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Fluctuations of the winding number of a directed polymer in a random medium
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For a directed polymer in a random medium lying on an infinite cylinder that istii dimensions with
finite width and periodic boundary conditions on the transverse direction, the winding number is simply the
algebraic number of turns the polymer does around the cylinder. This paper presents exact expressions of the
fluctuations of this winding number due to, first, the thermal noise of the system and, second, the different
realizations of the disorder in the medium.
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INTRODUCTION fluctuations of the winding number are simply equal to what

one would obtain for a directed polymer in a homogeneous

A directed polymer in a random medium is one of themedium; disorder is simply averaged out. A second result
most simple non-trivial disordered system and is, as such, afoncerns the thermal-averaged winding numiderBecause

special theoretical importance. Indeed, several exact resultsf the randomness of the medium, this quantity is not zero

on directed polymers with strong disorder have been obang the expression of its varian¢@/?) averaged over disor-
tained[1-5], so that general approximation schemes develyer is obtained.

opgd to tackle more complicatgd_disordgred systems such as e present paper is organized as follows: Section | is a
spin glasses could be tested within the directed polymer consyief recall of how the directed polymer in a random medium

text. The directed polymer is also relevant in the context of.gn pe mapped to a quantum mechanical problem of inter-
nonequilibrium phenomena, as it is related, through S'mp|9acting bosons using the replica method, and how this quan-

changes of variables, to growth models governed by thg,m mechanical problem can be solved with the Bethe ansatz
Kardar-Parisi-ZhangKPZ) equation[6,7] and to nonturbu- 1 14 2_4. In Sec. Il the winding number is introduced and

lent flows such as the asymmetric exclusion pro¢&SEP  gefined and the two main results of this paper are stated in
model[2,7]. Egs. (19) and (21). Section IIl gives the main lines of the

_ The objective of this paper is to study the winding of & yerjyvation, and, finally, technical points are developed in the
directed polymer lying on the surface of a cylinder. The al-three appendixes.

gebraic number of turng/ the polymer does around the cyl-
inder is a random variable which depends on the realization | pErNITION. NOTATIONS. AND EREE ENERGY

of _the disorder_ar_1d which qu_ctu_ates because of the therr_nal OF A DIRECTED POLYMER
noise. The statistics of the winding number of a polymer in
an homogeneous medium intZL dimensions around a cyl- Let us consider a directed polymer intll dimensions

inder goes back to the work of SpitZ&] and is relevant for where the dimension in which the polymer is directéue
the physics of vortices in type Il superconductf@®s-11]. In “time” dimension) is taken to be very large and the trans-
physical situations, the system is, however, usually disorverse dimensiorithe “space” dimensioh has width 1 and
dered; the effect of columnar defects has been studied angeriodic boundary conditions. As it is directed, the polymer
lytically [11], and the winding number around a cylinder of a can be described by a single-valued functigi) and the
polymer in a random medium with point-like disorder in 2 partition function of a directed polymer of lengtlending at
+1 dimension has been explored numericgflyl0]. When  positionx is given by

there is an attractive interaction between the polymer and the

winding center, the polymer can be confined around the cyl- Z(x t):f Dy(s)

inder and the system can be regarded as a polymer in the 1 ’ =x

+1 dimension with periodic boundary conditions. In that . 1 2

situation, the present work gives exact expressions for the ><exp( _f ds[—(— + 7(y(s),s) ) )
statistics of the winding number. o [2lds

The directed polymer on a cylinder is also related to the ) o )
classical limit of strongly correlated fermions in one dimen-Where 7(x.t) is the contribution by the random medium to
sion with disorder(Luttinger liquid9: the x position of the the energy of the system. Disorder in the medium is assumed
directed polymer corresponds to the phase of the fermiond® b€ characterized by an uncorrelated Gaussian noise of

and the phase has, of course, periodic boundary condition¥arancey:

The winding number of the polymer corresponds to the den- (n(x,1))=0
sity of fermions. Disorder, while periodic in both cases, does K '
not have exactly the same correlations, but the models are (p(x, ) (X' 1)) = y8(x—x") 8(t—t'), 2

sufficiently similar to hope for some universalit$2,13.
A first result of the present paper states that the thermalhere the bracket§) represent the average over disorder.
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It is a well known resul{1,14,2—4 that this system can N.— N ot
K \ a B Y . .
be successfully mapped to a quantum mechanical problem ee= 1l T, with  limA,=0. (10
using the replica method; indeed, if we define Sh=n Ra R r=0

B+ a

(Z(X1,1) " Z(Xy 1)

P = (Xq,. . Xn 1) = (Zy" @ Of course, this expression obtained for 0 remains valid in
the directed polymer context whege> 0.
where In the quantum mechanical proble®), the ground state
energyE(n,y) is well defined only for integrah; after all,n
z(H= | dxzix.t 4 is the number of particles. However, for the directed poly-
® f xax.t) @ mer,(z", which is related toE(n, y) through (7), can be
. . . . defined for arbitrary values of. The smalln limit is of
is the full partition function, then Eqg1) and(2) imply special importance here: as the directed polymer is a disor-
w18 2y dered system, the free energy is a random variable(ZAgd
_2_2 _2+72 80 —%;) (5 s the generating function of this free energy. Indeed, we
gt 2{=1 axj i< have

with periodic boundary conditions on all the space variables

X . n 2 2
In(z" _ (InZ) L (In Z>C+n_3<ln3z)C

4
t t 2t & ¢ om,

11)

Y. xi=0,...0=¢(...x=1,.;). (6)

The normalization byZ)" in Eq. (3) is just a simple way to

get rid of a low-scale divergence introduced by the continu-

ous description1) of the system. In other words, without where(In 2)/t, {In?Z)./t=((In*Z)—(In 2)?It, etc., are the cu-
this normalization, there would be a trivial extra term in Eq. mulants of the free energy per unit length of the directed
(5) involving the lattice size of an underlying discrete formu- polymer. Thus, if we can generalize Eq9) and (10) to

lation of the problem.

