
J. Fluid Mech. (2002), vol. 450, pp. 207–233. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112001006449 Printed in the United Kingdom

207

Oscillating structures in a stretched–compressed
vortex

By M A L E K A B I D1, B R U N O A N D R E O T T I2,
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The dynamics of a vortex subject to a localized stretching is numerically investigated.
The structure of the flow is analysed in the case of an initially two-dimensional vortex
surrounded by a periodic array of vortex rings localized far from its core. Amplified
oscillations of both the axial vorticity and the stretching are found, in strong contrast
with Burgers-like vortices. The resulting dynamics is the appearance, around the
vortex, of successive vortical structures of smaller and smaller radius and alternate
sign embedded in the previous vortical rings. The frequency scaling of the oscillations
is recovered by linear analysis (Kelvin modes) but not the amplification nor the
shape of the successive tori. An inviscid model based on structures is presented,
which compares better with the numerical computations. These results suggest that
the formalism of Kelvin waves is not sufficient to describe the full dynamics, which
is instead related to the feedback of rotation on stretching and more conveniently
described in terms of localized structures. We finally discuss the relative timescales of
vortex stretching and of vortex reaction. The Burgers-like vortices, where there is no
such reaction, turn out to correspond to a nearly pure strain field, slightly disturbed
by rotation.

1. Introduction
Vortices have always been a subject of much fascination to fluid dynamicists.

The variety of motions possible in such simple structures is remarkable: they can
merge, intensify, reconnect, break down or give rise to waves. Recently, interest in
vortex dynamics has been renewed by observations of tube-like high-vorticity regions
in both simulated (Siggia 1981; Brachet et al. 1983; Hussain 1986; Brachet 1990;
Jimenez et al. 1993; Kerr & Dold 1994) and real turbulent flows (Douady, Couder &
Brachet 1991; Cadot, Douady & Couder 1995). Experimentally, correlations between
flow visualizations using air bubbles (Cadot et al. 1995) and local measurements
of pressure and velocity have lead to an individual characterization of large-scale
vortices (filaments); the detection of large strain regions on one-point velocity signals
(Belin et al. 1996) has been used to investigate the characteristics of the small-scale
vortices (worms) present in turbulent flows. Numerically, several methods have been
developed to identify (Jeong & Hussain 1995; Miura & Kida 1997) and characterize
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coherent structures, showing for instance that the worm radii are most often of the
order of the Kolmogorov dissipation lengthscale (Jimenez et al. 1993). If it is clear
that there exist some strongly rotating regions in turbulent flows, many questions
remain concerning, for example, their degree of coherence compared to the turbulent
background (Jimenez & Wray 1994), the role they play in turbulence dynamics
(Tsinober 1998) and the existence of a continuous distribution of such ‘structures’,
both in scale and in amplitude. If the importance of vortices for turbulence has
not been proved so far, vortex dynamics nonetheless remains the favoured field of
investigation for the understanding of basic hydrodynamical mechanisms.

The first natural step in the investigation of vortical flows was to understand the
dynamics of a single isolated vortical structure. This has lead to a large number of
studies starting from crude models of filament motion computed by the Biot-Savart
law or by its regularized version, called the local induction approximation (Da Rios
1906; Hasimoto 1972; Ricca 1994 and references therein), to more realistic ones used
to describe vortex instabilities (Saffman 1992; Abid & Brachet 1998), and wave motion
on vortex cores (Kelvin 1880; Maxworthy, Hopfinger & Redekopp 1985; Hopfinger
1992; Leonard 1994; Arendt, Fritts & Andreassen 1997) etc. It turns out that the
dynamics of isolated nearly tubular vortices is dominated by the propagation of waves
(Kelvin 1880) guided by their core. Among these studies, Melander & Hussain (1994)
have recently investigated decaying core area variations of an axisymmetric vortex
column with no external shear. Later, Schoppa, Hussain & Metcalfe (1995) focused
on vortex core dynamics during primary and secondary instabilities of a plane mixing
layer. They have shown the existence of vortex core oscillatory modes coupled to a
meridional flow. This coupling results in an outward ejection of roll core fluid and in
the creation of a localized small-scale stretched vortex sheath.

To take into account the effect of the surrounding flow, vortical structures submitted
to an imposed external stretching were investigated. Indeed, as was first noted by
Taylor (1938), the amplification of rotation by stretching is one of the most important
mechanisms acting in fluid dynamics. For instance, the existence of a turbulent energy
cascade from large to small scales can be related to the predominance, on the average,
of vortex stretching over vortex compression (see Ohkitani & Kishiba 1995; Andreotti,
Douady & Couder 1997; Tsinober 1998; Andreotti 1999 and references therein). More
directly, vortex stretching is responsible for the intensification of vortices. The most
well-known model of stretched vortex is an exact solution of the Navier–Stokes
equations due to Burgers (1940). In this model, the stretching γ is constant, both
spatially and temporally, and corresponds to the meridional velocity:

vr = − 1
2
γr, vz = γz.

The evolution of the vortex is governed by the competition between vortex stretching
and viscous diffusion. In the stationary regime, the azimuthal velocity is

vθ =
Γ

r

(
1− exp

(
− r

2

R2

))
, (1.1)

where R is the vortex core radius and 2πΓ the velocity circulation. This radius R
results from a balance between stretching and viscous diffusion. The particularity of
this solution and more generally of all the Burgers-like models is that the stretching
field is imposed and thus does not evolve. Belonging to this class of solutions is
the generalization of the Burgers vortex to an elliptical vortex by Moffatt, Kida &
Ohkitani (1994) and its stability has been investigated by Le Dizès, Rossi & Moffatt
(1996). These authors showed that a stretched vortex can survive even when two of the
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principal rates of strain are positive. Other examples of such stretched structures have
been found by Neu (1984), Craik & Criminale (1986) and Kerr & Dold (1994). In
these analytical works, the stretching is not only permanent but also spatially uniform.

