trapped between the particles.

5.2.2 Volume fraction profile

Figure 4c shows typical volume fraction profile Φ(y) mea-
sured in simulations and experiments. In both cases the
material is slightly less compact in the shear zone. In nu-
merical simulations carried out with slightly polydispersed
material, layering is observed as a consequence of the or-
der induced by the walls.

5.2.3 Velocity fluctuations profile

In Figure 4d the velocity fluctuations profile measured in
2D numerical simulations is plotted. It is rescaled by its
mean value across the channel. We observe that the ve-
locity fluctuates more in the shear zones close to the walls
than in the plug region.

5.3 Parametric study

The existence of shear zones close to the wall in the
vertical-chute flow configuration is a very robust obser-
vation. It is then interesting to study the influence of the
parameters of the problem on the thickness of the shear
zones.

In Figure 4e we have plotted the experimental mea-
surement obtained in 3D experiments for different flow
rates. As expected in a quasi-static regime, the rescaled
velocity profile and subsequently the width of the localised
shear are independent of the flow rate.

Figure 4f displays velocity profiles obtained for differ-
ent channel width L. The interesting result, also observed
in other experiments [39], is that the thickness of the shear
zone does not vary much with L. It means that the rel-
evant lengthscale that determines the shear zone is the
particle diameter and not the channel width as it would
be in a Poiseuille flow.

Another parameter that can be changed is the rough-
ness of the wall. In Figure 4g we have plotted the velocity
profiles obtained when changing the size of the particles
glued at the walls. Clearly, increasing the roughness in-
creases the shear zone.

Finally, the last parameter one can change is the incli-
nation of the chute. Interestingly, as shown in Figure 4h
changing the angle θ from vertical changes the thickness
of the shear zones: the bottom one increases and the top
one shrinks. This is attributed to the change in stress dis-
tribution that occurs when inclining the silo [41].

One can conclude from the parametric study that the
flow in vertical channel develops localised shear zones close



348 The European Physical Journal E

y+L/2

d

y+L/2

d

y+L/2

d

y

d

y

d

y

d

y

d

(a)

(b) (c) (d)

(e) (f) (g)

(h)

θ

velocity volume fraction velocity fluctuations

role of flow rate role of width role of roughness

role of inclination

1.0

0.8

0.6

0.4

0.2

0.0

151050

1.0

0.8

0.6

0.4

0.2

0.0
20151050

1.0

0.8

0.6

0.4

0.2

0.0

20151050

2.5

2.0

1.5

1.0

0.5

0.0
-20 -10 0 10 20

1.0

0.9

0.8

0.7

0.6

0.5
-20 -10 0 10 20

1.0

0.8

0.6

0.4

0.2

0.0
-8 -6 -4 -2 0 2 4 6 8

1.0

0.8

0.6

0.4

0.2

0.0
-20 -10 0 10 20

g

V

Vm

V

Vm

V

Vm

V

Vm

V

Vm

g

δV
2

<δV
2
>Φ

L

y

x

Fig. 4. Vertical-chute flow. (a) Set-up. (b) Typical velocity profiles for L = 45d from experiments VC1 (◦) and from 2D
simulations VC2, dw = d (¤). The velocity V is rescaled by its value Vm at the centre. (c) Volume fraction profile for L = 45d
from experiments VC1 (•) and from simulations VC2, dw = d (solid line). Dashed line is the mean profile obtained by averaging
over one-particle diameter. (d) Typical velocity fluctuation profile normalised by its averaged value across the channel from VC2,
dw = d. (e) Rescaled velocity profiles for different flow rates from VC3: Vm = 11

√
gd (◦), Vm = 20

√
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√
gd (4).

(f) Rescaled velocity profiles for different channel width from VC1: L = 16d (•), L = 28d (¥), L = 45d (N). (g) Rescaled
velocity profiles for different wall roughness from VC3: dw = 0.5d (◦), dw = d (4), dw = 4d (¤). (h) Rescaled velocity profiles
in a channel inclined at θ from vertical, from VC1: θ = 0◦ (◦), θ = 33◦ (4), θ = 59◦ (¤).
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Table 3. Data sources for vertical-chute flow. CD is for contact dynamics, MRI for magnetic resonance imaging.

# Exp./Num. 2D/3D Bulk particles L/d Walls Refs.
VC1 Exp. 2D aluminium cylinders,

60 mm long, mixture of
d = 2 and 3 mm

16→ 45 Plastic cylinders
dw = 2.5 mm

[41]

VC2 Num (CD) 2D Disks, e = 0, µp = 0.4 45 Disks
dw = 0.5d→ 4d

[44]

VC3 Exp (MRI) 3D mustard seeds
d = 1.3 mm

42 mustard seeds
dw = 1.3 mm

[43]

to the wall, whose thickness scales with the particle diam-
eter. Changing the roughness or inclining the silo are the
two main ways to change the shear zone thickness.

6 Flow on inclined plane

6.1 Set-up

The flows of granular material down an inclined plane are
encountered in both geophysical and industrial contexts.
The configuration (see Fig. 5a) consists in a rough bottom
inclined at an angle θ from horizontal. In experiments,
both 2D and 3D, the granular material flows out from a
reservoir located at the top of the plane. The flow rate
is controlled by the opening of a gate. A dense granular
flow then develops from the outlet. We will not discuss
the case of rapid and dilute flows obtained when inject-
ing the granular material from a hopper located far above
the plane [49–51]. The bottom of the inclined plane is
made of different materials: glued grains [51,52,44,53–56],
carpet [57] or velvet cloth [58,59]. In numerical simula-
tions, periodic boundary conditions are imposed along the
flow direction. The rough bottom is made of fixed parti-
cles. The simulation reported here are 2D only, but recent
heavy computations have allowed 3D geometry [60,61].
All these configurations are reported in Table 4.

In a given range of parameters that will be discussed
below, a steady uniform flow of thickness h is obtained.
In this case, assuming a constant density ρ, the force
balance leads to the following stress distribution: σxy =
ρg sin θ(h−y), σyy(y) = ρg cos θ(h−y) and σxx(y) remains
undetermined.

6.2 Flow threshold: transition between static and
flowing states

An initially static granular layer of uniform thickness h
starts flowing when the plane inclination reaches a criti-
cal angle θstart. Once initiated, the flow is sustained un-
til the inclination is decreased down to a second critical
angle θstop. The existence of these two angles is the ev-
idence of the hysteretic nature of granular flows. In the
case of inclined plane, these critical angles depend on the
layer thickness h. Reciprocally, these thresholds can be in-
terpreted in terms of critical layer thickness hstop(θ) and
hstart(θ). Indeed, the measurement of hstop is easier as it

corresponds to the thickness of the deposit remaining on
the plane once the flow stops. The two curves hstop(θ) and
hstart(θ) divide the phase diagram (h, θ) in three regions:
a region where no flow is possible (h < hstop), a subcrit-
ical region where both static and flowing layer can exist
(hstop < h < hstart) and a region where flow always occurs
h > hstart.

Measurements of these critical curves carried out for
different materials and different rough bottoms are plotted
in Figures 5b and 5c. The curves hstop(θ) and hstart(θ)
exhibit the same shape for all the materials and can be
fitted by

hstop,start(θ)/d = B
tan θ2 − tan θ

tan θ − tan θ1
,

where the fit parameters θ1, θ2 and B depend on both
the bulk material and the roughness conditions. As un-
derlined in Figure 5c, changing the bottom rough plane
from glued particles to velvet cloth dramatically shifts the
critical curves hstart and hstop toward higher angles.