For an infinitely long polymer, that is, in the largd&imit,
the amplitude of/(X;t) is given by the fastest growing mode
of Egs. (5) and (6). In quantum mechanical language, we
have

Infdx;---dx, ¢ (X;t)
t

Ing(X;t)
m n =lim

t—ow t—x

IN(Z(t)"y—nIn{Z(t))
t

=lim

t—o0

_E(n!')’)! (7)

whereE(n,y) is the ground-state energy of the Hamiltonian

2

"9
S oS sxx),

i<j

H=— (8

N| -

which describes particles withattractive 6 interactions on a
ring of size 1.

The same Hamiltonian with a negative valueyofthat is,
with a repulsivedelta interactionhas been much studied to
determine the spectrum of a gas of bospts—20. In that
context, using the Bethe ansd&l], it was shown that the
ground-state energy of E¢B) can be written as

1 n
E(m>=—§§1 A2, 9

where the{\,} are solutions of

arbitrary values oh, the expansion oE(n,y) for small n
gives, using Eq(7), the distribution of the free energy of the
directed polymef22].

This method was useld ] for the directed polymer on a
space of infinite width in thex direction. The Bethe ansatz
equations are then much simpler than Efp) and one ob-
tains[23,1], whenn is an integerE(n,y)=y%(n—n%)/24.
This result was used to argue that only the two cumulants
(In2)/t and{In3Z)./t do not vanish in the large limit and
that, therefore, the fluctuations ofZrscale liket'/® [24—26.

When space has finite width, however, it is easy to see
that the free energy is an extensive function and that all its
cumulants scale like. In two previous paper$3,4] we
solved the Bethe ansatz equatiofi®) and computed the
three first terms of the smatl expansion ofe(n,vy). Up to
the ordem?, the result is

2 232 2,—\212
Yy v\ n% J+°° \‘e 3
E(n,y)=nl=+=—|— da +0(n?),
an——
2V2
(12
so that, using Eq(7),
. (InZ)-In(Z) y
m ==t @
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_(In*Z), W (W)
l n lim— = lim——-=0. (15)
t—o t—o t t—o t
Y32 o N2~ M2 _ _
=L dn ——— This property thatV approachegW) in the larget limit is
2v2 Jo A \/; known as “auto averaging.” Likewise, all the thermal cumu-
tanl'z‘fz lants of W (which are also extensive quantitieshare the
, ; , same property,
LYY Y 5 _ R
=7+ 12" 360" 5oap* O for small y o W (W) 16
\/;ys/z 1 tme L e L
=2 +4(3)+0 —) for large vy, (14)
Y Those cumulants, which characterize the thermal fluctuations
of a directed polymer’s winding number, depend on the re-
where(3)=3k 3~1.20206. alization of the disorder only when the lengtlof the poly-

mer is finite.
Other quantities of interest are the disorder cumulants of
the thermal average of the winding number of the polymer.

An important topological property of a directed polymer Indeed, the quantity’V depends on the realization of the
is its winding numbeW, that is the algebraic number of full disorder, and its fluctuations are characterized by another se-
turns the polymer makes around the cylinder on which itries of cumulants:
lays. One way to define this winding number is to increase
by one for each “time"t where thex coordinate of the poly- _ <V_Vk>c
mer goes from I to 0" and decreas®/ by one wherx goes lim——, (17
from 0" to 1~. Another way is to unroll the coordinate and e
setW= [xdt. Of course, the differences between those two _ _ _
definitions smear out in the largdimit. with (W?).=(W?)—(W)?, etc. Actually, we might be inter-

As for any quantity in a disordered system at finite tem-ested in computing many quantities characterizing the wind-
perature, the winding numbé# fluctuates for two distinct ing number, such as
reasons. One is the thermal fluctuations: for a given realiza- o o
tion of the disorder and at finite temperature, the directed (W22 —(W?)?
polymer fluctuates around the path with the lowest energy, “mfy (18
and those fluctuations may change the winding number of o

the polymer. The other source of fluctuations is the quenched , . . .
disoFr)dgr on the medium a which represents the fluctuations due to the disorder of the

In this work, a horizontal bar is used to denote the therma}herm'al-mean square of the winding pumber, per unit length.
A first result of the present paper is

average, which is the average computed over all the possible
directed polymers counted with their Boltzmann weights.

