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Abstract

Simulations of magnetohydrodynamic (MHD) flows in bounded domains using spectral methods suffer from a

number of serious limitations. Alternative methods based on local discretization raise the problem of how to implement

non-local boundary conditions for the magnetic field. We have developed a new strategy for the numerical solution of

MHD problems in bounded domains, which combines the flexibility of a local discretization with a rigorous formu-

lation of magnetic boundary conditions next to an insulator in arbitrary geometries. In accordance with the character of

underlying equations we apply a global integral approach at the boundary and a differential approach inside the

conducting domain. The formulation of the boundary problem in terms of primitive variables allows us to combine

these approaches and propose a mixed finite volume and boundary element method. We illustrate its efficiency on

magnetic diffusion problems in a sphere and in a finite cylinder.

� 2004 Elsevier Inc. All rights reserved.
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1. Physical motivation

The self-excited dynamo theory is widely accepted to be the only plausible explanation for the existence

of a large scale planetary magnetic field, as we have on Earth. It is also expected to account for the large
scale field in stars, like the Sun, and galaxies as well [1]. Self-excited dynamo action involves motions of an

electric conductor which amplify and regenerate a magnetic field, overcoming the effects of diffusion. While

several early models were proposed that demonstrated this instability in simple devices with properly
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arranged wires [2], natural dynamos proved extremely difficult to tackle because they occur in a uniformly

connected volume of conducting fluid. Numerical modeling is thus a necessary tool to progress on these

issues.
An important issue in dynamo modeling is the non-local nature of the magnetic boundary conditions

next to an insulator. Proper matching of the magnetic induction at the boundaries with an outer potential

field can be derived in the spectral domain, making use of the appropriate eigenfunctions. Such is the case

for modeling perfectly spherical bodies, using spherical harmonic expansions (see for example the inter-

national benchmark in [3] and references therein). However, the spectral approach has a number of limi-

tations. First, it is not easily adaptable to more complicated domains. Indeed, when resolving the induction

equation in a cylinder to study an experimental setup of the Karlsruhe experiment, Tilgner [4] immersed the

cylindrical domain in a large sphere to satisfy the boundary conditions. Even when the boundary of the
domain is a sphere, using spherical harmonics can appear as a limitation. The low viscosity in natural flows

introduces very sharp shear layers [5–7], which despite of their local nature need an extremely high global

resolution to be properly resolved in the spectral domain. This limits the parameter space that can be

investigated with spectral approaches. Even worse, theoretical models can be proposed for the geodynamo

by dropping the viscous term as well as inertia, and investigating the principal balance between the Lorentz

force and the Coriolis term [8]. The resulting system being nonviscous allows discontinuities in the flow. In

this case, using spectral methods results in Gibbs oscillations, regardless of the resolution. Another prac-

tical aspect mentioned in [9] is that the spherical harmonics expansion is not well suited for massive parallel
simulations because of the significant number of communications required for the computation of non-

linear terms. The construction of appropriate magnetic boundary conditions with a local discretization

would overcome many of these limitations.

The natural alternatives to spectral methods are the finite element and finite volumes methods (FEM,

FVM), widely used in fluid mechanics. They provide robust and accurate solutions for arbitrary geometries.

However major difficulties were raised by previous authors in applying these methods to MHD flows [9,10].

The main issue in bounded domains is the conflict between local discretization and the global form of the

magnetic boundary conditions. Studies are therefore often performed in periodic domains [11–13] or using
somewhat arbitrary boundary conditions [14,15]. Another aspect is the requirement to ensure the field

remains divergence free for all time.

A few attempts have already been made to apply the finite element method to the geodynamo and

overcome the difficulties mentioned above. Chan et al. [10] studied a spherical a2-dynamo problem. They

constructed approximate boundary conditions for the core-mantle boundary by extending the domain of

computation, and introduced an auxiliary pressure to the magnetic induction equation to achieve diver-

gence free solutions. Matsui and Okuda [9] have developed a three-dimensional MHD code for geodynamo

simulations. They also extended the computational domain into the external insulator to address the
boundary condition issue, but applied a vector potential method to make this approach more rigorous and

obtain divergence free solutions.