In the flowing regime i.e. when h > hstop(θ), the flow
is steady and uniform for moderate inclination, but accel-
erates along the plane for too large inclinations [44,51,60,
61]. In the following, we concentrate on the steady and
uniform regime.

6.3 Kinematic properties

6.3.1 Velocity profiles

Figures 5h and 5i, respectively, display the velocity pro-
files for thin and thick flows for different inclinations. In
both cases, increasing θ increases the average shear rate
and leads to more and more concave profile. Closer inspec-
tion of these profiles [44] and recent numerical analysis for
3D flows [60,61] reveal that for flow parameters (h, θ) far
enough from the flowing threshold curve hstop(θ) the ve-
locity roughly obeys a Bagnold-like profile:

V (y)√
gd

= A(θ)

(

h3/2 − (h− y)3/2
)

d3/2
. (6)

We will see in Section 8.4.3 how one can extract the pref-
actor A(θ) from the bulk measurements, where Bagnold-
like rheology is valid. The continuous lines plotted in Fig-
ure 5i display the velocity profile obeying this rheology.
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a function of h/hstop(θ) from simulation IP3 (◦), experiments IP5 with glass beads on glass beads (•), sand on sand (¤), IP6
sand on moquet (¥), IP7 glass beads on velvet (4). Lines are fits by eq. (7). (e) Effective friction deduced from the flow rule
(see text). Experiment IP5 with glass beads (•), with sand (¥). Continous lines are deduced form eq. (8) and fit of hstop(θ).
(f) Velocity profiles from simulations IP4 (θ = 14.4◦, µ = 0.) for different restitution coefficients e = 0.4 (4), e = 0.6 (O),
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One clearly see that the Bagnold profile fits the numer-
ical data in the core region but not at the base nor at
the free surface, where data exhibit a non-zero shear rate.
These regions of discrepancies apparently enlarge when

inclination decreases. Close to the flowing threshold, for
thin layers or low inclinations, the velocity profile becomes
more linear (Fig. 5h) [61]. Also, it is worth noting that for
experiments IP9 carried out in a narrow channel [50], the
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velocity profiles can differ significantly from the above de-
scription and become convex. This observation reveals the
role of the additional friction induced by lateral walls.

6.3.2 Volume fraction profile

The volume fraction profile Φ(y) is plotted in Figures 5j
and 5k for thin and thick layers, respectively. All the re-

ported measurements show the same tendency: Φ(y) re-

mains almost constant across the layer, except close to

the free surface. This constant value appears to be in-

dependent of the flow thickness but decreases with the

inclination, as shown in the inset of Figure 5k. This be-

haviour is common to both experiments and numerical
simulations [62,44,60,61].
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Table 4. Data sources for inclined-plane flow. MD stands for molecular dynamics simulations and CD for contact dynamics
simulations.

# Exp./Num. 2D/3D Material and plane h/d Walls Refs.

IP1 Exp. 2D aluminium beads: d = 3 mm e =
0.5; plane: 2m long

≈ 10 side walls: glass; bottom:
glued grains

[51]

IP2 Exp. 2D polystyrene disks: d = 8 mm e =
0.4; plane: 2 m long

≈ 10 side walls: glass; bottom:
glued grains

[52]

IP3 Num. (CD) 2D Disks: e = 0, µp = 0.5 ≈ 50 side walls: none; bottom:
glued grains

[44]

IP4 Num. (MD) 2D Disks: e = 0.4→ 0.8, µp = 0→ 0.5 ≈ 10 side walls: none; bottom:
glued grains

[53]

IP5 Exp. 3D glass beads d = 0.5 mm and sand
d = 0.8 mm; plane: 2m long, 0.7 m
wide

< 20 side walls: none; bottom:
glued grains

[54]

IP6 Exp. 3D glass beads d = 1.5 mm, sand d =
1 mm, mustard seeds d = 2 mm;
plane: 2 m long, 0.7 m wide

≈ 10 side walls: none; bottom:
carpet

[57]

IP7 Exp. 3D glass beads d = 0.24 mm; plane: 1.35
m long, 0.6 m wide

≈ 10 side walls: none; bottom:
velvet cloth

[58,59]

IP8 Exp. 3D glass beads d = 0.14 → 0.53 mm;
plane: 1.3 m long, 0.6 m wide

< 20 side walls: none; bottom:
glued grains

[55,56]

IP9 Exp. 3D glass beads d = 1 mm; plane 2 m
long, 0.05 m wide

< 100 side walls: Plexiglas with
antielectrostatic film; bot-
tom: glued grains

[50]

6.3.3 Velocity fluctuation profile

The velocity fluctuations δV 2(y) are shown in Figures 5l
and 5m. Overall, for both thin and thick flows, δV 2(y) in-
creases with the inclination angle. The profiles exhibit two
maxima, one close to the bottom, the other close to the
surface. Both are of the same order for thin flows, whereas
the fluctuations at the bottom dominate for thick flows.
However, these features observed in numerical simulations
do not show up in the only experimental measurements
carried out with disk in 2D configuration (Fig. 5l).

6.4 Effective friction

The inclined-plane configuration gives information about
the effective-friction coefficient µeff between the flowing
layer and the rough bottom. The stress distribution for
steady uniform flows implies that µeff defined as the ratio
between tangential and normal stress is simply equal to
tan θ. Choosing an inclination for the plane is then equiv-
alent to imposing the effective friction. The flow then ad-
justs its velocity so that the friction is equal to tan θ. One
can then deduce how the effective friction evolves with
velocity and thickness by measuring the flow rule: how
does the mean velocity 〈V 〉 of the granular layer varies
with its inclination θ and thickness h? Figure 5d shows
experimental and numerical measurements of the relation
〈V 〉(θ, h). The Froude number Fr = 〈V 〉/

√
gh is plotted

versus the ratio h/hstop(θ). Each set of data collapse on
a single curve indicating that the influence of the inclina-
tion seems to be encoded in the function hstop(θ). This

correlation between flow velocity and deposit thickness is
observed for different materials and different bottom cov-
erage both in experiments and 2D simulations. Except for
the experiments carried out with glass beads on velvet
cloth (IP6), one observes the following scaling relation:

〈V 〉√
gh

= α+ β
h

hstop(θ)
. (7)

However, the coefficients α and β are system dependent.
Notice that for experiments using glass beads, α is zero.
The same is observed in recent 3D simulations using
spheres [61]. It is worth noting that the above relation
may not be accurate in the vicinity of h = hstop.

As µeff = tan θ, the effective friction coefficient is ob-
tained by inverting relation (7) in order to express θ as a
function of 〈V 〉 and h. It is straightforward to show that
according to relation (7), µeff should be a function of a
single parameter [63]:

µeff (〈V 〉, h) = µeff

( 〈V 〉d
h
√
gh
− α

d

h

)

. (8)

Figure 5e shows the effective-friction coefficient ob-
tained by this procedure for two different materials. The
continuous lines are µeff functions extrapolated from equa-
tion (7) using fits of hstop(θ). In both cases, the effective-
friction coefficient increases when increasing the shear
rate. Once again it is important to note that this relations
is not valid for thickness close to the critical thickness
h = hstop.
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6.5 Parametric study

6.5.1 Dependence on the bottom roughness

We have seen in the previous results that the roughness
condition of the bottom plane strongly influences the flow
properties. A systematic study has been carried out by
gluing beads of diameter dw and by changing gradually the
flowing beads diameter d [55]. In the inset of Figure 5c, the
deposit thickness hstop is plotted versus the beads diame-
ter ratio d/dw for different inclinations. This work points
out the existence of a given ratio d/dw for which the de-
posit is maximum, which might correspond to a maximum
of effective bottom friction. This ratio, independent of θ, is
mainly determined by the surface fraction of glued beads
on the bottom plane [55].