II. WINDING NUMBER OF THE DIRECTED POLYMER

. v ~{(WP)o) (W)
The cumulants are noted with an extrgubscript:W is the lim =1 and lim —0 for k2.
thermal average oV, and(W'z)C the kth thermal cumulant tow L tow L
of W, with (W?).=W?—W?, (W3).=W3—3WW?+2W?, (19

etc. These thermal averages and cumulants are calculated for

a given, fixed, realization of the disorder and usually depend’ Other words, thermal fluctuations of the winding numbers
on that realization. are Gaussian and independent of the disosddfor an infi-

The average and cumulants of a quantiycomputed nitely long polymer, the thermal fluctuations of the winding
over all the realizations of the disorder are written with "Umber of the polymer behave as if the directed polymer was
brackets: (Q) is the average of) computed over all real- simply doing a random walk in a disorder-less environment.

izations of the disorder, and"). is thekth disorder cumu- A second result of the present paper is

lant of Q. _

It is gvorth noting that, for a given realization of the dis- . (W2 _ i 3(0E(n,7)_ zE(n )) N }_4
order, the thermal averag¥' of the winding number isot oo n—0 n® dy Y Y n
zero; the disorder breaks the symmetry and may favor one 5
orientation over the other. Howevéf] is an extensive quan- =1+ 2 i) IimM (20)
tity and, if we imagine that we cut an extremely long poly- Y Ve

mer in many very long sections, all the sections are nearly

independent antv may be regarded as the sum of uncorre-where E(n,vy) is the ground state energy of the quantum
lated random variables. Therefore, problem computed if3,4] and given in Eq(12). Therefore,
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. <V_V2>C \/; +o )\26—)\2/2
I|mT = E f dn )\\/_
— 00 O
t anh—y
2V2
1 (+=  Nle MR
- dn -1
4 fo N
tanhi;
V2
VT 8((3
- 87_1+ 49 +0(y~?) for large y
2 3 4
Y b4 0%
=360 3520  16goot O(7) for small y
(21

[where(3)=3k 3~1.202 06].
The expressioril) of the directed polymer’s free energy
is written with dimensionless variables. If we explicitly put

PHYSICAL REVIEW E 68, 041101 (2003

Ill. DERIVATION OF EQS. (19) AND (20)
A. Equivalence to a quantum mechanical problem

To obtain both result$19) and (20), we define a new
partition functionZ,(x,t), the purpose of which is to count
the winding number of the polymer:

Zz(x,t)=f Dy(s)
y(t)=x
Xef[energy of pathy(s)]+z(winding number of that panr)
(25

The sum is made over all the directed polymers ending in
and the “energy of a path” is the same as in Ef).

Clearly,Z,(t) = [ Z,(x,t)dx is related to the winding num-
ber W by

Z,(t)=Z,(t)e?W. (26)

If we define the winding numbeW as an integer that

back physical constants and use the following expressionhanges by+1 each time the directed polymer wraps around

instead of(1):

t
Z(x,t)= Jy(t)_ny(s)exp{ —Bfods
o)

+7(y(s),9)
where 8= (kgT) ! is the inverse of temperaturg, is the

K

2

dy

X ds

(22

rigidity modulus of the line and where the spatial dimension

x has finite widthw and periodic boundary conditions, then
Egs.(19) and(21) become

i (W) 1
'm t -~ Brkw?’

t—o

lim =0 for k#2,

t—o

(W)
t

w3, 1
{ i ) :BKWZ F(B2kwy),

lim

t—ow

(23

where F(y) is the scaling function given in Eq21). We
obtain the following expansions:

. (V_V2>c VT By
lim T 8 /o at low temperature
t—o K
Bry? .
~ 360 at high temperature. (24)

the domain by crossing the=0 or x=1 boundary, then the
boundary conditions foZ, is

Z,(01)=e?Z,(11). (27)

Apart from that, the equations satisfied By(x,t) are the
same as the equations satisfiedafy,t). In particular, if we
define

<Zzl(xl ,t)' ' 'Zzn(xn ,'[)>
(Zo(t))" '
this new wave function/ is also a solution of Eq(5); only

the boundary conditions are changed: instead of(gyx.the
new conditions read

2, (28

2, (X1, X3 t) =

(29

Thus, as in Eq(7), the long “time” t behavior ofZ,(t) is
given by

In(Z,---Z, ) —nIn{Zo)
: _

lim

t—oo

=—E(n,y;24,...,Z,),

(30

where E(n,vy;z,,...,Z,) is the ground state energy of the
same Hamiltoniar{8) as before, but with the new boundary
conditions(29).

This new ground state enerdycontains all the informa-
tion on the winding numbew. For instance, from Eq26),
and by definition of the cumulants, we have, for 0,

—_— _ 1S
(WHe=—xInZ,(1) (31)

z=0
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(InZ,) is easily obtained from Eq30): we set all th{z;} to  then the{\,} are clearly solutions of the standard Bethe
one single valug, make a smalh expansion, and retain only ansatz equation&0). Using Eq.(36), we obtain
the first order. We get

- n

|' (Who) |' K g o ” E(n,y;z,...,z)=E(n,y)—Ezz. (39
tm t - n[noﬁﬁ_n (n171zl"'lz) ( )

z=0 E(n,y)=E(n,;0,...,0) is the ground state ener¢}2) be-

fore introduction of the{z;}. We have use®X ,=0, which
can be easily deducd@,4] from Eq. (10).
Using Eq.(32), the result(19) on the thermal cumulants
of the winding number is then immediate. This method,
based on a Bethe ansatz, is not the simplest way to obtain

Getting W? is more tricky. We would needd(n Z,/d2)?,
but that quantity can only be obtained from Eg0) if the
parametergz} take at least two different values. For ex-
ample, we have

_ 5 (19). Indeed, the result could be obtained usingdtaistical
lim (2, 201y — Zo(1+2;W+0O(z7)) tilt symmetry[27,28 of the problem; we define the winding
A ZO(1+zV_V+ 0(22)) ’ gitigtb;rw of a pathy(s) as being simply the unrolled coor-
=1+(z,— 2)(W)—22(W?) + O(2%) + O(Z?), ¢ dy

and

(This new definition is, of course, equivalent to the previous
lim In(Z,, 20" %Y= (z;— z)(W) — W2 — (WH2) + O 22 one in the large limit.) The change of variablg(s) =Y(s)
lm In(Z;,Z; ) =(2= (W) =2a(WH=(W)I+0Z) 17 i the definition(25) of Z, gives then