To address the difficulty of non-local boundary conditions in another way, the integral equation ap-

proach was recently proposed as an alternative to the differential equation methods [16,17]. The authors

introduce an integral formulation for a mean field dynamo problem. This allows one to naturally match the

boundary conditions. The integral problem is resolved through a classical poloidal–toroidal decomposition

of vector fields followed by a spherical harmonic expansion. This approach is found to be extremely ac-

curate in the case of well chosen a and without any large scale flow. This formulation is however difficult to
generalize to arbitrary time dependent velocity fields, since it relies on a volume integration involving the

electric field at each time step. The approach is also intrinsically limited to the kinematic dynamo problem

and will not be extendable to the full set of non-linear coupled equations of the MHD system.

Two alternative approaches to resolve magnetic induction boundary conditions without expansion into

spherical functions have been proposed in [18,19]. These are discussed and compared by Pavel Hejda [20].
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Both approaches are essentially based on poloidal–toroidal decomposition for the magnetic and velocity

fields (B and u). In the exterior of the sphere the toroidal component of the magnetic field vanishes. The

poloidal part is governed by an outer elliptic problem with Dirichlet boundary conditions. In Jepps�method
[18] this exterior problem is reduced to the internal one and solved inside the sphere. In Ivanova�s method

[19] it is solved with the aid of Green function formalism. In both cases the linear integral operator for the

poloidal part of the magnetic induction on the boundary can be computed and used to timestep the finite

difference system. The poloidal–toroidal decomposition can easily be used for kinematic problems in two

dimensions. However in the general case of arbitrary three-dimensional flows, the term u� B in the in-

duction equation is not divergence free and cannot be decomposed in a poloidal and a toroidal part.

Therefore the resulting formulation for both the induction equation and the Navier–Stokes equation ex-

pressed for the poloidal and toroidal components includes at least fourth-order terms in space and requires
the systematic inversion of the horizontal Laplacian operator. This becomes a non-trivial and highly dif-

fusive task with non-spectral methods. Therefore the approaches discussed in [18–20] cannot be easily

extended to general three-dimensional flows.

The problem of non-local magnetic conditions can also occur in plasma physics when the stability

of a plasma in tokomaks is investigated. This problem, although different, bares some similarity to the

one we will investigate here. A solution has been proposed [21,22] by using Green�s theorem for a

problem with axisymmetric boundaries of arbitrary cross-sections. The stability of the resulting system

is then investigated in spectral space rather than with a local discretization as we will propose
here.

To summarize, a proper implementation of magnetic boundary conditions with an insulating exterior

remains the principal limitation to the development of new codes for natural dynamos using non-spectral

methods (finite volume, finite elements, spectral elements, etc.). In this article, we develop a new strategy for

the numerical resolution of MHD problems in bounded domains. We apply an integral formulation on the

boundary where the magnetic field has a global nature, and combine it with a local discretization inside the

domain. In contrast to the methods discussed in [20] our approach does not require a poloidal–toroidal

decomposition, and it provides solutions in terms of primitive variables. It is therefore not restricted to
special types of flows and allows arbitrary three-dimensional configurations. In terms of numerical strategy,

we propose to couple finite volumes and boundary elements. This allows a rigorous formulation of the

global boundary conditions in arbitrary geometries and provides an efficient and convenient method for

parallel computations.

In Section 2, we describe the finite volume formulation in the context of the kinematic dynamo problem

(i.e. for a specified velocity field) and introduce the divergence free update of the magnetic field. In Section

3, the boundary problem is formulated in terms of primitive variables. In Section 4 we solve this problem by

introducing the integral approach on the boundary together with the boundary element method. Finally,
we present some numerical examples of magnetic diffusion problems in a sphere as well as in a finite cyl-

inder to demonstrate the efficiency of this formulation. In conclusion some remarks on practical applica-

tions of this technique are given.
2. Finite volume formulation

The behavior of the magnetic field in the MHD approximation is governed by the magnetic induction
equation which neglects the free charge density and the displacement current. In a medium of electrical

conductivity r this equation is

oB

ot
¼ r� ðu� BÞ þ gDB; ð1Þ
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where g ¼ ðl0rÞ
�1
. It can be expressed in non-dimensional form introducing the magnetic Reynolds

number Rm ¼ UL=g, and using the diffusive time scale, L2=g, as unit of time

oB

ot
¼ Rmr� ðu� BÞ þ DB: ð2Þ

We choose this scaling because numerical examples will be performed in the limit Rm ! 0. When interested

in fast dynamos (limit of infinite Rm), it is customary to use the advective time scale instead (i.e. L=U ) which

results in a coefficient Rm�1 in front of the diffusion term. The magnetic field also satisfies the divergence

free condition

r � B ¼ 0: ð3Þ
Introducing the electric field

E ¼ �Rmðu� BÞ þ r � B; ð4Þ

the induction equation (2) can be represented in conservative form by Faraday�s law

oB

ot
¼ �r� E: ð5Þ

Eq. (5) implies that condition (3) remains valid for all times provided it was satisfied initially, i.e.