6.5.2 Influence of particle interaction parameters

Such studies are essentially carried out in numerical sim-
ulations where one can independently vary the internal
coefficient of friction µp or the restitution coefficient e. In
Figure 5f, we have plotted velocity profiles for the same
θ and h but for different coefficients of restitution e. The
interesting result is that in the range e < 0.8, the pro-
files do not depend on e. This is to be contrasted with
what would be expected in a kinetic regime dominated by
binary collisions. The dependence on the friction coeffi-
cient µp is also weak as shown in Figure 5g. Decreasing
µp slightly increases the values of the velocities [51]. How-
ever, choosing µp = 0 seems to increase more dramatically
the velocities.

7 Surface flows: heap flow and rotating drum

Granular flows confined to a surface layer on a static gran-
ular bed are probably the most frequently encountered in
industrial process and nature. Accordingly, they have been
extensively studied in the past for practical interest and
more recently as model system in fundamental studies [9,
64–84].

7.1 Set-up

Most experimental work has been conducted in two sys-
tems: down a heap [66,67,64,68,69,85] and inside the so-
called rotating drum [9,65,70–84], both shown schemati-
cally in Figures 6a and d. The flow down a heap is most
commonly obtained in a Hele-Shaw cell: beads are poured
in between two glass plates separated by a distance W .
The flow rate per unit of width Q is controlled by the
hopper outlet. After a transient stage, the cell is full and
one obtains a stationary regime with equilibrated fluxes
at the pouring point and at the exit of the cell. The ro-
tating drum of width W and diameter 2R, is half-filled
with the grains and rotated at constant angular velocity

Ω. For an appropriate range of angular velocity, one ob-
tains a stationary flowing layer, with a given flow rate per
unit of width Q = ΩD2/8, where D is the drum diameter.
In both cases, the rescaled flow rate

Q∗ =
Q

d
√
gd

(9)

is the unique parameter controlling the flowing layer thick-
ness h, the angle of the free surface θ, once the geometrical
parameters D/d and W/d are fixed.

The major advantage of the heap geometry is that it
easily produces homogeneous flows. However, it is diffi-
cult to explore a wide range of flowing layer thickness
and surface inclination. Conversely, the rotating drum set-
up allows to explore stationary flows in a much broader
range of both h and θ but the flow is not strictly homo-
geneous in the flowing direction. Still, for drums of large
enough diameter, one expects the flow at the centre of
the drum to be independent of the drum size, which we
will discuss further in the light of the experimental data.
Under this assumption of uniformity, the stress distribu-
tion in the central part of the drum is the same as in
the inclined-plane case, that is σxy = ρg sin θ(ys − y) and
σyy = ρg cos θ(ys − y), where ys is the free-surface coor-
dinate. Table 5 summarises the various flow data sources
used in the present section.

7.2 Transition between static and flowing regimes

For small flow rate, typically Q∗ < 1, intermittent
avalanches occur [9,58,65,70,72,83,86]. As a result, the
surface slope angle oscillates between the angle at which
an avalanche is triggered θstart and the static angle of re-
pose θstop that remains after the avalanche. The presence
of confining lateral walls is known to improve the stability
of a pile [66–68,87,85]. For narrow channel (small W ) the
angles are higher. A typical evolution of both characteris-
tic angles θstart and θstop with W , obtained for glass beads
in a rotating drum set-up with glass walls is displayed in
Figure 6l: both θstart and θstop decrease with increasing
W towards asymptotic values for large gap widths. These
evolutions are well described by the equation

tan θstart,stop = tan θ∞start,stop +
hc
W

, (10)

where θ∞start,stop are the asymptotic values of θstart,stop and
hc the corresponding characteristic length scale of wall ef-
fect. This equation is physically consistent with additional
friction forces induced by the walls [83,88]. The inset of
Figure 6l displays the characteristic length hc as a func-
tion of the bead diameter d obtained with equation (10)
for all data sets found in the literature involving glass
beads in various set-ups. It clearly puts in light two differ-
ent regimes depending on the bead diameter d. Whereas
hc is proportional to d for large beads (d > 0.5mm), which
implies that wall effect is a geometric effect, hc is constant
for small bead diameters (d < 0.5mm). One explanation
to this constant value, independent of d, could be that
small beads aggregate because of surface forces such as
van der Waals forces [83,88].
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with different drum size, D/d = [40–2500] and different gap size W/d = [2.33–610]. The points linked together are from heap
experiments SF4. (k) Rescaled free surface and bed-layer interface from SF8, SF9, SF10 at two different flow rates, with different
materials (the layers are rotated relatively to each other to match their dynamical angle of repose). Upper curves: steel beads
(d = 1 mm; d = 2 mm) and glass beads (d = 2 mm); D/d = 160 and Q∗ = 52.8. Lower curves: sand (d = 0.4 mm and
d = 0.8 mm) and glass beads (d = 0.8 mm); D/d = 400 and Q∗ = 210. (l) Critical angles θstart (N) and θstop (•) as a function
of the gap width W for glass beads d = 1.85 mm. Solid lines correspond to fit by equation (10). Inset: characteristic length scale
hc of wall effect as a function of d. (m) Free-surface slope θ as a function of

√
Q∗ for the heap experiment; data from SF3 with

W/d ∈ [10–610]; the lines corresponds to the approximation tan θ = µ∞ + µw
√
Q∗d/W . (n) Free-surface slope θ as a function

of
√
Q∗ in rotating drums, same data as in (j).

7.3 Kinematic properties

Figure 6g displays the typical shape of the flowing layer in
the rotating drum, when the flow is stationary —in prac-
tice when Q∗ > 1— with the characteristic S-shape of the
free surface ys(x) and the essentially convex shape of the

bed-layer interface yb(x). The maximum layer thickness
h = ys − yb increases and the free surface becomes more
S-shaped with increasing Q∗. Accordingly, the slope in the
centre of the drum is also accentuated. Qualitatively, sim-
ilar observations are made with all materials. Obviously
the flow is not homogeneous, apart from the centre of the
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Table 5. Data sources for Surface Flows (heap and rotating drum. Experiment SF1 and SF2 are dedicated to the study of
avalanches, whereas experiment SF3 to SF10 deal with stationary flows. Nota Bene: simulation SF11 is real 2D, that is the
particles used are infinite cylinders.