A different kind of Burgers-like model has been proposed by Sullivan (1959)
and Donaldson & Sullivan (1960), who have studied structures stretched by vorticity
regions spatially localized but imposed as previously. They prescribed an axial velocity
of the form vz = γ(r)z and have found a class of steady solutions of the Navier–Stokes
equations in which there is no feedback of the vortex (vθ) on the stretching γ(r). The
stretching is thus only subjected to its own action and to the viscous diffusion. These
solutions have been extended to the unsteady case by Bellamy-Knights (1970) and
more recently by Gibbon, Focas & Doering (1999) who have added an axial jet to
the vortex (vz = γ(r, t)z+W (r, θ, t)). Again, the stretching γ(r, t) evolves under its own
action and is controlled by a boundary condition on the pressure Hessian at infinity. It
turns out that the axial jet W is damped where the vortex vθ is stretched and amplified
where the vortex is compressed. Similarly, Verzicco, Jimenez & Orlandi (1995) have
numerically analysed the dynamics of vortices subject to a non-uniform imposed axial
strain whose spatial average is null. They found that the vortex can even survive a
strong axial compression. In their numerical simulations, an axisymmetric vortical
steady state is reached after emission of axial Kelvin waves damped by viscosity. As
in Melander & Hussain (1993), they require the appearance of a separation bubble
inside the vortex where the vorticity is decreased and the strain rate increased, around
compressive stagnation points. That study was completed by Marshall (1997) who
demonstrated the ejection of axial vorticity at a compressive stagnation point, together
with the emission of Kelvin waves on the columnar vortex.

However, in real flows, vortices and more generally regions exhibiting rotation are
neither isolated nor subjected to an imposed straining field. Our aim is to investigate
a more complex situation where both the vortex and the stretching evolve freely.
What occurs if a vortex is subject to stretching due to a localized structure and thus
not fixed nor uniform? Is there, as suggested by recent experiments (Andreotti et al.
1997; Andreotti 1999), a feedback of the vortex on the stretching?

The evolution in time of the vorticity ωi is governed by the equation

∂tωi + vj∂jωi = σijωj + ν∂j∂jωi, (1.2)

where σij = (∂ivj + ∂jvi)/2 is the strain tensor and ν the kinematic viscosity. The
vortex stretching corresponds to the action of the strain σij on vorticity ωi. The strain
tensor equation is

∂tσij + vj∂jσij = 1
4
(ωkωkδij − ωiωj)− σikσkj −Πij + ν∂j∂jσij , (1.3)

where Πij = ∂ijp is the pressure Hessian. The strain is not only advected and damped
by viscosity but also evolves under the complicated effects of vorticity, strain and
pressure. It is crucial to note that (1.3) is a non-local equation (Ohkitani & Kishiba
1995) since pressure depends on the whole flow (in particular on boundary conditions)
through the Poisson equation:

Πii = 1
2
ωiωi − σijσij . (1.4)

Obviously the dynamics of strain depends on the particular physical situation through
pressure non-locality. Nevertheless, one can ask whether some robust mechanisms can
be identified under the dynamics of stretching.

In this paper, we numerically study a simple particular case where a vortex is
subjected to a spatially periodic stretching–compression due to an array of localized
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Run a b c d e f g h i j k l m n

ω0 2.5 2.5 2.5 2.5 2.5 2.5 10 3.33 1.25 5 5 2.5 2.5 2.5
R0 0.8 0.8 0.8 0.8 0.8 0.4 0.4 1.2 0.8 0.8 0.4 0.8 0.8 0.8
ω1 0.1 0.1 0.1 0.2 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Kz 2 0.5 1 1 1 1 1 1 1 1 1 1 1 1
ν 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−5 5× 10−3 10−2

Table 1. Characteristics of the runs; they all have resolution 128× 128× 64 except for run l for
which the resolution is 160× 160× 80.

tori. The vortical part of the flow is initially two-dimensional (i.e. not disturbed)
but it is subjected to a non-uniform stretching field. Integrating the Navier–Stokes
equations, the total field (both the vortex and the straining field) is let free to evolve.
The next section of this paper is devoted to the description of the numerical code
and of the initial conditions. The results are presented in § 3. The dynamics of the
vortex and that of the stretching (both let free to evolve) appear to be very different
from that of Burgers-like vortices (subjected to an imposed stretching). A parametric
study accounts for the robustness of the reaction of the vortex on the stretching.
This reaction is interpreted through inviscid models in § 4. We finally conclude on the
mechanisms of interaction and feedback between stretching and vortices.

2. Numerical set-up
2.1. Integration scheme

The simulation code solves three-dimensional incompressible Navier–Stokes equations
in a periodic box. The integration scheme and the spatial discretization are detailed
in Abid & Brachet (1998) and only the main points are summarized here. We have
chosen to use pseudo-spectral methods both for their precision and for their ease
of implementation. The equations are written in Cartesian coordinates. To exactly
conserve energy in the constant density inviscid limit, we use the so-called rotational
formulation (Gottlieb & Orszag 1977). The temporal evolution is computed with an
Adams–Bashforth Crank–Nicholson discretization scheme. For the first time step, we
use a backward Euler scheme. This time-stepping scheme is globally second-order
accurate in time.

In order to accommodate the vortex in a triply periodic Fourier representation, we
consider a periodic array of vortices with transverse periodicity length Lx = Ly = L
and a longitudinal periodicity length Lz . To make the vortex profile compatible with
the periodic representation, we use rp = (sin2(2πx/L) + sin2(2πy/L))1/2L/2π, instead
of r = (x2 + y2)1/2 .

As we are interested in the dynamics of an unique stretched vortex, the planes
x = nL, y = mL are taken as fixed free-slip boundaries. The velocity field is expanded
as u(x, y, z, t) =

∑
kx,ky ,kz

(û sin(kxx) cos(kyy), v̂ cos(kxx) sin(kyy), ŵ cos(kxx) cos(kyy))eikzz

and projected on the space of divergence-free fields. By using these sine and cosine
transformations in the lateral directions, we gain a factor of 4 in storage and number
of operations for the implementation in comparison with a general periodic transform.
In this periodic representation the image vortices do not induce any motion on the
vortex under consideration, by symmetry. The ratio between the vortex radius and
the transverse periodicity length is chosen to ensure that the vortex only diffuses, like
an isolated one, when the incompressible Navier–Stokes equations are integrated.
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Figure 1. Initial condition: a Lamb’s vortex is subjected to the stretching created by a periodic array
of alternate rings (three-dimensional iso-surfaces ωθ = 0.075 and ωz = 1.5). The arrows indicate the
rotation of the Lamb’s vortex and that of the stretching tori.

In all the runs used in table 1, the computational box is [−π, π]3 (corresponding to
the choice L = 4π, Lz = 2π) and the resolution is 128 × 128 × 64 except for the run
with viscosity ν = 10−5 for which the grid points are 160× 160× 80. The viscosity is
ν = 10−3 except in three cases intended to quantify the effect of viscous damping (see
discussion in § 3). In all cases, the resolution was checked to be sufficient for spectral
convergence.