+0(2%). (34) )
Z,(t)=¢€ ’Zf Dy(s)
Therefore, putting all the pieces together,
ek
(W2)—(wp? S I P PARE

lim =lim E(n,y;z1,2,...,2) . }
t—oo t nﬂOaZ&Zl z=0 (41)

2
+ n(y(s)+zss)

Clearly »(y(s) + zs,s) have the same statistical properties of

Finally, to obtain the results announced, we need to computg(¥(8),s) and one gets
E(n,y;z,...,z) and, to the first order inz and z;, )

E(n.7:21.2,...2). (InZz(t))=%+<InZO(t)>, (42)

B. Determination of E(n,y;z,...,2) ) . ) . .
from which the resul{19) is straightforward. The first deri-

When all the parametetg;} are equal to one single value 4tion with the Bethe ansatz was included here as it demon-
z, the problem is easy: all the replica play a symmetric rolegirates part of the method used to obtain the second result

so that the ground state eigenvecr. ,(xy,....x,) of the (20 which cannot be derived fromsiatistical tilt symmetry
Hamiltonian(8) is a symmetric function of all théxi}. As  argument

shown in Appendix A, the standard Bethe ansatz derivation
i th It. Inst f E 1 t
gives the result. Instead of Eq@, 10, we ge C. Determination of E(n,y;2;,2,...,2)

1o When the parameter§z;} are not identical, the wave
. __ = 2 i ’
E(n,v:z,...2)= 2 azl N (36) function ¢ is no longer a symmetric function of tHe;} and

the problem is much more complicated. Therefore, the stan-

where the{\,} are solutions of dard bosonic Bethe ansatz used in the previous case will not

work. However, as shown in Appendix B, using a more gen-

Na—Ngty eral Bethe ansatz that was first introduced to deal with non-

m with  limA,=0. (37) bosonic particle$29,30,31, we get the following result:
1spsn Ng™ Ag™ y—0
B#a 7z—0

e)\u+z:

1 n
. __ - 2
if we define EMNyi21,2,..2)= =5 2 N, (43)

Ny=Noy+z (38)  where the{\,} are solutions of
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No— A g+
eetlo= [T 77 ith limh,=0, (44
1250 Ng—Ag— s
BFa z—0
and where thg{,} are such that
n
A
H e5a+—ﬁ(ez—e4a)}
n
No—\
=eu]] |er+ ==L (e?—elv)|,
B=1
lim ¢,= (45
{zi}—0

When z,=z, we recover{,=z, the result of the previous
section.

To determine the fluctuatiof\W?) of the winding number
of the polymer, we only need to compuin, y;z,,z,...,2)
to the second order in the;}. From Eq.(45), we easily get

zi+(N—1)z NA,—Zp_\
~nrnmlz s (1-2)2+0({z}9).

a n ,yn3
(46)
We define, for alle,
XCY:)\D[—’_gH’
z1—2)% z;+(n—=1)z Zp_\
:M(l_u 2>)+ SURE L S
yNn n yn3
(47)
and
- (21_2)2
=N ) (48)

Using those new variables into EGi4), we obtain the fa-
miliar Bethe ansatz equations:

) MM L o), (49)

\n)\ )\ﬁ ¥

so that[3,4], using the ground state energyn,y) given by
Eq. (12),

=0({z}?).
(50)

Z 2= —2E(n,%)+0({z}® and 2 No=

From there, using Eq47), one can WriteZ)\i. We finally
get

PHYSICAL REVIEW E 68, 041101 (2003

E(n,y;21,2,...,2)

2
e )_1[z1+<nn 1)z]

EE(WV)—QEQLZE

+l5 7y |2+ 0((z)).

(51

Then, finally, from Eq.(35), we get the announced result
(20).

CONCLUSION

Using the replica method with the directed polymer, one
obtains a bosonic quantum mechanical problem which can
be solved by the Bethe ansatz. By extending this method and
using a more general Bethe ansatz that was introduced to
deal with nonbosonic particld®9], it has been shown how
the different quantities characterizing the fluctuations of the
directed polymer’s winding number can be computed using
new Bethe ansatz equations. Building upon a previous work
[3.,4], those equations were explicitly solved in two cases
giving the results(19) and (20), (21). The second result is
particularly interesting as it simply relates through E20)
the fluctuations of the thermal-averaged winding number and
the fluctuations of the free energy of the directed polymer. It
would be interesting to understand this relation in a more
direct way.

In principle, the method presented in the present paper
should allow us to compute more cumulants of the winding
number and, eventually, its complete probability distribution.
For that, however, one needs, as a first step, to generalize Eq.
(51) and write the expansion &(n,v;z,,z,...,2) to higher
orders in the{z}. Indeed, one can show that, for example,

(WAW) — 3(W2)(W?)
lim r

t—oo

(94
=lim——=E(n,y;z,,2,...,2)

52
n—09Z Z1 z=0 (52

ObtainingE(n, y;2,2,...,2) to the fourth order in théz} is
not, however, an easy task, as the trick used in &q)
would not work at that order.