# Exp/Num 2D/3D Particles material Q∗ W/d D/d Refs.
SF1 Exp Heap 2D&3D glass; d = 0.1 mm < 1 1→ 10 [67]
SF2 Exp Drum 3D glass; d = 0.23→ 3 mm < 1 10→ 90 60–700 [83,88]
SF3 Exp Heap 3D glass d = 0.5 mm 1→ 75 10→ 610 [89]
SF4 Exp Heap 3D glass d = 0.25 mm and d = 0.15 mm 1→ 15 120 [90]
SF5 Exp Drum 2D steel; d = 1.5 mm 5→ 20 1 133 [9]
SF6 Exp Drum 2D&3D steel, aluminium; d = 3 mm 5→ 50 1→ 7.33 150 [91,80]
SF7 Exp Drum 3D glass; d = 0.2→ 2 mm 5→ 4500 2.5→ 120 50→ 2500 [82]
SF8 Exp Drum 3D glass; d = 0.8→ 4 mm 2→ 360 5→ 12.5 40→ 400 [79]
SF9 Exp Drum 3D sand; d = 0.4→ 0.8 mm 5→ 360 12.5→ 25 5→ 400 [79]
SF10 Exp Drum 3D steel; d = 1→ 4 mm 2→ 260 5→ 10 40→ 320 [79]
SF11 Num Drum 2D steel; d = 0.23→ 8 mm 5→ 50 150 [84]

drum where both the layer thickness and the local slope
of the interfaces vary slowly along the interface, for large
enough drum D/d > 50. Accordingly, in the drums, kine-
matic profiles have always been measured in the centre of
the drum. In the heap, profiles has been measured at in
the centre of the cell in between the hopper and the outlet.

7.3.1 Velocity profile

Figures 6b and e displays typical velocity profiles obtained
respectively in heap [90] and drum configuration [80]. The
similarity between both configurations is striking. In both
cases, the profiles are localised under the free surface and
are composed of an upper linear part in the flowing layer
and a lower exponential tail in the granular bed. The ex-
ponential tail is clearly evidenced in the inset of Figure 6c.
The crossover between these two behaviours extends over
a wide zone of approximately ten grains. An interface be-
tween the flowing layer and the quasi-static pile can be de-
fined extrapolating the linear part of the velocity profile to
zero. One can plot the profiles putting the y origin at this
interface as done in Figures 6c and f. In both geometries,
one observes a collapse indicating that a universal profile
exists. By increasing the flow rate, one simply explores a
wider and wider zone of this profile. The shear rate γ̇ in the
linear part —when it exists— is essentially constant, inde-
pendent of the flow rate and in both geometries equal to

γ̇ ' 0.5

√

g

d
. (11)

Still, in recent real 2D numerical results in the rotating-
drum geometry [84], under the same condition as in [80],
the flowing layer appears twice deeper and the linear
profiles exhibit a dependence of the shear rate with Q∗

(inset of Fig. 6e). A dependence of the shear rate with flow
rate has also been observed in MRI experiments [71].This
preliminary result which has to be confirmed, might
indicate some non-trivial effects of the wall friction.

The thickness of the flowing layer h = ys−yb has been
measured in all the experiments. Figure 6j demonstrates

the existence of a general scaling

h

d
∝
√

Q∗ (12)

for all the data collected in surface flows, heap and drum,
with different materials —glass, sand, steel— and very dif-
ferent drum size ranging from 40 to 2500. As a matter of
fact, assuming a purely linear velocity profile in the flow-
ing layer, the above scaling is exactly equivalent to the
existence of a constant shear rate of the order of 0.4

√

g
d .

This is slightly smaller than the shear rate measured di-
rectly from the velocity profiles (Eq. (11)).

7.3.2 Compacity profile

As shown in Figure 6h the compacity —here measured in
2D configurations— increases across the layer from 0.6,
at the free surface to 0.8, its close random packing value,
at the bed-layer interface. This behaviour is common to
both experiments and numerical simulations. The compac-
ity seems to decrease on a typical scale

√
Q∗d as shown in

Figure 6i.

7.4 Effective friction

As for the flow down an inclined plane, the stress distribu-
tion in the flowing layer is such that the effective-friction
coefficient is again the tangent of the dynamical angle of
repose.

In the case of the flow down a heap (see Fig. 6m), the
pile slope increases linearly with

√
Q∗. This dependency

becomes weaker when the channel width increases and for
the widest channel the pile slope even becomes indepen-
dent of the flow rate. This suggests that the increase of
the effective friction with flow rate is purely induced by
the additional wall friction. Accordingly, one can propose
a single fit to describe this wall effect:

tan(θ) = tan(θ)∞ + µw
√

Q∗ d

W
, (13)
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where
√
Q∗ is again interpreted as the dimensionless thick-

ness of the flowing layer experiencing the wall friction.
This is reminiscent of equation (10) where the length hc
would be equal to µw

√

Q∗
cd. The critical flow rate

√

Q∗
c is

then equal to 1.5 and can be interpreted as the flow rate
below which no permanent flow can be sustained.

In the case of the rotating drum, a similar general ten-
dency is observed in Figure 6n. For a given drum width,
the pile slope increases with the flow rate although facing
the different set of data, one can hardly conclude to the
linear dependency with

√
Q∗. Also, the pile slope becomes

less sensitive to the flow rate for wider drums despite some
discrepancies across the numerous experiments.

Altogether, these results lead us to conjecture that in
the limit of infinite gap, the effective friction is constant,
independent of Q∗ and that the observed dependencies are
related to intricate wall and geometrical effects.

7.5 Parametric study

Except for the pile slope, the materials intrinsic proper-
ties seem to have very little effect on the flow properties
in a rotating drum. The velocity gradient inside the flow-
ing layer is identical for three different materials (glass,
steel and aluminium) as observed in Figure 6e. Also, the
relation between the flowing thickness and the flow rate is
the same for different materials (sand, glass and steel) as
shown in Figure 6j.

Finally, it is worth noting that the independence of
the flowing-layer thickness with the material extends to
non-uniform flows. This is very well demonstrated in Fig-
ure 6k, where the free surface and the bed-layer interface
for different materials and different drum size are plotted
in a frame scaled by the drum radius, and rotated so that
the dynamical angles of repose coincide.

8 Discussion

In the above sections we have gathered data for each of
the flow configurations obtained with different experimen-
tal or numerical conditions. Doing so, we were able to
identify the relevant flow characteristics in the different
geometries. In order to identify simple and basic features
underlying common physical phenomena, we now review
the common features and differences arising among the
configurations.

A first general observation is that the driving force
must overcome some “static” threshold —the yield
stress— in order to enable a dense granular flow. Once the
flow is running, it can be sustained for driving forces lower
than this “static” threshold resulting into a hysteretic be-
haviour. This has been clearly evidenced in the annular
shear cell (Fig. 3b), on the inclined plane (Figs. 5b and c)
as well as in the heap —or drum— geometry (Fig. 6l). In
the other geometries, the data we have correspond to flows
where the deformation is imposed, whereas hysteresis is
observed when the stresses are imposed. The static thresh-
old usually depends on the history of the sample [92]. Also,

the static and dynamical friction coefficients depend on
the material mechanical properties. But the latter do not
strongly influence the kinematic properties of the flows.

In all the geometries, a dense flow regime —either
quasi-static or inertial— was identified, separated from
the dilute collisional regime. A striking feature is the di-
versity of velocity profiles observed in the different ge-
ometries. When the flow is confined (annular shear, chute
flow) the shear is localised close to the driving wall and
the velocity decreases over few grain sizes. However, in the
perfect plane shear, no localisation is observed and the
velocity profile remains linear. In the case of free surface
flows, the velocity follows either Bagnold or linear profiles
in the case of the inclined-plane geometry (Figs. 5h and i),
whereas it is always linear with an exponential tail in the
drum and heap cases (Figs. 6b and e). There are two in-
teresting connections between these three types of profile
(exponential, linear and Bagnold). First, flow on a heap
present simultaneously (one on the top of the other) the
dense inertial flow (linear profile) and the quasi-static con-
fined flow (exponential profile) (Fig. 6c). Second, the flow
on an inclined plane exhibits a Bagnold profile (Fig. 5i)
in the limit when the flowing height h is large compared
to the critical layer thickness hstop. As soon as h becomes
comparable to hstop, the profile becomes linear (Fig. 5h).
This suggests that a continuous transition between the in-
clined plane flow and the surface flow could exist. Finally,
it is worth underlining that the velocity fluctuations, when
they were measured, seem to be strongly related to both
the local shear rate and pressure (Figs. 2g and 3h).