o

ot
ðr � BÞ ¼ 0: ð6Þ

It is not a trivial matter to obtain a discrete analog of Eqs. (4)–(6). We refer the reader to [23] for an

extensive discussion and comparison of the different strategies. Since we are interested in resistive MHD,

following [24] (see also [11]) we will use the constrained transport algorithm (CTA). The computational
domain is divided into control volumes. The three components of the magnetic field are collocated at the

centers of the volume�s faces to which they are orthogonal. In this case the magnetic field is to be interpreted

as an area-weighted average on the cell face. The components of the electric fields are collocated at the

volume�s edges to which they are parallel. As a result the different components of the magnetic and electric

fields are collocated at different spatial points in the control volumes as represented in Fig. 1. The control

volume centers are indexed by ði; j; kÞ. Variables defined at the volume faces will have one half-integer

index. Variables defined at the edges will be marked by two half integer indices.
yi, j–1/2, k
B

i–1/2, j–1/2, kzE

E

E

B

x

xi+1/2, j,k

i, j, k+1/2zB

i, j–1/2, k–1/2

i+1/2, j, k–1/2y

x

z y

Fig. 1. The staggered mesh used for computing the magnetic and electric fields according to the constrained transport algorithm.
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According to Stokes� theorem the rate of change of the magnetic flux across a given face of area Sface is
taken as a minus circulation of the electric field around the face contour Cface (see Fig. 2):Z

Sface

oBn

ot
ds ¼ �

Z
Sface

ðr � EÞ � nds ¼ �
I
Cface

E � dl; ð7Þ

and the standard finite volume approach yields for the mean flux

dBn

dt
Sface ¼ �

I
Cface

E � dl: ð8Þ

Introducing Sx; Sy ; Sz as the face areas and lx; ly ; lz as the edge lengths, the approximated contour integrals

yield the finite volume analog of Faraday�s law (5)

�Sx;i�1=2;j;k �
Bnþ1
x;i�1=2;j;k � Bn

x;i�1=2;j;k

Dt
¼ ðly � Enþ1=2

y Þi�1=2;j;k�1=2 � ðly � Enþ1=2
y Þi�1=2;j;kþ1=2

� ðlz � Enþ1=2
z Þi�1=2;j�1=2;k þ ðlz � Enþ1=2

z Þi�1=2;jþ1=2;k;

�Sy;i;j�1=2;k �
Bnþ1
y;i;j�1=2;k � Bn

y;i;j�1=2;k

Dt
¼ ðlz � Enþ1=2

z Þi�1=2;j�1=2;k � ðlz � Enþ1=2
z Þiþ1=2;j�1=2;k

� ðlx � Enþ1=2
x Þi;j�1=2;k�1=2 þ ðlx � Enþ1=2

x Þi;j�1=2;kþ1=2;

�Sz;i;j;k�1=2 �
Bnþ1
z;i;j;k�1=2 � Bn

z;i;j;k�1=2

Dt
¼ ðlx � Enþ1=2

x Þi;j�1=2;k�1=2 � ðlx � Enþ1=2
x Þi;jþ1=2;k�1=2

� ðly � Enþ1=2
y Þi�1=2;j;k�1=2 þ ðly � Enþ1=2

y Þi�1=2;j;k�1=2:

ð9Þ

These equations can also be written in an operator form

Bnþ1 � Bn

Dt
¼ �Curl Enþ1=2; ð10Þ
dB n
dt

Fig. 2. Divergence free magnetic induction update according to Stokes� theorem.



A.B. Iskakov et al. / Journal of Computational Physics 197 (2004) 540–554 545
where Curl is an operator which reflects a vector field defined at the volume�s edges into a vector field

defined on the volume�s faces according to (9).