As a second step, to compute more complicated cumu-

lants of the winding number such &%v*)—3(W?3)2, one
needs to generalize Eqg.3)—(45) to the case where tHe;}

take at least four different values. Higher order cumulants
would require, of course, the energy of the system with more
different values of thdz}. A matrix approach such as the
one developed in the present paper could lead to the result.
Another possibility might be to try an approach similar to the
“nested Bethe ansatz” method developed by Yang and Suth-
erland[29-31,1,% to compute the ground-state energy of the
system described by the Hamiltonié8) with different types

of particles and symmetry relations which depend on the
type of particles. Their results are not directly applicable to
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the directed polymer’s winding number as all the particles So, for any set of values{\,}, the wave functionAl)
have the same symmetry relations but different boundarwhere the{a(o)} are given by(A5) is an eigenvector of the
conditions, but it might be worth investigating if the nestedHamiltonian(8). The values of thé\ ,} can then be obtained

Bethe ansatz could be adapted.
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APPENDIX A: BETHE ANSATZ EQUATIONS WHEN ALL
THE z; HAVE THE SAME VALUE z

When all the{z} are equal toz, all the particles have

symmetric roles and the standard bosonic Bethe ansatz leads

to the result. To recall the standard derivatid®,17, we
look for solutions of the following form:

(A1)

where the sum is made over thepermutationsr of {1,...n}
and wherer is the permutation defined by
XT(1)<XT(2)<"‘<XT(n). (AZ)

The n! amplitudes{a(o)} and then pseudo-wave-numbers
{\,} are unknown variables to be determined.

We use this expression @f in Hy=E, whereH is the
Hamiltonian(8). In the regions where all thik;} are differ-
ent, it is straightforward to get

1 n
E(n,y;z,...,z)=—§21 A2, (A3)

so that we only need to determine tfe,}. At each crossing

is the circular permutationC(1)=2, C(2)
=3,...£(n—1)=n, C(n)=1. Using Eq.(A5), we easily get
the new Bethe ansatz equations. Forall

1=p=n Ng=Ag— 7y’
B#a

ehatZ=

(A7)

We are only interested in the ground-state solution. By
continuity of this ground state, we get the last condition

limx,=0.
z—0
y—0

(A8)

APPENDIX B: BETHE ANSATZ EQUATIONS WHEN ALL
THE {z} EXCEPT z, HAVE THE SAME VALUE z

When the parametefg;} do not take the same value
the computation of the enerdyis more complicated; indeed
the wave function/ is no longer a symmetric function of the
{xj} and there is no way that the standard Bethe arn(gelt}
might lead to the result.

However, in order to study the Hamiltoni&®) for fermi-
onic particles or, more generally, for particles with arbitrary
symmetries and anti-symmetries, a more general ansatz than
(A1) has been proposd€@9,30,1,3: in Egs.(Al) and(A2),

of two particles, we have to ensure the correct discontinuitieg, o permutatiorr is only introduced as a convenient way to

in the derivatives ofy to compensate for thé functions in
‘H. This gives the following conditions, for a- and all 1
=sk<n:

Aot~ Mokt 1)~ Y

a(ooTy)=
k Aoy~ Mok )T Y

a(o), (A4)

where T is the permutation that swags and k+1 and
leaves all the other integers unchanged.

As any permutatiornr can be written as a product of the
elementary permutationg,, one can use EqA4) to write
all the{a(o)} up to an arbitrary multiplicative factor. How-
ever, as the decomposition of a permutatioas a product of
Ty is not unique, one must check that thee{1)n! equations

get the coordinate$x;} of the n particles sorted from the
leftmost particle to the rightmost in the expression of the
wave function. An easy way to break the symmetry/a$ to
make the parametefs(o)} explicitly dependent on the per-
mutation7:

L Xn) =2 a7, o) eSi=t otk

g

(B1)

where the permutation is, as before, defined by EGA2).
As shown below, the solution to our problem with the
unusual boundary condition®9) can also be written using

(A4) are self-consistent. The best way to do that is to writeEq. (B1). We first begin with the most general case where all

down explicitly the solution

Ny~ Nopt Y

alo)= No(a) ™ No(p)

l<a<p=n

(A5)

It is easily checked that this is indeed the solution of all Egs.
tonian (8), we have, as usual,

(A4).

the {z;} are different and, at some point, specialize to the
simpler case where all thig;} exceptz, are identical.

1. General Bethe Ansatz equations for arbitrary{z}
Using the Ansat4B1) in Hiy=Ey where’H the Hamil-
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1n .
E(n,y;zl,...,zn)z—EE A2, (B2) YW= (B9)
a=1

The new equations for the parametéer,o)} are more It is clear from (B8) that any vectod(o) can be obtained
complicated thariA4), from the knowledge of one of them. However, as in the
symmetric case, one has to check that the result does not
depend on the way the permutations are decomposed as a
Mot = Notir ) TOTk’U)_Ya(T’U), product of the elementary permutatiofig. There are no
Noto ™ Mokt T Y explicit formula [32] such as(A5) of a(o), but one can
(B3)  check that the ri—1)n! relations(B8) are indeed self com-
patible. This is implied by the following “Yang-Baxter” re-
for any permutations and o and for any integer £k<n. lations[29]
A convenient way to write then() ? parameterg¢a(r,o)}
is usingn! vectors indexed byr, each vector having! com-

a(r,0°Ty)=

ponents: Yvk'=1,
ar,0) VIV =Y k—k|>1,  (B10)
R a(m,0)
a(o)= : : (B4)
° il il il i
a( Tnl 10-) YLJYL‘FlY{( _Y{(-%—lY;( Ylk-li—li

which can be easily checked using E(R7) and(B9). With

the first of those three relations, usi®g) twice to compute
a(o°T,T,) gives correctlyd(o). The second relation im-
pliesd(ooT T, )=a(0°TyoT,) if [kK—k’|>1 and, finally,