We use two kinds of plots: a three-dimensional iso-surface of the field of interest
(as in figure 1) and two-dimensional equally spaced contours in the plane x = 0 (as
in figures 2b and 3b).

2.2. Initial condition

In order to investigate the interaction between a vortex and a localized stretching
field, we choose an initial condition which is a superposition of a Lamb’s vortex
and a periodic array of alternate rings (figure 1). The Lamb’s vortex (the swirling
part of the flow, vθ) is centred in the periodic box and aligned along the z-axis (see
figure 2a, b), the corresponding vorticity field being

ωz = ω0 exp(−r2
p/R

2
0). (2.1)

The vortex is characterized by two parameters: the maximal vorticity ω0 (on its
axis), and the core radius R0. The array of rings, which creates a spatially periodic
stretching–compression on the vortex axis, is defined by

ωx = −ω1 cos(Kxx) sin(Kyy) sin(Kzz),

ωy = ω1 sin(Kxx) cos(Kyy) sin(Kzz),

ωz = 0.

 (2.2)

This meridional flow depends on two parameters: ω1, the maximal vorticity of the
rings, and Kz the axial periodicity. Note that Kx and Ky are kept constant (equal



212 M. Abid, B. Andreotti, S. Douady and C. Nore

y

z

x

x

z

y

(b)(a)

ωz

Figure 2. The vortex at the initial time (contours of axial vorticity ωz). (a) Three-dimensional
iso-surface (ωz = 1.5). The solid line arrow shows the rotation and the dashed one indicates the
axial vorticity. (b) Two-dimensional contours in the plane x = 0 at equally spaced levels (0.2) from
ωz = 0.1 to ωz = 2.5. The highest contour levels are shaded grey (ωz > 0.9).
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Figure 3. The stretching rings at the initial time (contours of azimuthal vorticity ωθ). (a) Three-
dimensional iso-surface (ωθ = 0.075). The solid line arrows show the rotation and the dashed ones
indicate the azimuthal vorticity. (b) Two-dimensional contours in the plane x = 0 at equally spaced
levels (0.02) from ωθ = −0.1 to ωθ = 0.1. The positive highest contour levels are shaded dark-grey
while negative lowest contour levels are white.

to 1/2) and that the ring core radius is of the order of the distance to the axis.
Figure 3(b) shows the two-dimensional iso-contours of the azimuthal vorticity ωθ at
the initial time. Although not axisymmetric, the specific interest of the initial ring
shape (2.2) is that their axes are located on the lateral boundaries. The stretching
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Figure 4. Deformation of the vortex under an imposed stretching (Burgers-like vortex).
Two-dimensional contours in the plane x = 0 at time t = 10 of axial vorticity ωz (a) and of
radial vorticity ωr (b) for the forced stretching run. The contour levels are at equally spaced levels
from the minimum in white to the maximum in dark grey.

structures are thus as far as possible from the columnar vortex. It is worth noting that
the vorticity has to be null on the lateral boundaries due to symmetry conditions: the
rings are therefore truncated nearby.

The parameters of initial data were varied as shown in table 1. The dynamics will
be described with a reference case showing generic mechanisms. The parameters of
the reference run are: ω0 = 2.5, R0 = 0.8, ω1 = 0.1, Kz = 1 (run c).

3. Results
3.1. Evolution of the vortex subjected to an imposed stretching

Before presenting the dynamics, it is interesting to examine the evolution of the vortex
if the stretching is imposed, i.e. in the absence of reaction of the vortex on the rings.
The numerical computation is performed by maintaining the axial velocity of the
rings at its initial value and their axial vorticity at zero. To do so, we split the velocity
field into two divergence-free parts urings and uvortex and we impose ωrings

z = 0 and
uvortexz = 0 at each time step.

Figure 4 shows the deformation of the vortex after a short time. The axial vorticity
ωC(t) at the centre of the box (C is the point (0, 0, 0) in the box [−π, π]3, thus
ωC(t) = ωz(0, 0, 0, t) and γC(t) = γ(0, 0, 0, t)) increases under the stretching induced by
the meridional flow (figures 4a and 5a). On the other hand, at the edges, the axial
vorticity decreases towards zero. The stretching remains constant by assumption (see
the stretching at the centre γC(t) on figure 5b). Under viscous diffusion, the vorticity
saturates at long time, when the radius of the vortex core becomes of the order of
the viscous scale (ν/γ)1/2 (figure 5a).

3.2. Reaction of the vortex to the stretching

Unlike the previous situation, when the whole flow is let free to evolve, the axial
vorticity ωC oscillates (see for comparison the inset of figure 5). The time evolution
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Figure 5. Time evolution of (a) the axial vorticity ωC (t) and of (b) the stretching γC (t) at the
centre of the box for the forced stretching run. The stretching is constant by assumption so that
the vorticity increases until saturation by viscous diffusion. The inset shows the first time evolution
with, for comparison, the result obtained in the case where the stretching is also let free to evolve
(dotted line).
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Figure 6. Time evolution of (a) the axial vorticity ωC (t) and of (b) the stretching γC (t) at the
centre of the box for run c. The stretching oscillates in quadrature with the vorticity: contrarily to
Burgers-like vortices, the vortex reacts on the stretching. See text for the definition of ti and ti/2.

of the axial vorticity (ωC) and the stretching (γC) at the centre of the box is shown
in figure 6. They appear to oscillate in quadrature. The dynamics is thus completely
different from that of Burgers-like vortices. This means that there is an interaction
between the vortex and the stretching rings. One can observe that the phenomenon
is approximately periodic in time. We denote ti the time of the turning point i:
γC (figure 6b) is maximum at t0 = 0, t2, t4, etc. and minimum at t1, t3, t5, etc.; ωC
is maximum at t1/2, t5/2, t9/2, etc. and minimum at t3/2, t7/2, etc. The second striking
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Figure 7. Two-dimensional contours of axial vorticity ωz at time t1/2 in the plane x = 0 at equally
spaced levels from the minimum in white to the maximum in dark grey. The vortex is stretched at
the box centre and compressed at the edges.

feature of the curves ωC(t) and γC(t) is the increasing amplitude of their oscillations
(at least for the first turning points).