As a consequence of (8) the magnetic flux Fcell out of the control volume remains zero provided that it
was so initially

dFcell
dt

¼
X
faces

dBn

dt

� �
i

Si ¼ �
X
faces

I
Ci

Edl ¼ 0: ð11Þ

The last identity is exactly satisfied at the discrete level because the integral of the electric field along each

volume�s edge is taken twice in opposite directions (see Fig. 2).

Eq. (11) provides a discrete analog of the divergence free condition (6) and ensures the solenoidal

character of the magnetic field through the computation.

In order to derive the finite volume scheme for the electric field according to (4), we divide it into an

inductive part and a resistive part:

E ¼ �Rmðu� BÞ þ r � B ¼ Êinduct þ ~Eresist: ð12Þ

To calculate the resistive part in (12) on a general grid one has to construct the dual operator Curl�

conjugate to operator Curl in the sense of the support-operators [25,26]

~Enþ1=2 ¼ 1

2
ðCurl�Bnþ1 þ Curl�BnÞ: ð13Þ

This operator reflects a vector field defined on the volume faces into a vector field defined at the edges. It is

derived from the condition that it should satisfy the discrete analog of the integral vector identityZ
V
E � Curl�BdV �

Z
V
B � Curl EdV ¼

Z
S
ðE� BÞ � nds; ð14Þ

on a given grid for arbitrary vector fields E and B.

The determination of this dual operator can in fact be related to the traditional issue of the proper

construction of a dual mesh in staggered finite volumes (e.g. [27]). The support-operators approach here

provides a systematic way to construct this mesh.
B

B

B

x

x

z
i, j, k–1/2

i–1/2, j, k

i–1/2, j, k–1

i–1, j, k–1/2zB

Ey

Fig. 3. Evaluation of the circulation of B along the path enclosing the edges to calculate the tangent component of E on the edge.
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On a regular cartesian, cylindrical or spherical computational mesh, the dual operator can be easily

derived. Simply connecting neighboring volume centers provides the integration contours for the dual mesh

(see Fig. 3). The resistive part of the electric field ~E can then be obtained by Stokes� theorem as a circulation
of the magnetic field B around these contours

~Enþ1=2
face � ~Sface ¼

1

2

I
~Cface

ðBnþ1 þ BnÞ � dl: ð15Þ

Denoting by ~Sx; ~Sy ; ~Sz contour areas and by ~lx;~ly ;~lz lengths of their sides, we obtain the finite volume scheme

for the resistive part of the electric flux

ð~Sx~Enþ1=2
x Þi;j�1=2;k�1=2 ¼

ð~lyBnþ1=2
y Þi;j�1=2;k�1 � ð~lyBnþ1=2

y Þi;j�1=2;k

�ð~lzBnþ1=2
z Þi;j�1;k�1=2 þ ð~lzBnþ1=2

z Þi;j;k�1=2

 !
;

ð~Sy ~Enþ1=2
y Þi�1=2;j;k�1=2 ¼

ð~lzBnþ1=2
z Þi�1;j;k�1=2 � ð~lzBnþ1=2

z Þi;j;k�1=2

�ð~lxBnþ1=2
x Þi�1=2;j;k�1 þ ð~lxBnþ1=2

x Þi�1=2;j;k

 !
;

ð~Sz~Enþ1=2
z Þi�1=2;j�1=2;k ¼

ð~lxBnþ1=2
x Þi�1=2;j�1;k � ð~lxBnþ1=2

x Þi�1=2;j;k

�ð~lyBnþ1=2
y Þi�1;j�1=2;k þ ð~lyBnþ1=2

y Þi;j�1=2;k

 !
;

ð16Þ

where Bnþ1=2 ¼ 1
2
ðBn þ Bnþ1Þ.

When the magnetic Reynolds number Rm is moderate, the inductive part of the electric field Ê could be

evaluated by simply interpolating u� B on the edges. On a uniform cartesian mesh Ê would then be taken