the third relation givesa(ooT,eTyy°TE)=a(oeT 10Tk
oTri1). Itis a well known property of the symmetric group
a(7°Ty,0) that those three necessary conditions are actually sufficient to

wherery,...,7y are then! permutations of 1,...n} sorted in
an arbitrary way chosen once for allThe order must, of
course, be the same for all values@j We now introduce
the matriceaVl, defined by

a(moTy,0) | _ ML (o) 85) ensure that the relatior(®8) are self-consistent.
: =Ma(a). One still needs to write the boundary conditid@8) with
a(ryoTy,0) the parameteréa(r,o)}. From(B1), one gets
Those matriced/, just shuffle the components of the vector a(7,0)=exp(zZ,1)+ Ny a(7C,0°0), (B11)

a(o); there is thus exactly one “1” per raw and per column
and all the other components are “0.” In a concise way, w

. CwhereC is, as in Eq.(A6), the circular permutation.
can writeM, as

As C=TqoTyo---oT,,_41, the matrix that shuffles the lines
of the vectorsd(o) according to the permutatiahis simply
(My)i ;= 57Tk, (B6)  the product of the matricelsl,. Thus, we have

Ti

The matricedM, are a representation of the permutations a(0)=exp(A (1)) ZMiMy --M_pa(0°C),  (B12)

Ty . As such, they have the same standard commutation prop-

erties as the permutations: whereZ is the diagonal matrix defined by
M2=1, MM M =M MMy, (2);,)= 0] exp(z, (1)) (B13)
MM =M M if [k—k'|>1 (B7)

Moreover, using several timgéB8), we get, from the defini-
tion of C,
(I being the identity matrix Equation(B3) is then simply

written as ~ o(1),0(N)\o(1),0(n— o(1),0(2) 5
a(0'°C)=Yn(_ll)' (n)Yn(_12)~ (n 1)...Y1(1), (Z)a(o.)'
(B14)
a(0°Ty =Y Va(o), (B8)
N Putting togethefB12) and(B14), we see thaf(o) must
whereY}! is the Yang-Baxter operator defing29] by be, for eachs, the eigenvector of some operator,
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eXFXM(l))ZMl'"Mn-lYﬁ(_ll)’”(”)'"Yf(l)’”(2)§(0)=5(ff)- the intermediate cases. In our_problt_am, we are Iooking f(_)r
(B15) the gron_md state energy of discernible part!cle§ and it is
known, in this situation, that the ground state is given by the
bosonic solution.
There exists a nonzeré(o) such as(B15) holds only for To sum up, what remains to be done is to single out from
certain values of the{\,}. However, as then! vectors (B18) the expression of exp() which goes to the standard
{a(o)} are not independent variables, we need to check th&iosonic equationg10) when the{z} vanish, to write by
then! relations(B15) are compatible: they must hold simul- symmetry then—1 remaining equations giving all the
taneously for the same values of the,}. As explained in  {exp(\,)} as functions of thg\ .}, to solve those nonalge-
Appendix C, this is the case. To obtain the values of{thg braic equations in order to write the ground state enéigy

we are looking for, we usé€B15) when o is the identical = —(1/2)2)@, and, finally, to take the limih—0 and vari-
permutation. A nonzerd(o) exists if and only if ous derivatives with respect to tlzeto obtain the different
quantities characterizing the winding number of the polymer.
defl —exp(\1)ZM;--M n_lyﬂ 1Yﬁ'ﬂ§1- . Yiz] =0, As this seems to be a difficult task in the general case, we

(B16) will go through this program only when all tHe;} have the
same value except forz; .

or, using the propertieéB10) of the operators, 2. Simplification when all the {z;} are equal except forz;

When all the {z} are set to zero, the matriX is the
identity matrix and one of the solutions of E®18) must be
(B17) the standard bosonic Bethe ansatz equatl® One way to
see it is to notice that, whe(l0) holds, the vector which
cancels the matrix in EqB18) is simply (1,...,0. Another
or, using the definitioB9) of the operator¥, way to see it is to notice that to deriv@18), we never
actually used the matrix representation\f, Y, etc., but
only the commutation properties of those matrices. If we
were to choose otheepresentation®f those matrices hav-
exp()\l)ZH M,|=0. ing the same commutation properties, relati@&i8) would
=l (B18) still be valid with those representations. For example, when
all the {z} are zero, the bosonic solution is obtained from
That last equation relates exg) to the{\,}. There aren ~ Ed.(B18) by choosing the trivial representatidm,=1. The
—1 other equations giving all the exgj which we can fermionic solution exp(,)=1 is obtained by choosini/

de(Y2ty3L..yNt —exp\)ZM;---M,_1)=0,

n—-1

n—1

N—Ne )M+ 7l

de H (N +1 Y
a=1 Nt Agp1—y

obtain either by usingB15) with different permutationsr ~ =—1, etc. _ _ _
either, as they play symmetric roles, by shuffling {he! in In the situation where; =z for i=2, with only z; differ-
Eg. (B19). ent fromz, we can make a similar simplification. Indeed, in

Finally, the wave functionB1) introduced is indeed an that case, the particles,... x, play symmetric roles. Thus,
eigenvector of the Hamiltoniaf8) with the boundary condi- the ground state solution must be symmetric in those vari-
tions (29), provided that thé\ ,} are such thatB18) and the ~ ables. Back to the wave functidiB1), this means that the
n—1 other relations obtained by symmetry hold. parametersa(r;,0) anda(r,,o) must be equal ifr; *(1)