Let us examine these oscillations step by step. At short times t < t1/2 (figure 7),
the vortex core becomes thinner at the centre and thicker on the edges, as for the
Burgers-like case (figure 4). This corresponds to an increasing axial vorticity at the
centre under the stretching induced by the rings. On the other hand, the compression
makes the core size increase at the edges. For t > t1/2, the vorticity ωC at the
centre decreases and reaches its initial value at time t1. At that instant, the vortex is
approximately straight (as initially) and two new rings have appeared (see figure 8a),
which rotate in the opposite way to the initial ones: more rigorously, their azimuthal
vorticity is of opposite sign to that of the initial rings (figure 8b). Their radius is
smaller and they are more axisymmetric (figure 8c). At that time, the initial rings
have been sheared by the vortex and attenuated in their central part because of the
secondary tori (figure 8c).

These secondary tori are induced by the differential rotation that was created by
the initial rings. This can be understood with the following mechanism: at initial time
t0, the swirling part of the flow is two-dimensional. As a consequence, the pressure
gradient essentially balances the centrifugal force (figure 9a). Let us now consider the
vortex at time t1/2 (figure 7) which rotates more rapidly at the centre of the box than
at the edges. This differential rotation leads to a variation of the centrifugal force
along the z-axis (figure 9b). This induces the creation of azimuthal vorticity (written
here for the axisymmetrical case),

∂ωθ

∂t
+ vz

∂ωθ

∂z
+ rvr

∂(ωθ/r)

∂r
=

∂

∂z

v2
θ

r
+ ν

(
∂2ωθ

∂z2
+
∂

∂r

(
1

r

∂rωθ

∂r

))
, (3.1)

through the source term ∂z(v
2
θ/r). This means that the pressure gradient can no longer

balance the centrifugal force. It axially varies more slowly than the centrifugal force.
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Figure 8. At time t1, secondary rings have been induced inside the primary ones. (a) Three-
dimensional iso-surface of the azimuthal vorticity. (b) Two-dimensional contours in the plane x = 0
at equally spaced levels of the component of vorticity ωθ normal to the plane x = 0. Strong negative
ωθ values are represented in white and strong positive in dark grey. (c) Two-dimensional contours
of the modulus of ωθ in the plane Kzz = π/2 at equally spaced levels from the minimum in white
to the maximum in dark grey.

Indeed, the induction of a radial velocity

∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z
=

(
v2
θ

r
− ∂p

∂r

)
+ ν

(
∂2vr

∂z2
+
∂

∂r

(
1

r

∂rvr

∂r

))
(3.2)

is directly related to the competition between the centrifugal force v2
θ/r and the

pressure gradient ∂rp. In the upper part of figure 9(b), the centrifugal force is greater
than the radial pressure gradient and ejects the fluid from the axis. Reciprocally, a
radial inflow appears in the lower part. As a consequence, a secondary toroidal flow
is induced. This meridional flow stretches the vortex in the place where it was slowly
rotating and compresses it in the region where it was rapidly rotating. The result is a
negative feedback which tends to straighten the vortex.
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Figure 9. Reaction of a vortex on the stretching to which it is subjected. (a) In a straight vortex, the
pressure gradient (left facing arrows) balances the centrifugal force (right facing arrows). (b) When
the vortex presents a differential rotation, the pressure gradient cannot balance the centrifugal force
so that a secondary flow is induced. Circular arrows indicate the axial vorticity.
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Figure 10. At time t3/2, the vortex is compressed at the centre and stretched at the edges by the
secondary tori. Three-dimensional iso-surface of the axial vorticity ωz .

The secondary rings induce an axial compression so that the stretching γC vanishes
at time t1/2 and becomes negative thereafter. The vortex is now compressed where
initially stretched and vice versa (figure 10). Again non-uniform along its axis, it
induces a negative feedback to the stretching and produces some new tori inside
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Figure 11. At time t2, three generations of tori can be observed. (a) Two-dimensional contours at
equally spaced levels of the component of vorticity ωθ normal to the plane x = 0. Strong negative
ωx values are represented in white and strong positive in dark grey. (b) Two-dimensional contours
of the modulus of ωθ in the plane z = π/2 at equally spaced levels from the minimum in white to
the maximum in dark grey.
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Figure 12. At time t5/2, the vortex modulation is the same as at t1/2.
Three-dimensional iso-surface of axial vorticity ωz .

the secondary ones (figures 11a, b). This meridional flow acts like the previous one
until it brings the vortex back to its initial shape (achieved at time t2). The reaction
overshoots and at time t5/2 the vortex exhibits a strong differential rotation (figure 12)
as at t = t1/2 (figure 7). Thus the inversion of the stretching occurs again, quaternary
tori being created at a smaller radius (figure 13), and so on (figure 14). On figure 15(a),
we recapitulate the time evolution of the axial vorticity ωz using its value at different
locations. (C denotes the centre (0, 0, 0) and B the edge (0, 0, π) of the box [−π, π]3;
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Figure 13. Three-dimensional iso-surface of azimuthal vorticity ωθ at time t3. Four generations of
rings coexist but, due to the threshold used, the initial rings do not appear on the figure.

y
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z

Figure 14. Three-dimensional iso-surface of azimuthal vorticity ωθ . At time t4, five generations of
rings coexist. As for the previous figure, the initial rings do not appear but the fourth reaction torus
can be observed at the centre.

M stands for the maximum value and m for the minimum value inside the box.) The
maximum vorticity ωM(t) is located at the centre C for t0 6 t 6 t1 and t2 6 t 6 t3
and at the edge B for t1 6 t 6 t2. Figure 15(b) shows the stretching in the same way.
The quantities γM(t) and γm(t) are in quadrature with ωM(t) and ωm(t) respectively.
Initially, the stretching due to the initial rings is maximum at the centre C and
minimum at the edge B. The stretching γC initially decreases, vanishes at t1/2 and then
oscillates. The position of γM(t) coincides alternately with C and B, except at larger
times (dashed lines of figure 15b).