as an average of the appropriate values defined at the faces

Ênþ1=2
x;i;j�1=2;k�1=2 ¼

Rm
2

ðBy � uzÞnþ1=2
i;j�1=2;k�1 þ ðBy � uzÞnþ1=2

i;j�1=2;k

�ðBz � uyÞnþ1=2
i;j�1;k�1=2 � ðBz � uyÞnþ1=2

i;j;k�1=2

0
@

1
A;

Ênþ1=2
y;i�1=2;j;k�1=2 ¼

Rm
2

ðBz � uxÞnþ1=2
i�1;j;k�1=2 þ ðBz � uxÞnþ1=2

i;j;k�1=2

�ðBx � uzÞnþ1=2
i�1=2;j;k�1 � ðBx � uzÞnþ1=2

i�1=2;j;k

0
@

1
A;

Ênþ1=2
z;i�1=2;j�1=2;k ¼

Rm
2

ðBx � uyÞnþ1=2
i�1=2;j�1;k þ ðBx � uyÞnþ1=2

i�1=2;j;k

�ðBy � uxÞnþ1=2
i�1;j�1=2;k � ðBy � uxÞnþ1=2

i;j�1=2;k

0
@

1
A:

ð17Þ

If Rm is large, a proper treatment of the inductive part Ê is needed. Particularly, in the full MHD simu-

lations, Ê can be calculated through the fluxes obtained from a higher order MHD Godunov scheme (see

[11,12]). For simplicity and since the inductive term does not raise special difficulties with the boundary

conditions, we will restrict our analysis to the case of low Rm for which a simple interpolation (17) is

suitable.

Eqs. (9), (12), (16) and (17) provide the finite volume formulation of the induction equations (4) and (5).
3. Boundary formulation

The finite volume scheme described in the previous section is not self-consistent if the computational

domain X is bounded. To apply it directly to MHD flows in bounded domain one needs to formulate

magnetic boundary conditions in terms of primitive variables using a local discretization.
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The finite volume scheme (9), (12), (16), (17) requires expressions for the tangential components of the

electric field at the boundary through the magnetic field. Let us assume that the boundary C is fixed in time

and is rigid, so that the velocity u has no normal component on C:

uC � n ¼ 0: ð18Þ

The tangential component of the electric field along the unit vector s at the boundary according to (4) is

then

Es ¼ �Rms � ðu� ðBnnÞCÞ þ s � ðr � BÞC; ð19Þ

where n is the unit outward normal on the boundary, Bn is the component of B along n, Es is the component
of E along s, and

ðr � BÞC ¼ lim
r!C
r2X

ðr � BðrÞÞ: ð20Þ

The first term in (19) obviously requires knowledge of Bn only and thus raises no special difficulty. In

contrast, to approximate the limit (20), one needs to know the tangential component of the magnetic field

on C. The method of approximation here depends on the particular grid being used.

Let us consider for simplicity a regular orthogonal grid on the boundary with the Z-axis directed along n
(see Fig. 4). Using the notations introduced in the previous section, we estimate the tangential components

of the electric field Ex and Ey on C according to (19) as

Ex;i;jþ1=2;kþ1=2 ¼ � Rm
2

ðuy � BzÞi;j;kþ1=2

n
þ ðuy � BzÞi;jþ1;kþ1=2

o

þ
(

�
~By;i;jþ1=2;kþ1=2 � By;i;jþ1=2;k

Dz=2
þ Bz;i;jþ1;kþ1=2 � Bz;i;j;kþ1=2

Dy

)
;

Ey;iþ1=2;j;kþ1=2 ¼
Rm
2

ðux � BzÞi;j;kþ1=2

n
þ ðux � BzÞiþ1;j;kþ1=2

o

þ
~Bx;iþ1=2;j;kþ1=2 � Bx;iþ1=2;j;k

Dz=2

(
� Bz;iþ1;j;kþ1=2 � Bz;i;j;kþ1=2

Dx

)
;

ð21Þ

where Dx, Dy and Dz are grid steps, ~Bx and ~By are the tangential components of B on C. The second terms in

(21) represent an approximation to the limit (20). To achieve second-order accuracy one has to add, re-

spectively, to the right-hand sides of (21) the additional terms

� 1

3

~By;i;jþ1=2;kþ1=2 � By;i;jþ1=2;k

Dz=2

 
� By;i;jþ1=2;k � By;i;jþ1=2;k�1

Dz

!
;

1

3

~Bx;iþ1=2;j;kþ1=2 � Bx;iþ1=2;j;k

Dz=2

 
� Bx;iþ1=2;j;k � Bx;iþ1=2;j;k�1

Dz

!
:

ð22Þ

To apply Eq. (21) one needs some additional information on the tangential components of the magnetic

field on the boundary, which should be obtained from the boundary conditions. The resulting boundary

problem for the finite volume scheme (9), (12), (16), (17), (21) is to calculate the tangential components of

the magnetic field on the boundary through its normal component, known on the boundary.



x

z
y

Bz i+1, j, k+1/2
Bz i, j, k+1/2

Bx i+1/2, j, k

E x
~
By

Fig. 4. Estimation of the tangential electric field Ey on the boundary.
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4. Integral formulation at the boundary

The boundary problem formulated in the previous section should be solved through the boundary

condition that the magnetic field must match a potential field at the boundary. This problem is global, i.e.

the tangential component of the magnetic field at a given point depends on the values of its normal
component everywhere on the boundary. This dependence is however linear and in this section we construct

the appropriate linear operator through an integral formulation.