Although rudimentary, this transverse reading raises
many questions. What are the relevant time and length
scales in the different configurations? How does the tran-
sitions arise between the different flow regimes in the dif-
ferent configurations? Is a single rheometer —for instance
the plane shear— sufficient to predict the kinematic prop-
erties in all the geometries? By comparing the data can we
get information about the granular rheology? In the fol-
lowing, we discuss in more details the similarities and dif-
ferences arising from the different configurations. We first
analyse the relevant length and timescales, before study-
ing the different flow regimes and discussing some minimal
rheological descriptions based on dimensional analysis.

8.1 Relevant parameters

We wish to discuss first the relevant dynamical mecha-
nisms and the corresponding parameters. For this, it is
useful to distinguish three scales of very different natures:
the microscopic scale at which the contact between grains
is established, the grain level at which the different forces
act and the scale of the flow itself (of the geometry) which
determines the nature of the granular flow.

8.1.1 Microscopic mechanisms at the contact scale

The roughness of the grains at the microscopic scale is
responsible for the contact friction between grains. The
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results presented here, for instance the numerical simu-
lations of shear flows (Fig. 2), show no influence of this
roughness on the kinematic properties of the flow. The
same thing is demonstrated for the shape of the grains,
by the rotating-drum experiment (sand vs. glass beads,
Fig. 6k). These microscopic length scales only modify the
effective-friction coefficients (Figs. 2e, 5b, 5c, 5e and 6k)
and seem entirely encoded in them. It is striking to ob-
serve that the effective friction µeff increases dramatically
with the interparticle friction coefficient µp, near µp = 0.
We see in Figure 2e that the effective-friction coefficients
measured for 0.1 < µp < 0.8 almost collapse on the same
curve but are far above those obtained for vanishing µp.
The same tendency can be inferred from Figure 5g for
the inclined-plane experiment: the two velocity profiles for
non-zero µp are very close, whereas the case µp = 0 yields
larger velocities. It would be interesting to study the be-
haviour of the effective friction µeff as a function of µp for
very small µp (with log-scale variations).

During a collision between grains, there is at the same
time a contact force that pushes the grains back and a dis-
sipation of energy related to the inelasticity. One can asso-
ciate two different timescales to these two effects: the colli-
sion time, which is determined by the elastic properties of
the grain and the dissipation timescale, given by the typ-
ical time for the internal elastic vibrations to be damped.
In the simplest case of a collision between two grains, the
effective restitution coefficient e decreases with the ratio
of the dissipation timescale to the elastic timescale. It is
much more difficult to estimate these timescales as soon as
one considers an assembly of grains in permanent contact.
For instance, in a system of size W , the time needed for
the elastic wave to propagate across the cell is in fact W/d
times the collision time [26]. The influence of these two
parameters has not been investigated separately but only
through e. As seen in the plane shear flow simulations,
this restitution coefficient influences the transition from
dense to dilute collisional regimes: more elastic particles
have a “gaseous” behaviour for smaller shear rates [23].
However, it turns out to have no influence on the granular
flow itself (Figs. 2e, 5f and 6k).

We can draw a general and solid conclusion: as soon as
there is a separation between the flow timescales (see be-
low) and the microscopic ones, the latter have no influence
on the flow characteristics. In other words, the system is
equivalent to rigid inelastic spheres when both the energy
dissipation and the elastic vibrations are much more rapid
than the flow timescales. It is important to note that this
limit becomes difficult to achieve in practice in the elastic
limit e→ 1 since the dissipation timescale becomes much
larger than the collision time.

8.1.2 Mechanisms at the grain level

So, there is no influence of microscopic timescales on
macroscopic flow properties. Accordingly, the grain size
d is the natural lengthscale of granular problems —except
specific lengths related to the geometry (see below). As
there is only one mass in the problem (that of the grain),

granular flows are independent of the material density. In
the homogeneous simple shear flows considered here, the
strain tensor depends only on one parameter, the shear
rate γ̇ and the stress tensor on two parameters, the nor-
mal stress P and the shear stress τ . These three quan-
tities define two independent dimensionless numbers, the
effective-friction coefficient,

µeff =
τ

P
, (14)

and the rescaled shear rate

I =
γ̇d

√

P/ρ
. (15)

The parameter I can be interpreted as the ratio of two
different timescales at the grain level:

I =
Tp
Tγ

. (16)

Tγ is the typical time of deformation:

Tγ =
1

γ̇
(17)

and Tp is the confinement timescale:

Tp = d

√

ρ

P
. (18)

Imagine two layers of grains moving one on top of the
other, as shown in Figure 7. Tγ is the macroscopic time
needed for one layer to travel over a distance d with respect
to the other. Tp can be interpreted as the time needed by
the top layer to be pushed back to its lower position, once
it has climbed over the next particle. These two timescales
can be very different, for instance, in the case of quasi-
static deformation. The motion is then made of a succes-
sion of a very slow motions when the particle climbs over
the next one, and a rapid motion when it is pushed back
into the next hole by the confining pressure. The typical
velocity time evolution would be as drawn in Figure 7.
Within this simplistic picture, the volume fraction Φ is
governed by the fraction of time during which the grains
actually move. It thus suggests that Φ should be a slaved
variable of I. In the following, we will assume that it is in-
deed the case. This is of course a strong hypothesis we shall
reconsider in the following. So, if there exists a local unique
rheology, there should be a unique relationship between
the rescaled shear stress µeff and the rescaled shear rate I.

I can obviously be defined locally in all the situations
but we can also estimate its typical value in the different
geometries. In the annular shear, the pressure increases
linearly with depth. When measurements are performed
at the free surface, P is of the order of ρgd so that I can be
defined as

√

d/gγ̇ which is nothing but the rescaled shear
rate (see Fig. 3h). When measurements are performed at
half width, P is of the order of ρgW/2 so that I can be

defined as
√

W/2gγ̇. In the chute flow, the pressure is
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Fig. 7. Schematic showing the physical meaning of the typical
time of deformation Tγ and the confinement timescale Tp.

limited to P = ρgL according to Janssen effect and I can
be defined locally as γ̇d/

√
gL. In the free surface flows,

the pressure increases with depth as P = ρg(h − y) cos θ
so that its average value is 〈P 〉 = ρgh cos θ/2. The mean
velocity gradient scales on 〈V 〉/h so that the average of I
can be estimated by

〈I〉 = 5

2

〈V 〉d
h
√
gh cos θ

, (19)

where the factor 5/2 is derived assuming a Bagnold-like
velocity profile (see below).