At first sight, the dynamics could be interpreted as an oscillation of the ring
amplitudes. However, we instead observe (see figures 8, 11, 13, 14) the formation of
successive vortex rings of smaller radius and opposite signs. To differentiate their
respective effect on the stretching, we consider in figure 16 the azimuthal vorticity
amplitude of the successive rings. The amplitude of the initial rings remains nearly
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the minimum vorticity ωm(t) (dotted line); (b) γC (t) (solid line), γB(t) (solid line), the maximum
stretching γM(t) (dotted line) and the minimum stretching γm(t) (dotted line). Times ti/2 are indicated
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Figure 16. Time evolution of the azimuthal vorticity of each torus: the nearly constant initial torus
(continuous line), the secondary torus (long-dashed), the tertiary torus (dot-dashed), the quaternary
torus (thin continuous line) and the next one (dotted). The dynamics is not a simple oscillation in
time but a superposition of the successive rings induced by the vortex.

constant in time. The first reaction rings then appear inside the vortex (figure 8b).
Their amplitude saturates around t = t1 and keeps an approximately constant value
afterwards. The following oscillation of the stretching, after t1, (figure 6b) is then due
to the appearance of second smaller vortex rings of opposite signs (therefore of the
same sign as the initial ones). The process repeats but with a slight delay after each
ti. The smaller rings have amplitudes which oscillate but never change sign. It turns
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axial vorticity ωm(t)/ω0 for three different initial conditions (runs f (dot-dashed line), g (dashed
line), c (solid line)) versus the rescaled viscous time t/(t+ R2

0/4ν). The thick solid line corresponds
to the diffusion of an isolated Lamb’s vortex.

out that the axial stretching simply oscillates, although created by the superposition
of successive vortical structures of opposite signs.

3.3. Scaling laws

Another feature of figure 15(a) is the slow decrease of the average of ωM and ωm due
to viscous diffusion. It can be compared to the diffusion of a Lamb’s vortex whose
core size R varies according to R2(t) = R2

0 + 4νt. By conservation of the angular
momentum, the axial vorticity evolves as the inverse square of the core size as

ωL(t)

ω0

=
1

1 + 4νt/R2
0

= 1− t

t+ R2
0/4ν

. (3.3)

It thus decreases linearly with the rescaled viscous time t/(t + R2
0/4ν). This viscous

scaling is used to compare runs of table 1. Figure 17 shows the evolution of the
rescaled maximum axial vorticity ωM(t)/ω0 and the minimum axial vorticity ωm(t)/ω0

for three different parameters sets versus the viscous time. One can observe that
the curves oscillate around a line of slope −1 corresponding to the Lamb’s vortex
diffusion (3.3): as a first approximation, the viscous diffusion and the stretching–
vortex interaction are decoupled. This means that the dynamics is dominated by the
action of inertia and pressure. In order to identify the most important mechanisms,
we have thus studied the flow for quite large Reynolds numbers (πω0R

2
0/ν ' 5× 103

for the reference case).
Figure 18(a) shows the rescaled vorticities (ωM(t) − ωL(t))KzR0/γ0 and (ωm(t) −

ωL(t))KzR0/γ0 versus the rescaled time t(ω0KzR0/2), where Kz is the wavenumber on
the axis and γ0 = γC(0), for four different runs. These curves approximately collapse
till t∗2. At this time, the nonlinear evolution of the axial vorticity generates harmonics
which reduce the quality of the collapse. Thus, at short times t 6 t∗2, the oscillation
angular frequency varies proportionally to the initial axial vorticity ω0 multiplied by
the ratio between the vortex core size R0 and the distance 1/Kz:

f ' 0.39ω0KzR0. (3.4)

At short times, the amplification rate of the axial vorticity is γ0 which implies that
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Figure 18. Time evolution of (a) the rescaled vorticities ω∗M(t) = (ωM(t)− ωL(t))KzR0/γ0 and
ω∗m(t) = (ωm(t)− ωL(t))KzR0/γ0 and (b) the rescaled stretching rates γ∗M(t) = γM(t)/KzR0ω0 and
γ∗m(t) = γm(t)/KzR0ω0 (runs c (solid line), d (dotted line), g (dashed line), j (dot-dashed line)) versus
the rescaled time t∗ = t(ω0R0Kz/2). Times ti are indicated with vertical dot-dashed lines. Both the
stretching and the vorticity curves collapse till t2.

the amplitude of the oscillations is

ωM(t)− ωL(t) ∝ γ0ω0

f
∝ γ0

KzR0

. (3.5)

In the same way, figure 18(b) shows the rescaled stretching rates γ∗M(t) = γM(t)/R0Kzω0

and γ∗m(t) = γm(t)/R0Kzω0 versus the rescaled time t∗ = t(ω0R0Kz/2). Again the
collapse of the different curves is good till t = t∗2.

Most of the runs were for the same viscosity ν = 10−3, but it was varied in three
runs (ν = 10−5, ν = 5× 10−3 and ν = 10−2, keeping other parameters as in run c). As
expected, when the viscosity is increased, the viscous drift of vorticity amplitudes (see
figure 19) becomes more important.

The axis wavenumber Kz was also varied from 2 (run a) to 0.5 (run b) and thus
the distance between the tori. As expected (see figure 20), the nearer the tori are, the
faster the dynamics is.
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Figure 20. Time evolution of the axial vorticity ωC (t) for different axis wavenumbers Kz:
for run c, Kz = 1 (solid line), run a, Kz = 2 (dotted line) and run b, Kz = 0.5 (dot-dashed line).

4. Inviscid modelling of the vorticity oscillations
4.1. General equations

In this section, we model the vorticity oscillations, starting from the time evolution
of linearized perturbations (Kelvin waves) to the Lamb’s vortex. We then derive the
first terms of the fully nonlinear time expansion. Finally, we link the two models in a
predictor–corrector computation which allows us to recover both the scalings observed
in the numerical simulations and the amplification of the oscillation amplitude. In the
following, we make use of the observation that viscous diffusion is nearly decoupled
from the interaction between the tori and the columnar vortex to employ the inviscid
Euler equations.

The velocity and vorticity vectors are decomposed in components related respec-
tively to the central vortex (vθ, ωr = −∂zvθ, rωz = ∂r(rvθ)) and to the stretching tori
(vr, vz, ωθ = ∂zvr− ∂rvz). Using incompressibility, the two components vr and vz associ-
ated with the tori can be written as functions of a streamfunction Ψ : rvr = −∂zΨ ,
rvz = ∂rΨ . Two functions are thus needed to describe the flow evolution: vθ for the
axial vortex and Ψ (or ωθ) for the tori. Neglecting the advection terms (see equation
(3.1)), the dynamics is governed by

∂vθ

∂t
= −vrωz + vzωr, (4.1)

∂ωθ

∂t
=

∂

∂z

(
vθ

2

r

)
. (4.2)
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The combination of these equations yields

∂2ωθ

∂t2
=

∂

∂z

[
2vθ
r

∂vθ

∂t

]
=

∂

∂z

[
2vθ
r

(−vrωz + vzωr)

]
. (4.3)