The problem of matching a potential field can be formulated as an elliptic problem in Xc, the comple-

mentary domain of X:

B ¼ �r/; D/ ¼ 0; ð23Þ

where / : Xc ! R is the potential function.

Having in mind the geodynamo problem, we assume further that X is bounded and Xc is unbounded

although the following approach is applicable in other cases as well. At infinity, the physical condition for
the magnetic field gives

/ ! Oðr�2Þ; r ! 1: ð24Þ

The normal component of the magnetic field Bn is known on the boundary C which implies a Neuman

boundary condition on the potential

o/
on

����
C

¼ �Bn ðBn : C ! RÞ: ð25Þ

The numerical resolution of the corresponding elliptic problem (23)–(25) by a finite element method (or any

other meshed method), involves arbitrarily bounding this domain [9,10]. This introduces additional ap-

proximations. In contrast, an integral formulation allows us to tackle this problem directly. Under the

framework of an integral approach to the elliptic problem (23), potential field characteristics can be ex-

pressed as surface integrals over the appropriate fundamental solution (i.e. the solution of the equation

DG ¼ dðx; yÞ)

Gðx; yÞ ¼ �1

4pjx� yj : ð26Þ
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In particular, denoting by BR an open ball of radius R such that X � BR, as a consequence of Green�s
theorem the magnetic potential at x 2 C satisfies [28,29]

/ðxÞ ¼ �2

Z
C

/ðyÞ oGðx; yÞ
on

�
þ BnðyÞGðx; yÞ

�
dsðyÞ þ 2

Z
oBR

/ðyÞ oGðx; yÞ
o~n

�
� o/ðyÞ

o~n
Gðx; yÞ

�
dsðyÞ;

ð27Þ

where n is the coordinate along the outward normal to X and ~n is the coordinate along the outward normal
to BR. The second term (i.e. the integral over oBR) however vanishes when R ! þ1 (keeping the center of

the ball fixed). So we can simply write

/ðxÞ ¼ �2

Z
C

/ðyÞ oGðx; yÞ
on

�
þ BnðyÞGðx; yÞ

�
dsðyÞ: ð28Þ

Consequently the tangential component of the magnetic field on C along the unit vector s is

BsðxÞ ¼ �s � r/ðxÞ ¼ 2s �
Z
C

/ðyÞrx
oGðx; yÞ

on

�
þ BnðyÞrxGðx; yÞ

�
dsðyÞ: ð29Þ

The solution of Eqs. (28) and (29) provides the tangential component Bs on C through the normal com-
ponent Bn. However, to numerically obtain this solution using local discretization, one needs to construct

an appropriate discrete analog of these equations. The discrete analog of the integral approach for nu-

merical applications has been developed as the boundary element method (BEM) [28,29].

In the BEM formalism the boundary surface is subdivided into small elements and each element contains

several nodes where the boundary variables and conditions are defined. Let us introduce a tessellation of C
in terms of Sj, i.e. Si \ Sj ¼ O ð8i; j with i 6¼ jÞ, and [jSj ¼ C. The simplest discrete analog of Eqs. (28) and

(29) can then be written as

1

2
/i ¼ �

X
j

/j

Z
Sj

oG
on

ðxi; yÞdsðyÞ �
X
j

Bnj

Z
Sj

Gðxi; yÞdsðyÞ; ð30Þ
Bsi ¼
X
j

/j

Z
Sj

2s � rx
oG
on

ðxi; yÞdsðyÞ þ
X
j

Bnj

Z
Sj

2s � rxGðxi; yÞdsðyÞ; ð31Þ

where

/i ¼ /ðxiÞ; Bni ¼ BnðxiÞ; Bsi ¼ BsðxiÞ

are potentials and magnetic field components at node i on the boundary, while Sj is the boundary surface
corresponding to node j.