8.1.3 Geometrical parameters

If the dimensionless number I characterising the relative
importance of inertial with respect to confining effects can
be defined in all the cases, there are other parameters that
are specific to a geometry i.e. that characterise the bound-
ary conditions. One can see, for instance, that the presence
of side walls (surface flow) or a bottom rough boundary
(inclined plane) or both (chute flow) have a strong impact
on the flow itself. Most of the geometrical aspect ratios
turn out to have weak influence on the kinematic proper-
ties, like the cell sizes L/d and W/d in the plane shear,
the annular chute flow and the vertical chute, or even the
rotating-drum aspect ratio D/d at given Q∗. The rough-
ness of the boundaries has an influence on the boundary
layers thickness. In the chute flow, the shear band width
increases with the diameter of the beads glued on the wall.
In the inclined plane, the material that covers the plane
modifies the effective friction (hstop and hstart). If small
beads of size d are flowing on large glued ones, part of them
remain blocked in the large holes thus creating an appar-
ent roughness of size d. If, on the contrary, large beads
are flowing on small glued ones, the effective friction is
strongly reduced. In surface flows, the lateral boundaries
induce a further friction proportional to the rolling height
to the cell width ratio h/W . In these three cases, the wall
influence can be encoded into effective macroscopic quan-
tities, that can be measured. An important open problem
for future studies is the transition between the different

geometries. In principle, the linear shear should be recov-
ered in the annular shear cell, in the limit of a very large
radius of curvature Ri/d. When does the transition from a
localised shear to a linear profile occurs? Similarly, a sur-
face flow should be recovered on an inclined plane when
the tilt angle tends to the dynamical angle. Can one ob-
tain such surface flows in numerical simulations? Each of
the possible transitions gives rise to new questions (chute
flow vs. inclined plane; plane shear vs. surface flow; etc).

8.2 Quasi-static versus inertial regimes

Now that the relevant dimensionless parameters are de-
termined, we can study the different flow regimes, which
classically are divided in a quasi-static, dense inertial and
collisional regimes. The data collected in this paper allows
us to discuss the existence of the three regimes and the
transition from one to another in the different geometries.
We first analyse the case of the plane shear configura-
tion. Figure 2e displaying the effective friction coefficient
as a function of the dimensionless parameter I shows three
regimes. In the limit of zero I the system is rate inde-
pendent, µeff is constant. When I increases, the inertia
starts influencing the flow and the system becomes rate
dependent. Eventually, for large value of I, the flow be-
comes dilute and collisional. The fact that I controls the
transitions means that one can evolve from one regime to
another either by increasing the shear rate or decreasing
the pressure. The transition between the dense regime and
the collisional regime is clearly identified in Figure 2e with
the slope discontinuity of µeff(I). By contrast, no sharp
transition is observed between quasi-static and dense in-
ertial flows: the effective friction coefficient continuously
decreases towards its quasi-static value when I decreases.
The same conclusion can be drawn when looking at the an-
nular shear case (Fig. 3b). In the rotating drum, one even
observe the spatial coexistence of a quasi-static creep mo-
tion where I is very small —the exponential tail of the ve-
locity profile– and an inertial dense flow— the linear part
of the velocity profile (Fig. 6c). For some of the authors,
this observation indicates that the intermediate dense flow
regime has more in common with the quasi-static regime
than with the collisional one.

In the following, we successively discuss in more detail
the quasi-static limit and the inertial dense regime.

8.3 Quasi-static regime

The limit I → 0 of the quasi-static regime is easily
achieved in configurations where the deformation is im-
posed, namely in the plane shear flow, in the annular shear
flow and in the vertical-chute flow. In some cases, the flows
can exhibit very intermittent behaviours also the mean ve-
locity profiles remain smooth. Apart from the plane shear
geometry, the velocity profiles observed in this regime ex-
hibit localised shear bands close to wall, the width of the
shear band being few particle diameters. This is indeed ob-
served in the circular shear cell (Fig. 3c) and the chute flow
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(Fig. 4b). In this respect the exponential tail in the heap
and drum geometry could be seen as a particular case of lo-
calisation, where the flowing layer plays the role of a driv-
ing wall (Figs. 6c and f). On the contrary, for some reason
that remains to be explained, the simulations of the plane
shear cell shows a velocity profile which is not localised but
linear (Fig. 2b). It is not clear if this unexpected behaviour
is related to the fact that the plane shear is the only ge-
ometry where the stresses are strictly uniform in the cell.
It is also interesting to note that recent experiments of
granular flow in the annular shear configuration [93] in-
dicates that the shear band thickness can dramatically
increase when changing the bottom boundary conditions.
Altogether, the ingredients underlying the existence of lo-
calisation remain unclear and need further investigations.

In the quasi-static limit, the velocity profiles (localised
or not) are independent of the imposed shear rate. Shear-
ing twice as fast gives the same velocity profile multiplied
by two (see for example Fig. 4e). However, one has to recall
that the macroscopic timescale Tγ associated to the shear
rate is not the only timescale. The other typical timescale
associated to the confining pressure TP (Eq. (18)) is not
zero even in the quasi-static limit. As a result, granu-
lar flows in the quasi-static regime are not time invari-
ant. Shearing the material twice as fast does not give the
same movie played twice as fast: the typical time of the
rapid events associated to one particle passing over an-
other is not divided by two. This remark is of importance
when analysing the velocity fluctuations 〈δV 2〉, in both
the plane shear (Fig. 2g) or the annular shear (Fig. 3h). In

both cases the velocity fluctuations
√

〈δV 2〉 do not simply

scale with γ̇d. In the plane shear
√

〈δV 2〉/dγ̇ varies like

I−1/2. In the annular shear
√

〈δV 2〉/dγ̇ measure at the

free surface scales with I−2/3, I being equal in this case
to γ̇

√

d/g.

This scaling can be compared with prediction arising
from the naive picture given in Figure 7. Based on the idea
of a process made of a succession of rapid events occur-
ring on a timescale TP , one can derive the mean velocity
fluctuations in the limit TP ¿ Tγ . In this limit, δV 2 is
of order P/ρ during the rapid events, and is negligible in
between. One can then write that the averaged velocity

fluctuations is equal to 〈δV 2〉 ' TP P/ρ
TP+Tγ

. Using the expres-

sions of TP and Tγ , equations (17) and (18), we then find

that
√

〈δV 2〉/dγ̇ ' I−1/2. This simple argument could
then explain the scaling observed in the plane shear.

This picture suggests that in quasi-static flows the
grains experience both rapid rearrangements and slow dis-
placements resulting in an intermittent dynamics. The
study of the whole velocity distribution could then give
more information about the underlying mechanism than
the simple rms fluctuations. The existence of irreversible
rapid rearrangements has been observed in other sheared
disordered systems. In sheared foams, the elementary plas-
tic events have been identified as the T1 events [94,95]. In
glasses submitted to slow deformations, localized plastic
regions have been evidenced (STZ [96]). In all these sys-
tems, the occurence of a rearrangement at one position

changes the stress distribution in the whole sample and
influences the triggering of the next event somewhere else.
The macroscopic deformation then results from a complex
non-local interaction between all the rearrangements [96,
95]. As quasi-static granular flows belong to the same class
of problems, it would be interesting to search for similar
mechanisms.