4.2. Kelvin waves

We consider small perturbations about the Lamb’s vortex,

v0
θ = Γ

(
1− e−αr2

r

)
, ω0

z = 2αΓ e−αr
2

, ω0
r = 0, (4.4)

where 2πΓ is the circulation and 1/α1/2 the vortex core radius. Introducing distur-
bances of the form: vθ = v0

θ + u1
θ , Ψ = Ψ 1, vr = u1

r , ωθ = ω1
θ , we linearize (4.3):

∂2ω1
θ

∂t2
= −

[
2v0

θ

r2

∂rv0
θ

∂r

]
∂u1

r

∂z
, (4.5)

with the complementary relations

u1
r = −1

r

∂

∂z
Ψ 1, ω1

θ = −1

r

∂2Ψ 1

∂z2
− ∂

∂r

(
1

r

∂Ψ 1

∂r

)
. (4.6)

Looking for eigenmodes (which obviously depend on the particular profile v0
θ), we

search for solutions of the form Ψ 1 = cos(ft) sin(Kzz)g(r2). This gives

u1
r = −Kz cos(ft) cos(Kzz)

g(r2)

r
, ω1

θ = cos(ft) sin(Kzz)

[
K2
z g(r2)

r
− 4rg′′(r2)

]
.

Substituting these expressions into (4.5), we obtain the equation defining the Kelvin
modes of the Lamb’s vortex:

f2

[
K2
z g(r2)

r
− 4rg′′(r2)

]
= 4αΓ 2K2

z

[
e−αr2

(1− e−αr2

)

r2

]
g(r2)

r
, (4.7)

where the angular frequency f for a given axial wavenumber Kz is determined by
the boundary condition, limr→∞ g(r2) = 0. To find the dispersion relation, we put
(4.7) into a non-dimensional form by making the change of variables y = K2

z r
2 and

defining G(K2
z r

2) = g(r2):

f2

ω2
0

[G(y)− 4yG′′(y)] =

[
exp[−(α/K2

z )y](1− exp[−(α/K2
z )y])

(α/K2
z )y

]
G(y). (4.8)

Although the vortex turnover time (1/ω0 = 1/2αΓ ) is its natural timescale, there is a
competition between two lengths, the core radius R0 and the wavelength: the solution
depends on the non-dimensional number (K2

z /α)
1/2 = KzR0. We thus numerically solve

(4.8) to determine f/ω0 as a function of KzR0, using a shooting method based on a
fourth-order Runge–Kutta integration. For a given KzR0, there exists a multiplicity
of modes with different frequencies and different radial structures (see figure 21). We
distinguish the different modes by the number n of extrema in the radial profile.
For a given wavenumber, the frequency decreases when n increases. Each dispersion
relation f(Kz) is approximately linear for small KzR0. The frequency scales in this
limit as

f ' 0.32

n
ω0KzR0. (4.9)



Oscillating structures in a stretched–compressed vortex 225

0.8

0.6

0.4

0.2

2 4 6 8
Kz R0

0 10

f
ω0

n = 4

n = 3

n = 2
n = 1

Figure 21. Non-dimensional dispersion relation of Kelvin modes and the corresponding radial
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Figure 22. Two-dimensional contours of azimuthal vorticity for Kelvin wave eigenmodes in the
plane x = 0 at equally spaced levels from negative (white) to positive (dark grey) values: (a) mode 1,
(b) mode 2.

This is the scaling (3.4) obtained from the numerical simulations. When the wavelength
is smaller than the core radius R0, the propagation becomes strongly dispersive: the
angular frequency f tends towards a constant value proportional to the axial vorticity
ω0. Figure 22 shows two-dimensional contours of azimuthal vorticity for the first two
modes, for the parameters of the reference run (ω0 = 2.5, R0 = 0.8, Kz = 1). In both
cases, the tori are located inside the vortex core. The vortex thus acts as a wave guide
for the Kelvin waves.

The shape of these two modes compares rather well with that of the successive
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tori observed numerically (figures 8b and 11a). However, these Kelvin waves are
eigenmodes oscillating periodically in time, while in the numerical simulations the
tori appear successively and then saturate in amplitude (see figure 16). The initial
stretching structure is far from being an eigenmode of (4.7), since it is not located
inside the vortex core. It is clear that its decomposition into Kelvin modes can only be
a wide wave packet since all the modes are localized inside the vortex core. Moreover,
the possibility of such a decomposition is not obvious for any vortex profile v0

θ ,
although Arendt et al. (1997) have shown that it is possible for a Rankine vortex.
The particular temporal dynamics observed also indicates that this decomposition
will be difficult. Rather than generalizing the procedure of Arendt et al. (1997) for the
case under study, figure 16 suggests an interpretation in terms of successive structures
interacting with the vortex, more amenable to physical understanding.

4.3. Direct computation of the reaction tori

4.3.1. Radial expression

A precise way of describing the successive tori is to compute the first terms of
the time expansion of the solution, considering now that the initial tori are not
perturbative. We start from the Lamb’s vortex (4.4) and the stretching tori defined
by the stream function: Ψ 0 = a0 sin(Kzz)(1− exp(−βr2)). This form mimics the initial
rings used in the numerical simulations except that they are localized far from the
axis by the Gaussian function. They are characterized by their amplitude a0 and their
radius 1/β1/2, together with the wavenumber Kz along the axis. The velocity and
vorticity fields associated with the initial tori are given by

v0
r = −a0Kz cos(Kzz)

(
1− e−βr2

r

)
, v0

z = 2a0β sin(Kzz)e
−βr2

,

ω0
θ =

a0K
2
z

r
sin(Kzz)

[
(1− e−βr2

) +
4β2r2

K2
z

e−βr2

]
.