If we assemble the potentials /i and components of the magnetic field Bni, Bsi defined in all boundary

nodes in vectors U, Bn and Bs, the linear systems (30) and (31) can be rewritten in a matrix form

1

2
U ¼ AUþ CBn; ð32Þ

Bs ¼ DUþ FBn; ð33Þ
where A, C,D, and F are matrices with coefficients depending only on the geometry of the computational grid

Aij ¼ �
Z
Sj

oG
on

ðxi; yÞdsðyÞ; Cij ¼ �
Z
Sj

Gðxi; yÞdsðyÞ; ð34Þ
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Dij ¼
Z
Sj

2s � rx
oG
on

ðxi; yÞdsðyÞ; Fij ¼
Z
Sj

2s � rxGðxi; yÞdsðyÞ: ð35Þ

Different possible approximations for the matrix coefficients determine the accuracy of the method. Dif-

ferent values can also be defined at different sets of nodes on the boundary.

In general, for each node on the boundary we have two tangential components (two different tangential

directions s) and one normal component. Therefore, if matrices A and C have size of N � N then matrices D
and F have size of 2N � N . From the system (32), (33), we obtain a linear, but non-local, expression for the

boundary potential U and tangential components Bs through the normal components Bn:

U ¼ ðId=2� AÞ�1C � Bn;

so that

Bs ¼ ðDðId=2� AÞ�1C þ F Þ � Bn;

Bs ¼ G � Bn:
ð36Þ

Eqs. (34)–(36) together with the appropriate integral approximations define the matrix of the linear op-

erator G which allows the solution of the boundary problem and provides a closure for the finite volume

formulation (9), (12), (16), (17),(21) described in the previous sections.
Let us now discuss the evaluation of integrals (34) and (35) over elements, as this is the most crucial

aspect of the numerical implementation of BEM. The main issue lies in the fact that the functions which

have to be integrated exhibit singularities at certain points in the elements.

Whereas integrals for the diagonal coefficients Cii in (34) are weakly singular, and can in principle be

evaluated using numerical integration, the integrals for the diagonal coefficients Aii, Dii and Fii in (34) and

(35) exist only as Cauchy principal values. Since the principal value of the integral Fii is zero one can

calculate it by excluding some small e-vicinity around xi. To compute the diagonal coefficients Aii, we

substitute / � 1 into (27)

1

2
¼ �

Z
Ce

oG
on

ðxi; yÞdsðyÞ �
Z
C�Ce

oG
on

ðxi; yÞdsðyÞ þ
Z
oBR

oG
o~n

ðxi; yÞdsðyÞ; ð37Þ

where Ce is the part of the boundary in the vicinity of xi, jx� xij < e, C� Ce is the remaining part of the

boundary at jx� xijP e. Since the last integral in (37) tends to unity as R ! 1, we obtain

�
Z
Ce

oG
on

ðxi; yÞdsðyÞ ¼ � 1

2
þ
Z
C�Ce

oG
on

ðxi; yÞdsðyÞ: ð38Þ

The discrete analog of this relation provides an estimation of the diagonal matrix elements Aii,

Aii ¼ � 1

2
�
X
j 6¼i

Aij: ð39Þ

Similar considerations give an estimation for Dii,

Dii ¼ �
X
j 6¼i

Dij: ð40Þ

Since the numerical mesh will in general not be modified during the simulation, the matrix G in (36) only

has to be calculated once. The boundary condition at each time step is then simply reduced to a matrix

multiplication. Moreover, if the mesh has a cylindrical symmetry (which is almost always the case for

natural dynamos) the matrix G can be significantly reduced in size.
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5. Numerical examples

To test the proposed approach, we have developed a three-dimensional code for the kinematic dynamo
problem which couples finite volume and boundary element methods as proposed above. For simplicity we

have used structured regular spherical and cylindrical grids. In this section, we present some numerical tests

with the magnetic Reynolds number set to zero (only the resistive part is considered). This is enough to test

the numerical procedure against known eigenfunctions, and demonstrate the flexibility of this approach.