Note that the new Bethe ansatz equati®18) can be =7-2‘1(1). In other words, the parametee{r,o) do not
regarded as a polynomial of degnelein exp(\,), so that we depend on the whole shuffling of the particles{x;}, but
have not one value of exp() as a function of thé\ .}, but  only on the position ok, relatively to the other; for each,

n!. This could be expected, as the method we have used ihere is one value of(7,0) corresponding to the first par-
known to generate, when =0, not only the bosonic solu- ticle being the leftmost, another value when the first particle
tion, but all the eigenvalues of E@) for arbitrary symmetry is the second leftmost, etc.

relations between the particles. So, if we write fr¢BiL8) This suggests that EB18) can be written in that situa-
the n! possible expressions of expj and make thdz} go  tion with a representation of thel, as matrices of size

to zero, we will recover the usual bosonic Bethe ansatz sox n instead ofn! X n!. Indeed, we write the new vecta( o)
lution (10), but also the fermionic solution exp()=1and all as

a(r,0) such thatr(1)=1 (x4 is the leftmost particle

a(r,0) such thatr(2)=1 (x; is the second leftmost partigl

a(o)= (B19)

a(r,0) such thatr(n)=1 (x4 is the rightmost particle

041101-9
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Then, the matrixM that switches th&th and k+ 1)th par-
ticles is given by

STt i=k
(M =1 & if i=k+1 (B20)
s otherwise,
that is,
0O 1 0 O
1 0 0 O
M,=| 0 0 1 o0 ,
0O 0 0 1
1 0 0 O
0O 0 1 O
M,=| 0 1 0 0 , (B21)
0O 0 0 1

etc. With all the{z} but z; equal toz, we can also write the
new matrixZ in this representation. It is a diagonal matrix,
on the first line we have exp( asx; is then the leftmost

particle, and, on the other lines, we do not know which par-

ticle is the leftmost, but it is of no importance as we know it

is notx; and as all the other particles have the same param-

eterz. Thus, we have

et 0 O
0 e 0
“lo o e (822

Of course the new matriced/, have the correct commuta-
tion relations(B7) and the final resulB18) is still valid with
the new matricedl, andZ.

3. Explicit expression of the determinant

Whenz;=z for i=2, using the new matriceldl, and Z,
we can compute the determinant(Bi18) by induction. First,

PHYSICAL REVIEW E 68, 041101 (2003

()\1_)\1+1)Ma+ Y

An:a=1 A=Aty (829
and, as can easily be seen,
0 O 0 e
ho1 e 0 0 0
anz};[l M,=| 0 € 0 O (B26)
0 O e 0

As e”1 appears only once in the matrix, the determinant
can be written as
dn=ap,—e48,, (B27)
wherea,, and 3,, do not depend og; .
Going fromA,, to A, is easy enough; singling out the
last term in the produatB25), one has

An
Any1= :
0 1
1
(0)
X 1 ,
(0) Mn+1 1= pnia
1-pnia Mn+1
(B29)
with
Y
= B29
Mn+1 MN—Anrity ( )

Doing this last multiplication, we see that the first 1 col-
umns ofA,, ; are the first columns oA, padded with one
final zero, and that theth and 1+ 1)th columns ofA,, ;
are thenth column ofA,, with different multiplicative factors
(respectively,u,+1 and 1-u,,,) and different paddings

we normalize exp(;) by the standard Bethe ansatz expres-(respectively, + u,.; and un.1.) Thus, if we develop

sion and write

n

ehitli= H

a=2

)\l_)\a_l— Y
—)\1_)\a_7, (B23

where{; is the quantity we are trying to determine.
Using this new variable, we write the determinant in
(B18), up to a multiplicative prefactor, as
d,=defA,—exp(—{1)Bq], (B24)

where

d, ., over the last line, there are only two terms which look
very much liked,,. The only differences are that the last
column is multiplied by some factor and that the tezfhis

either missing or not multiplied by the numerical factor that
affects its column. Finally, usin@B27), one can get

dnt1=mnr1(mnsran)

- (1_Mn+1_e27§1)[(1_ﬂn+l)an_ﬁnezl]a
(B30)

or
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i 1=[2pne 1= 1+ (1= pni )€™ ey,
Bni1= _(1_/~Ln+l_e27£1)ﬁn (B31)

with ;=1 andB;=exp(-{y). It is now easy to compute,,
andg,,

—\)(e =) +y
A= Nty ’

n
(A
a=IT

) (€7 —1)+yer h
A=Aty ’

ﬁn=e*41]j[2 (A1~ (B32)

and, finally, the condition that the determindBtl8) is zero
gives the following result:

(B33)

As all the {\,} play symmetric roles, this is exactly the
result announce5).

APPENDIX C: PROOF THAT EQ. (B15) CAN BE
SATISFIED SIMULATANEOUSLY FOR ALL
PERMUTATIONS o

To prove Eq.(B15) are indeed compatible, we start by

assuming that théd(o)} are such thatB8) holds for anyo
andk. As a consequence, E(B14) is true for any permuta-
tion and(B15) is equivalent taB12).

Furthermore, we assume that EB15) [or (B12)] is true
for a given permutatiowr. To show that it is also true for any

other permutation, it is sufficient, by induction, to prove that

Eqg. (B15) [or Eq.(B12)] holds forooT, with 1<k<n.

It is necessary to distinguish the two casesl andk
=1.