 (4.10)

We perform a Mac–Laurin expansion of the fields: vθ = v0
θ + tv1

θ + . . . , Ψ =
Ψ 0 + t2Ψ 2 + . . . and ωθ = ω0

θ + t2ω2
θ + . . . . The dynamical equations (4.1) and (4.2)

lead to

v1
θ = −v0

r ω
0
z + v0

zω
0
r = −v0

r ω
0
z , ω2

θ =
1

2

1

r

∂

∂z
(2v0

θv
1
θ) (4.11)

which gives

ω2
θ = −

[
v0
θ

r2

∂rv0
θ

∂r

]
∂v0

r

∂z
. (4.12)

This equation is similar to (4.5), except that the response ω2
θ is now computed as a

function of the initial tori v0
r :

ω2
θ = −2αΓ 2a0K

2
z

[
e−αr2

(1− e−αr2

)

r2

]
sin(Kzz)

(
1− e−βr2

r

)
. (4.13)

This correction term ω2
θ corresponds to the formation of new tori, with the same

variation along the axis (sin(Kzz)) as the initial ones but with opposite sign.
These new tori can be interpreted as a reaction against the initial tori induced

by the deformation of the axial vortex. However, they do not have the same radius
as the original ones. Being obtained nonlinearly by the multiplication of a function
with ω0

z , they exist only within the axial vortex. The reaction of the vortex is thus
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restricted to the inside of the vortex itself, and does not reach the initial tori. As a first
approximation, the radius R of the new tori can be computed using the development
in r up to r3 of (4.13):

R ∼ 1

(β + 3α)1/2
. (4.14)

4.3.2. Characteristic time

These reaction tori can be seen as created to reduce the deformation of the axial
vortex by decreasing its inhomogeneous stretching along the axis. To compute the
effective stretching due to these new tori, we have to determine the streamfunction
Ψ 2 = sin(Kzz)G(K2

z r
2). We also consider initial tori outside the vortex (β < α), so

that in (4.13) (1− exp(−βr2)) ' βr2. The computation of ω2
θ from Ψ 2 leads to

[G(y)− 4yG′′(y)] = C[exp[−(α/K2
z )y](1− exp[−(α/K2

z )y])] (4.15)

with the constant C = −2αΓ 2a0β. Noting that v2
z = 2K2

z sin(Kzz)G
′(K2

z r
2), the stretch-

ing γC at the centre of the box is expanded in time as

γC(t) = 2Kz(a0β +K2
z G
′(0)t2 + . . .). (4.16)

This first derivative G′(0) which appears in this equation remains to be expressed
using the boundary condition: limy→∞G(y) = 0. We use a numerical shooting method
to obtain G′(0)/C , as a function of the non-dimensional number (K2

z /α)
1/2 = KzR0.

When the wavelength is much smaller than the vortex core radius, G′(0) tends to 0 and
it is roughly constant in the limit of small wavenumbers (KzR0 � 1): G′(0) ' 0.17C .
For the parameters of the reference run, the numerical value of G′(0) is around 0.135
so that the stretching vanishes due to the reaction tori at time t1/2 given by

t1/2 '
(

2

0.135

)1/2
1

ω0KzR0

. (4.17)

We recover the scaling observed in the numerical simulations and in § 4.2 (f ∼
ω0KzR0), showing that, even if the reaction tori are not eigenmodes of Kelvin waves,
they share the same timescale. We get also the prefactor (0.39 in the DNS, see
equation (3.4)):

f =
π

2t1/2
' 0.41ω0KzR0. (4.18)

The amplitude of the oscillations in ωz can be estimated by ∆ωz/t1/2 ' γ0ω0 so that

∆ωz ∝ γ0

KzR0

. (4.19)

as found in the numerical simulations.
The computation of the first three terms of the Mac–Laurin expansion in time gives

good scaling in time and in amplitude. To get a more accurate description of the
shape of the reaction tori, we take into account higher-order terms of the expansion
in the next section.

4.3.3. Next order, harmonics

The next two orders in vθ and ωθ are

v2
θ = 1

2
(−v0

r ω
1
z + v0

zω
1
r ), ω3

θ =
1

3

1

r

∂

∂z
(v1
θ

2
+ 2v0

θv
2
θ).
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Figure 23. Two-dimensional contours in the plane x = 0 at equally spaced levels from the minimum
in white to the maximum in dark grey: (a) of axial vorticity ωz at time t1/2, (b) of vorticity ωθ
normal to the plane x = 0 at time t1. The development of the solution to the third order in time
allows us not only to predict the scaling in time but also to reproduce the conical shape of the
reaction tori.

Since the reaction tori appear inside the vortex, we can develop Ψ 0 to the first order
in βr2. This leads to

v2
θ ≈ αΓa0

2β2K2
z {2− αr2[1 + cos(2Kzz)]}re−αr2

,

ω3
θ ≈ − 4

3
α2Γ 2a0

2β2K3
z sin(2Kzz){2e−αr2 − 1}re−αr2

.

}
(4.20)

We compute the axial vorticity ωz at time t1/2 and the vorticity ωθ at time t1 by
resumming the first three terms of the expansion. The corresponding iso-contours are
plotted in figure 23, using the reference parameters. Note the nearly perfect similarity
with, respectively, figure 7 and figure 8(b). From the quadratic expression (4.1) and
(4.2), it can be seen that the successive terms in the expansion correspond to higher
and higher development in the Kzz harmonics (each term vnθ and ωn+1

θ containing
all the odd/even harmonics (with the cos/sin phase respectively) up to nKz). These
harmonics are responsible for the conical shape of each torus (see figures 14, 23).

The previous calculation gives the shape and the short time evolution of the reaction
tori (roughly up to t1/2). To obtain the saturation of the reaction, we should compute
the next-order terms (v3

θ and ω4
θ). This is a tedious calculation, in particular because

of the harmonics. To model the saturation of the reaction tori, we instead prefer to
develop a physical description based on both structures and waves.

4.4. Saturation of the reaction tori

The dynamics of the reaction tori can be approximated by a predictor–corrector
method. We initially guess the temporal evolution of the tori and deduce the modu-
lation of the vortex under the effect of stretching. We can then compute the reaction
tori induced by the vortex, thus obtaining a better estimate of the stretching struc-
tures. Ideally, this algorithm should be repeated: knowing the evolution of the tori,
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Figure 24. Amplification model and numerical results for the reference case: radial variation for
Kzz = π/2 of: (a) ωθ at the initial time (dot-dashed line), at times t1/2 (dashed line) and at t1 (solid
line) to be compared with numerical ones on (c); (b) γ at the initial time (dot-dashed line), at times
t1/2 (dashed line) and at t1 (solid line) to be compared with numerical ones on (d ).

we should compute again the deformation, and then a better approximation of the
deformation and so on.