8.4 Dense inertial regime

When the parameter I increases above 10−2, the effective
friction coefficient is no longer constant but increases with
I, indicating a shear-rate–dependent regime. The shear
rate dependence is observed in the simulations of the plane
shear cell in Figure 2e, in the annular shear, Figure 3b, in
the inclined plane in Figure 5e. However, the plane shear
geometry is the simplest configuration as the velocity pro-
files are linear. It is then tempting to conclude that the
plane shear plays the role of a rheometer and that the re-
lation µeff(I) provides the local constitutive law for dense
granular flow. One could then legitimately wonder if a
simple local rheology stipulating that everywhere in the
flow, stresses are related to shear rate through the rela-
tion τ/P = µ(γ̇d/

√

P/ρ), where µ(I) has the shape of
Figure 2e, can describe all geometries of dense granular
flows. In the following section we discuss the implication
of this assumption in regard to the data collected in this
paper, before discussing the necessity to consider a non-
local rheology.

8.4.1 The local-rheology assumption

Hereafter, we will call local, a rheology for which stresses
and shear rate at a given location in the flow are related
through a one to one relation, which from dimensional
analysis can be written as

τ/P = µ(I) , (20)

I being given by equation (15). As soon as τ/P depends
on the rescaled shear rate at other locations or on any
further field whose governing equation has to be specified,
we consider the rheology as non-local.

Under this assumption of a local rheology, one can
predict velocity profiles in both plane shear and inclined-
plane configurations. In the following we test this hypoth-
esis against the data. In the plane shear case, the stress
distribution is uniform:

P = cte, τ/P = cte . (21)

Accordingly, the parameter I has to be constant across
the cell, equal everywhere to µ−1(τ/P ). The shear rate
γ̇ is then also uniform and the predicted velocity profile
is linear. This is in agreement with the measurement in
Figure 2b for moderate I, before the flow becomes colli-
sional. The measurement of the effective coefficient at the
wall τw/Pw then coincides exactly with the rheological law
µ(I).
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In the case of surface flows, the stress distribution is
the following:

P = ρg(h− y) cos(θ), τ/P = tan(θ) . (22)

The shear rate γ̇ is then selected by the relationship

I =
γ̇(y)d

√

P (y)/ρ
= µ−1(tan(θ)) . (23)

Integrating γ̇ in the above relation leads to a profile going
like the depth to the power 3/2, the Bagnold-like profile:

V (y)√
gd

= A(θ)

(

h3/2 − (h− y)3/2
)

d3/2
(24)

with

A(θ) =
2

3
I(θ)

√

cos(θ). (25)

It is worth noting that the Bagnold profile does not
result from collisional arguments, but simply relies on di-
mensional reasoning. We can now compare the prediction
of the local rheology with experimental measurements. We
have seen that in the experiments, the depth averaged ve-
locity 〈V 〉, the thickness h and the inclination θ are related
through the scaling (7). The prediction of the local rheol-
ogy for depth average velocity are obtained by integrating
relation (24) over the flow depth. One gets the following
relation between 〈V 〉, h, and θ:

〈V 〉√
gh

=
3

5

h

d
A(θ) . (26)

The predicted scaling is then not fully compatible with
the observed one as it does not predict the coefficient α
of equation (7). However, it is compatible with the case
of glass beads for which α = 0. In this case, equation (26)
together with (7) implies that the Bagnold constant A(θ)
has to be related to hstop:

A(θ) =
5

3
β

d

hstop(θ)
. (27)

Finally, it is interesting to note that, under the as-
sumption of the local rheology, the inclined-plane con-
figuration could be used also as a rheometer. The func-
tion µ(I) can indeed be measured as follows. By impos-
ing the inclination, the experimentalist fixes the friction
coefficient µ = tan θ and measures the corresponding pa-
rameter I. From equations (25) and (26) one find that
I should be related to the depth averaged velocity and
thickness through the relation

〈I〉 = 5

2

〈V 〉d
h
√
gh cos θ

. (28)

This can be tested from data of Figure 5. Figure 8
shows that the data for glass beads collapse relatively well
when tan θ is plotted as a function of I given by equa-
tion (28). On the same graph we have reported the µ(I)
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Fig. 8. Comparison of the effective friction function of I in
the plane shear (•) and the inclined-plane (◦) configurations.

measured in the 2D simulation of the plane shear. Interest-
ingly, the shape and the range of I are similar. However,
the same is not true for the other materials. As the coef-
ficient α of equation (7) is not zero for sand or 2D disks,
the effective friction coefficient is not a function of I only
but depends also on h/d (Eq. (8)).

As a conclusion, the local-rheology assumption cap-
tures some of the basic features observed in both the plane
shear and the inclined-plane geometries, in particular the
scaling of the averaged quantities. However, for surface
flows in the rotating drum and down the heap, whereas
the stress distribution is the same as in the inclined plane,
the observed velocity profiles in the flowing layer are lin-
ear and not Bagnold. In particular, the shear rate does
not vanish at the free surface [97]. Let us emphasise that
this violation of the Bagnold profile is not to be attributed
to the specific shape of µ(I). This will force us to relax
the local-rheology hypothesis. Let us postpone this to Sec-
tion 8.4.3 and introduce first a more general framework of
analysis.

8.4.2 Prandtl mixing length approach

An alternative description can be provided by generalis-
ing Bagnold shear stress τ = ρd2γ̇2, as suggested by Orpe
and Khakhar [79] and Ertas and Halsey [98]. The approach
consists in introducing a coherence length scale l instead
of d, l being related to the size of some clusters in the flow.
This approach is reminiscent of Prandtl closure for turbu-
lence flows where a turbulent viscosity is introduced equal
to ρl2γ̇, l being interpreted as the size of the large eddies.
For our granular case, the shear stress is then written as:

τ = ρl2γ̇2. (29)
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The case discussed in the previous section of a local
rheology described by a friction µ(I) is a particular case
of the mixing length description. Indeed, if τ/P = µ(I)
and P = ρd2γ̇2/I2 by definition of I, one obtains

τ = ρ
µ(I)d2

I2
γ̇2 , (30)

that is, a coherence length function of the local properties
of the flow: l(I) =

√

µ(I)d/I.
Assuming a local dependence of the coherence length

is then strictly equivalent to the local-rheology case de-
scribed before. However, it gives an insight to the re-
sults observed experimentally in the inclined plane. This
is shown by first deriving the velocity profiles predicted
by equation (29). One recovers the Bagnold profiles with
a function A(θ) expressed in term of l as follows:

A(θ) =
2

3

√
sin θ

d

l
. (31)

We have seen that in order to be compatible with the scal-
ing experimentally observed, the function A(θ) should be
related to hstop (Eq. (27)). This means that the coherence
length is related to the function hstop:

l(θ) =
2

5

√

sin(θ)

β
hstop(θ) . (32)

The function hstop actually measures the coherence length
l, i.e. the characteristic size of coherent motions. This
gives an interpretation to the existence of the flow thresh-
old: no flow is possible when the thickness becomes less
than few times the coherence length. Altogether, the local-
rheology assumption is equivalent to the Prandtl mixing
length description with l depending on I only, which fur-
thermore relates the inclined-plane rheology to the deposit
thickness hstop.