A first test consists of reproducing the analytical solution for the decaying dipole field in a sphere (see

Fig. 5(a)). The slowest decaying mode in the spherical geometry is the dipole field (e.g. [30]), which can be

expressed in terms of cylindrical Bessel functions

BðtÞ ¼ B0ðr; hÞe�rt with r ¼ p2

R2
ð41Þ

with B0 being defined for r < R as

B0ðr; hÞ ¼
2 cos hJ3=2ðpr=RÞ

r3=2
sin h
r3=2

J3=2ðpr=RÞ � pr
R J1=2ðpr=RÞ

� �
0

0
@

1
A; ð42Þ

and for r > R as

B0ðr; hÞ ¼

2 cos hJ3=2ðpÞ
r3=2

R
r

� �3=2
sin hJ3=2ðpÞ

r3=2
R
r

� �3=2
0

0
B@

1
CA; ð43Þ

where R is the sphere radius, and J1=2 and J3=2 are the cylindrical Bessel functions. This mode provides an

eigenfunction of the diffusion equation

oB

ot
¼ �r�r� B: ð44Þ

In our simulations the decay dipole field rate tends asymptotically with time to a particular value which

corresponds to the slowest decaying mode. The time variation of the decay dipole rates are shown in Fig. 6.

The decay rate for a unit sphere clearly converges toward to the analytical dipole decay rate �p2 as the

resolution is increased. At a resolution of 40� 40� 40, the relative error is already approximately 0.1%.

The comparison between radial profiles of meridional and radial components of the magnetic field in the

analytical and numerical diffusive solutions after one decaying period is represented in Fig. 7. For a coarse
(a) (b)

Γ

Ω
Ω

Ω c

Γ

Ωc

Fig. 5. Computational domains and boundaries for the presented examples: a sphere (a) and a bounded cylinder (b).
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Fig. 6. Decay rate of the computed dipole field for various mesh size. The convergence to the analytical value �p2 is demonstrated with

increasing resolutions.
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Fig. 7. Cross-sections of the slowest decaying mode (diffusive solution) in a numerical simulation with a coarse grid (30� 30� 30).

The numerical solution is here represented with circles, while the analytical solution is plotted with solid lines.
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grid of 30� 30� 30 the difference is already imperceptible. This demonstrates the efficiency of the mixed

finite volume and boundary element method at properly matching the potential field outside the compu-

tational domain.

To demonstrate the validity of this approach in an arbitrary geometry, we have calculated the decaying

magnetic field in a conducting cylinder of unit height and radius (see Fig. 5(b)). The kinematic dynamo

simulation in a similar cylindrical configuration (relevant to an experimental setup) by spectral methods

required the extension of the computational domain outside the cylinder to an arbitrary sphere, at which
the boundary condition was met [4].



Fig. 8. First decay mode in a bounded cylinder of unit radius and height (the simulation is three-dimensional and the mesh is only

20� 20� 20).
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The computed magnetic field is axisymmetric (although the simulation is fully three-dimensional) and

the solution is represented in a cross section in Fig. 8. It corresponds to the slowest decaying mode in this

finite cylinder.
6. Conclusions

The combination of an integral boundary element method with a local differential approach inside the

computational domain, reflects the physical nature of underlying equations for magnetic induction. It al-

lows the development of an efficient strategy for modeling the induction equation in arbitrary bounded

domains. In terms of the local finite volume approach, the global boundary problem for the magnetic field

can be formulated as the estimation of the tangential components of the magnetic field on the boundary

through the normal component. Then, utilizing an integral formulation, the non-local boundary conditions

can be naturally described as a global linear operator on the boundary. In contrast with [19], our integral

formulation provides solution in primitive variables and does not require a poloidal–toroidal decompo-
sition of vector fields. An important characteristic of the boundary operator is its dependence only on the

geometry of the bounding surface. So if the boundary does not change in time during the simulation, it is

possible to calculate this operator only once for the particular numerical grid, and then use it throughout

the numerical simulation. Following this approach we have developed a finite volume scheme, and illus-

trated its efficiency on magnetic diffusion problems.

To conclude, we would like to highlight some practical applications of this approach. Massive parallel

computations, which have become increasingly common during the last few years, reveal limitations in

spectral methods which involve a significant number of global operations. The calculation of new magnetic
field values at a given point on the boundary surface requires information on the magnetic field over the

whole surface, which is unavoidable for a global boundary condition. This inevitably requires some

communications in terms of parallel computing. However within the framework of the proposed integral

formulation, such transfers are limited to boundary values (in contrast to information in the volume) and

thus minimized. In addition, these transfers can be further reduced if the boundary points are treated by a
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small number of processors. The approach advocated here therefore provides a correct treatment of the

boundary conditions, and is suitable for parallel computations.
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