The external tori do not oscillate in time but successive structures are induced
one inside the others. On the other hand, the vortex is modulated in time as if
it were subjected to an oscillating stretching. We can thus take as an initial guess
tori oscillating in time: Ψ̃ 0 = cos(ft) sin(Kzz)g

0(r2), where g0 is given by the initial
condition g0(r2) = a0(1 − exp(−βr2)) and where the oscillation angular frequency
f is derived from the previous computation. This stretching structure induces a
deformation of the vortex computed using (4.1):

vθ = v0
θ +

2αΓKz

f
sin(ft) cos(Kzz)

g0(r2)e−αr2

r
. (4.21)

Knowing the evolution of the deformation, we replace the initial guess in which the
oscillation in time was imposed by a more accurate expression for the initial tori and
the reaction tori:

Ψ = sin(Kzz)g
0(r2) + sin(Kzz)(cos(ft)− 1)g2(r2). (4.22)

Inserting these expressions in (4.3) gives[
K2
z g

2(r2)

r
− 4rg2′′(r2)

]
=

4αΓ 2K2
z

f2

[
e−αr2

(1− e−αr2

)

r2

](
1− e−βr2

r

)
. (4.23)

Equation (4.23) is solved by shooting to determine the derivative of g2 on the axis.
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The solutions are presented on figure 24 at times t0, t1/2 and t1, for the parameters of
the reference case. The radial profile of azimuthal vorticity shows that the reaction
tori are localized near the axis whereas the initial rings (dot-dashed line) are far from
it. More important, the initial tori are still visible at t1 and remain unaffected by the
secondary ones. This is the case in the numerical simulations (figure 16) and shows a
first advantage of this model based on structures over Kelvin modes. The discrepancy
in figure 24 between the numerical simulations and the model essentially comes from
the different localizations of the initial tori. The second striking feature is that the
stretching in the vortex core is not only reversed at t = t1 but is also amplified. The
amplification factor between t = 0 and t = t1 is 1.69 compared to 1.75 in the reference
run (figure 6). The predictor–corrector method nonetheless allows us to recover
the scaling in time and also explains the amplification in the oscillation amplitude: the
reaction cannot occur far from the axis but only near the core radius so that the
vortex response overshoots.

5. Discussion and conclusion
In this paper, we have studied the evolution of a vortex subjected to a non-

uniform stretching induced by vortex rings localized far from its core. We find that
the vortex, deformed by this stretching, reacts by inducing secondary tori-shaped
structures which screen the effect of the primary ones. This vortex feedback does not
match the perturbation, the structures being induced closer to the vortex than the
initial ones and with an increased amplitude. It turns out that the interaction between
the vortex and the surrounding stretching structures follows neither a Burgers-like
behaviour (constant stretching) nor that of Kelvin modes (perfect oscillation) but is
an overshooting reaction.

Subsequently, there is a secondary reaction against the first one, which leads to
oscillations of the axial vorticity in a repetitive process. However, these amplified
oscillations are not observed to persist indefinitely in the simulations, even when the
viscous damping is negligible. This is due to the emergence of spatial harmonics along
the axis (in Kzz) which are generated by the nonlinear vortex–stretching interaction
(see equation (4.20) in § 4.3.3). These nonlinearities grow in time and create structures
of smaller periodicity in z which will eventually disrupt the above oscillations.

The characteristic frequency of the oscillations scales as ω0R0Kz , like that of Kelvin
modes in the limit of small wavenumbers Kz . However, Kelvin waves correspond to
simple oscillations of both the axial and the azimuthal vorticity inside the vortex,
unlike what is observed in the numerical simulations: the first reaction tori do not
oscillate, but rather saturate in amplitude (figure 16). This suggests an alternative
interpretation in terms of successive reaction tori of smaller radius and opposite sign
embedded in the previous ones. We proposed two models based on this structural
approach. A precise expansion in time of the fully nonlinear solution was derived. It
gives an expression for both the oscillation frequency and the shape of the reaction
tori, including the harmonics. Using this frequency, we constructed a predictor–
corrector estimate of the interaction between stretching and rotation, which allows
us to recover not only the shape of the reaction structures but also their increasing
oscillation amplitude. This particular problem thus shows that it could be more
interesting to investigate the interaction between stretching and vorticity in terms of
structures (the initial tori and successive reaction ones), rather than in terms of waves.
The appearance of smaller and smaller structures seems to be a robust mechanism
which could be linked to the dynamics of vortex breakdown.
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We have proved that there is a feedback of the vortex on the stretching. The
mechanism is mainly that of Ekman pumping: the stretching being inhomogeneous,
it induces variations of the vortex rotation along its axis. The pressure gradient can no
longer balance the centrifugal force, the latter having a solenoidal part. A secondary
flow is thus induced, which stretches the vortex at the places where it was slowly
rotating and compresses it where it was rotating fast. Globally, the vortex tends to
reduce the stretching to which it is subjected, as soon as the stretching is localized
in space. Surprisingly, this basic mechanism has not been considered before even
though it is at the origin of the propagation of Kelvin waves (Kelvin 1880), of the
core dynamics (Melander & Hussain 1994), of the Rayleigh stability criterion, etc.
We have shown here that the negative feedback of rotation on stretching is a more
general mechanism which can be understood independently of the particular situations
and formalisms in which it occurs. This point can be discussed by comparing the
natural timescales of the problem: τstretching = 1/γ0 characterising the stretching and
τfeedback = 1/ω0R0Kz measuring the reaction timescale. The ratio of the two is then
given by

B = ω0R0/γ0Rγ (5.1)

where Rγ holds for the characteristic length over which the stretching is inhomo-
geneous. This non-dimensional parameter B characterizes the relative importance of
the feedback mechanism and of the stretching process. For small B, τfeedback � τstretching

so that the reaction can be neglected. In the limit case of homogeneous stretching
(Burgers-like models), Rγ tends to infinity and B tends to zero: there is strictly no
reaction. On the other hand, if B � 1, the negative feedback of rotation on stretching
must play a crucial role. This is true, even for quite small B: for our reference run, B
is equal to 4.82; the first stages of a similar dynamics can be observed in Marshall
(1997), at a compressive stagnation point, for B = 1.06.

Thus, Burgers-like models (Burgers 1940; Sullivan 1959; Donaldson & Sullivan
1960; Bellamy-Knights 1970; Neu 1984; Craik & Criminale 1986; Moffatt et al.
1994; Kerr & Dold 1994; Verzicco et al. 1995; Le Dizès et al. 1996; Gibbon et al.
1999) capture well the vortex dynamics if B is much smaller than 1. This corresponds
to the situation where the typical velocity associated with the stretching γ0Rγ is much
larger than the rotation speed ω0R0, that is to say, when there is no vortex but a
nearly pure strain region. As soon as the rotation becomes important compared to
the stretching, the reaction of rotation on stretching becomes an essential part of the
dynamics.

The authors would like to acknowledge Professor Yves Couder for fruitful discus-
sions. The computations were carried out on the 90/8 Cray computer of the Institut
du Développement et des Ressources en Informatique Scientifique.
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