8.4.3 Towards a non-local rheology

In the previous paragraphs, we have checked that the
local-rheology assumption is compatible with the average
flow properties. We wish now to check its validity facing
the velocity profiles. To do so, let us define a coherence
length l(y) that a priori depends on the position y:

l(y)2 =
τ(y)

ργ̇(y)2
. (33)

If the local rheology is valid, l(y) should be constant across
the flowing layer. The numerical simulations or experi-
mental measurements of the velocity profile provide γ̇(y)
and the momentum balance gives τ(y), so that one can
compute l(y). Figure 9 displays the l(y) profiles in the
inclined-plane configuration for different inclinations θ.
For high inclinations and far from the bottom or the top,
a plateau is observed, consistent with a constant l pre-
dicted by the local rheology. The coherence length in the
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Fig. 9. Coherence length l(y) obtained from inclined-plane
simulations IP4 for θ = 15◦ (◦), θ = 16◦ (¤), θ = 17◦ (4),
θ = 18◦ (O), θ = 21◦ (¦), and from heap case experiment
SF4 (•).

bulk decreases with θ just like hstop. However, the coher-
ence length decreases at the top and bottom of the profile.
These results enlighten the existence of some boundary
layers, which could be interpreted as regions where the
grains feel the boundaries and hence experience different
correlations with their neighbours. When decreasing the
inclination i.e. getting closer to the flow threshold, the
plateau disappears as shown in Figure 9. The coherence
length becomes of the order of the thickness, meaning that
everywhere the grains feel the boundaries.

Using the plateau value of l obtained in the bulk of
the flow, we can reconstruct the Bagnold profile according
to equations (24) and (31). These profiles are plotted in
Figure 5i. They emphasise the existence of deviations close
to the bottom and to the free surface, which become more
and more important and invade the whole layer at low
inclinations.

Performing the same analysis for the flow on a heap,
no plateau is observed (circles in Fig. 9). The coherence
length l(y) vanishes at the free surface, increases up to the
transition toward the static phase where it diverges. This
behaviour, drastically different from the expected constant
coherence length, calls for the introduction of a rheology,
for which stresses and shear rate are not related through a
one-to-one relation. We shall call it a non-local rheology.

From a general point of view, this can be achieved by
introducing an integro-differential relation between τ/P
and I or introducing any other relevant fields such as the
volume fraction, the temperature or an order parameter
together with their constitutive relations. A simple way of
doing this in the Prandtl mixing length framework is to
choose a coherence length which depends on the distance
to the free surface [78]. This is what is classically proposed
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to describe turbulent boundary layer. The observed Log
velocity profile is recovered by assuming l to be propor-
tional to the distance to the wall. To be more specific,
choosing

l2 = B(θ)d(h− y) (34)

leads to a linear velocity profile with a shear rate

γ̇ =

√

g sin(θ)

B(θ)
. (35)

In conclusion, the above formalism, which describes
the transition from the flow on a rough plane to that on
a heap, has allowed to capture the non-local effects into
a “rheological” coherence length l. It strongly suggests
to focus on correlations in granular flows to identify the
physical nature of this length scale. As a matter of fact,
structures like arches [43,44], dense correlated grains clus-
ters [81,91,99–101] and non-local dissipation due to multi-
ple collisions [102] have been evidenced experimentally or
numerically. They have motivated several non-local mod-
els [103,104,27,97]. At the present time, none of these
models have succeeded in rendering the kinematic prop-
erties of dense granular flows throughout the various ge-
ometries. This remains a challenging problem, which calls
for further efforts in identifying the origin of non-locality
and its relationship to the rheology.

9 Conclusion

By collecting data coming from different groups, both in
experiments and simulations, in different geometries, we
have been able to capture important characteristics of
granular flows. The relevant timescales and length scales
have been identified, the transition between flow regimes
has been clarified and some important ingredients such
as the necessity of considering non-local rheology have
been discussed. However, we are far from the end of the
story. When trying to compare and extract common phys-
ical mechanisms among the different granular flows, many
open problems have emerged that will provide work for the
future. If a single conclusion has to be formulated about
this collective work, it would be that, at the present time,
with our knowledge of granular flows and the amount of
data available, one can no longer consider a single geom-
etry as a test for constitutive law but should consider the
different geometries.

This work is the result of a common work of the Groupe-
ment de Recherche sur les Milieux Divisés (GDR MiDi 2181,
CNRS), which gathers the French laboratories involved in
granular media. The data have been collected by Bruno An-
dreotti, François Chevoir, Olivier Dauchot, Olivier Pouliquen
and Patrick Richard. It would not have been possible without
the administrative help of Jeanne Pullino, Nelly Sammut and
Frédérique Oger.

Appendix A. Notation

Geometrical parameters

x: flow direction
y: direction transverse to the flow
θ: flow inclination
L: distance between the walls in the confined flow cases
W : distance in the invariant spanwise direction
Ri,o: inner, respectively outer cylinder radii of the an-
nular shear cell
R: drum radius
D = 2R: drum diameter
Ω: angular velocity of the rotating drum or of the an-
nular shear cell inner cylinder
Γ : torque applied to the inner cylinder of the annular
shear cell
Q: flow rate
Vw: wall velocity
γ̇w: characteristic shear rate Vw/L in plane shear, Vw/d
in annular shear
Pw: wall pressure
τw: wall shear stress

Microscopic parameters

d: particle diameter
dw: diameter of the particles eventually glued on the
walls
e: restitution coefficient
µp: inter-particles friction coefficient
µw: particle-wall friction coefficient
g: gravity

Measured quantities

ys: free surface y-coordinate
yb: flow-no-flow interface y-coordinate
h = ys − yb: flow thickness
θstart; θstop: limiting angles at which the flow starts
(respectively, stops).
hstart; hstop: limiting thickness at a given angle at
which the inclined-plane flow starts (respectively,
stops)
V (y): time-averaged velocity profile
δV 2(y): time-averaged squared velocity fluctuations
γ̇ = dV

dy : shear rate

Φ(y): volume fraction profile
ρ: flow mass density
〈.〉: averaging operator over the flow thickness
σ: stress tensor
τ = σxy: shear stress
P = σyy: normal stress
µeff = τ/P : effective-friction coefficient
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Dimensionless quantities

I = γ̇d√
P/ρ

: dimensionless shear rate

Fr = 〈V 〉√
gh

: Froude number

Q∗ = Q
d
√
gd
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91. D. Bonamy, Phénomènes collectifs dans les matériaux

granulaires, PhD Thesis, Université Paris XI, Orsay,
France, 2001.

92. L. Vanel, D.W. Howell, D. Clark, R.P. Behringer,
E. Clément, Phys. Rev. E 60, R5040 (1999).

93. D. Fenistein, M. van Hecke, Nature 425, 256 (2003).
94. D. Weaire, S. Hutzler, The Physics of Foam (Clarendon

Press, Oxford, 1999).
95. A. Kabla, G. Debregeas, Phys. Rev. Lett. 90, 258303

(2003).
96. M.L. Falk, J.S. Langer, Phys. Rev. E 57, 7192 (1998).
97. J. Rajchenbach, Phys. Rev. Lett. 90, 144302 (2003).
98. D. Ertas, T.C. Halsey, Europhys. Lett. 60, 931 (2002).
99. M.R. Kuhn, Mech. Mater. 31, 407 (1999).

100. G. Debregeas, H. Tabuteau, J.M. di Miglio, Phys. Rev.
Lett. 90, 258303 (2002).

101. F. Radjai, S. Roux, Phys. Rev. Lett. 89, 064302 (2003).
102. B. Andreotti, S. Douady, Phys. Rev. E 63, 0311305

(2001).
103. P. Mills, D. Loggia, M. Texier, Europhys. Lett. 45, 733

(1999).
104. O. Pouliquen, Y. Forterre, S. Ledizes, Adv. Complex Syst.

4, 441 (2001).