The casel<k<n. Whenk#1, we have the following
properties:

TieC=CTy 1, YJZ=2VY,

YLrleMZ...Mn_lzMle"‘Mn_lij_l- (Cl)

The first relation is a basic property of permutations, the

second relation comes from the fact th4g¢ does not change

the value of(1), and the third one, considering the definition

(B9) of Yy, is a rewriting of the first relation in the matrix
representation.

We can now show thaiB12) and, therefore(B15) holds
for goTy,

PHYSICAL REVIEW E68, 041101 (2003

a(ooT) =Y V(o)
— Yg(k),a(kJrl) eXF()\g(l))ZMle' M p_,8(0°C)
=eXp(\ 1) ZM M5 - M1 YK o6 Vg (o)
=exXp(N\y(1)ZM My M _18(0°CTy 1)
=exXp(\ ;1) ZM My =M _18(0°TC). (C2

As o(1)=0°T,(1) for k#1, this is indeedB12) applied to
the permutatioroeT,.

When k= 1. Equation(B15) express thaéi(o) is an eigen-
vector of

A=ZMy M, YL

X YrLon=1). yee@yeie@  (c3)

and we want to prove tha(o°T;) is also an eigenvector of

ZMy M,y Y72 oy o(2)on=1). ye(2).0@)yg(@.o(l).
(C4

As d(aoTy) =YW 25( o), this is equivalent to prove that
a(o) is an eigenvector of

B=Y§_T(2)’U(1)ZM1' “Mp_y

X YT@o(nyr@on-1). ye@.003) (g
(The relationY}'Y}'=1 has been used twige.

To conclude, we presently show thlaB=BA, which im-
plies thatA and B have the same eigenvectors. First, we
define another diagonal matri, by

(Z2)i,j= 0 exp(Z,2). (C6)
[Compare with Eq(B13).] Clearly, we have
Mlz=ZZM1 and M122=ZM1. (C?)

Moreover, as a consequence, the produgb=2,Z com-
mutes withM, andY.

When computingAB, two matricesY; cancel out. The
matrix Z commutes with all thér,, and all theM, exceptY,
andM, so that we can “move” the secordito the left and
obtain

AB:Z(H Mi>yg(ll),zr(n)...Yg(l),o(S)Z
X(H Mi)yg(_zj)_ﬂ(n)...Yg(2)10(3)’
:Zzz(H Mi>y<nf(_11),0(n)...Yg(l),o(3)

X(H Mi)yg(_zl)w’(n)...Y(2T(2),0(3). (C9

When computingBA, the second matriX can also travel to
the left; we get
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BA=Y‘{(2)'”(1)Z(H Mi)Yg<2{"’(“>---Yg<2’*"<3>z
X(H Mi>yg<_ll),rr(n)...Ytlr(l),rr(Z)
:Y‘I(z)“’(l)ZZz(H Mi)Yg<21>"’<”>---Yg(z)"’“)
X(H Mi)ygglmm)...Y<1r<1),u<2>
:zzzyzlr<2>,a(1>(1‘[ Mi)Ygal),o(n)...Yg<2>,o<3>

X(H Mi)Yg(_ll)'“m’---Y‘{“)"’(z). (C9)

Thus, the product8B andBA share the same prefactoz,,

so that ifAB=BA is true whenz;=0 (the case studied by

PHYSICAL REVIEW E 68, 041101 (2003

Yil'j(M1~"Mn_l)ZZ(Ml'"Mn—l)zYin’j—l' (C12

which can be deduced from the propertiBd) of the matri-
cesM,, we get

2
BA= zzz( I1 |v|i> Y@ o®ygaatn. ..

X Y({(Z),(r(3)Y(r:||'(_l])-,(r(n)_ . _Y({'(l),(r(Z) ) (013)
AB andBA have the same prefact@Z,(IIM;)?; we need to
show that the two products of matric&g are equal. We
proceed by induction: It is clear far=1 (or n=2) and we
assume it is true fon— 1. In both products, we “move” the
matricesY,,_; to the left. We get

2
AB=ZZZ( 11 Mi) Yo myg@pemyriho-b. .

X YTL0@) 5 yo(2)o(n=1). .y g(2.0(3) (C14)

Yang[29]), thenAB=BA is true for arbitrary values of the and, using Eq(B10),

{z}. As it is a well known fact that the operators commute in

2
Yang's case, we could stop the proof here. However, forBA= ZZZ(H Mi> Y2 ey @ omyeth.otn

completeness, let us properly finish it.

We continue the simplification o&B; using(C1), we can
have the whole first group of matrice§ in AB go to the
right through the second produkt;---M,,_;. We get

2
AB= ZZZ( H Mi) Yﬁ(,lz)"’(”)- . .Yclr(l),v(3)

X YO, . yg@.003) (C10

We do the same for the produB®,
2
BA= Zzzyg(z),0(1)< H Mi) Y‘r{(_zz)“’(n)' . .Y‘lf(z),o(3)

XYg(,ll)'U(n)' . ‘Yz(l),o(Z) ) (C1y

Using

X Y720 (0=1). Ly a(2).0(3) 5 oL o(n=1). .y o(1).0(2)

2
~22,| T | vy gy
X Y720 (0=1). Ly a(2.0(3) 5 yo(ho(n=1), .y o(d).o2)

(C19

Leaving aside the common prefBZ,(I1M;)?, the products

AB and BA start with the same tw¢& matrices, and what
remains are the products ¥fmatrices in the expressions of
AB and BA at ordern—1. This, by induction, proves that
AB=BA.

Finally, putting everything together, we have shown that

the n! properties(B12) obtained from the boundary condi-
tions are self-compatible.
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