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We investigate the effect of boundary roughness on the dynamical properties of
the flow in laminar Ekman boundary layers. The study considers wavy boundaries
having both horizontal wavelength and vertical extent comparable in size with the
boundary layer width. In the case of flat boundaries, Ekman layers are known to be
active, i.e. to affect significantly the dynamics of the mainstream flow. We show how
the layer modelling needs to be modified to account for such wavy boundaries. In
particular, nonlinear terms enter the laminar description. This model can be linearized
in the limit of small Reynolds numbers. The resulting equations are studied using
both asymptotic expansions and full numerical simulations. We find that small-scale
roughness significantly alters energy dissipation in the boundary layer. This can result
in either a reduction or an increase of dissipation, depending on, in particular, the
orientation of the mainstream flow with respect to boundary modulation. Agreement
is obtained between theoretical and computational results.

1. Introduction
Ekman layers (Ekman 1905) form when fluid flow strongly influenced by rotation

meets a boundary which is not parallel to the axis of rotation. Such layers are
ubiquitous in geophysical fluid dynamics: at the top of the ocean (where they were
originally discovered), at the bottom of the ocean, at the base of the atmosphere, and
at the top of the Earth’s liquid core. A similar structure develops at the base of the
solar convection zone (Ponty, Gilbert & Soward 2001). The description of Ekman
layers next to flat horizontal or slanted boundaries is well established in terms of
asymptotic expansions (e.g. Greenspan 1968). Yet in most of the relevant situations
the boundary is not flat. Provided the typical wavelength of the boundary profile
remains long compared to the boundary layer thickness, its effect can be taken into
account under the quasi-geostrophic approximation (see Pedlosky 1979, and recent
developments by Vanneste 2000). If the amplitude of the boundary profile significantly
exceeds the boundary layer width, it directly affects the mainstream flow by altering
geostrophic contours (Bell & Soward 1996). The case of rough boundary for which
neither the wavelength nor the amplitude is large compared to the boundary layer
size remains to be addressed. This occurs quite often at the bottom of the ocean
(e.g. Kunze & Llewellyn Smith 2004) or at the top of the Earth’s outer core (e.g.
Narteau et al. 2001) where the bounding surface can be very rough and wavy at a
scale comparable both in amplitude and in wavelength with that of the boundary
layer itself. The investigation of such a configuration constitutes the object of the
present research.
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2. Model setup and governing equations
2.1. Dimensional equations

We consider a very simplified model for one of the geophysical flows mentioned above.
A local Cartesian approximation is adopted with coordinates (X, Y, Z). For simplicity,
we assume that the rotational axis is aligned in the direction of the Z-coordinate.

We investigate flows between an upper and a lower boundary. For simplicity, the
upper boundary is considered flat, so that roughness effects will only appear adjacent
to the lower boundary. Moreover, the upper boundary may be neglected, either
by considering stress-free boundary conditions, or through a proper choice of the
pressure gradient (e.g. Ponty et al. 2001), so that, in our model, an Ekman layer only
develops near the wavy lower boundary.

Throughout this paper, the fluid is assumed to be incompressible, rotating at
constant angular velocity Ω , with constant rotation vector along the vertical axis:
z = (0, 0, 1). In the rotating frame of reference, the Navier–Stokes equations take the
standard form

∂t∗ U∗ + U∗ · ∇∗U∗ +
∇∗π∗

ρ∗ + 2Ω z × U∗ − ν�∗U∗ = f ∗,

∇∗ · U∗ = 0,

⎫⎬
⎭ (2.1)

where �∗ ≡ (∇∗)2, all starred quantities are dimensional, and U∗ = (U ∗, V ∗, W ∗) is
the velocity, ρ∗ the density, π∗ the pressure, and ν the kinematic viscosity of the
fluid. We denote the time variable as, t∗ and space variables as (X∗, Y ∗, Z∗). For ease
of notation, we also introduce X∗ := (X∗, Y ∗), the horizontal position vector. The
function f ∗ is a forcing term sustaining the mainstream flow (such as an imposed
pressure gradient). The domain �∗ occupied by the fluid is described in the following
section.

2.2. The wavy boundary

We now investigate the formation of boundary layers next to the wavy boundary. We
consider small-scale variations of the boundary, and describe how they can affect the
Ekman layer, and the associated Ekman pumping. We will use an idealized model
assuming periodic variations of the boundary, this simpler case being already rather
interesting from a physical point of view. Non-periodic boundaries will be briefly
discussed in § 6.

Let us consider a domain �∗ of the following form:

�∗ := {(X∗, Z∗), Γ ∗(X∗) < Z∗ < L∗}, (2.2)

where Γ ∗ is a function describing the lower boundary, and L∗ is a positive constant.
The system (2.1) is completed with boundary conditions at the top and bottom of the
domain,

z · U∗ = 0 and z · ∇(z × U∗) = 0 at the upper boundary (stress-free), (2.3a)

U∗ = 0 at the lower boundary (no-slip). (2.3b)

We denote the maximal amplitude, X∗–periodicity, and Y ∗–periodicity of the wavy
boundary as h∗, l∗

X , and l∗
Y respectively. The typical size of the Ekman layer is L∗ E1/2 =

(ν/Ω)1/2, where E is the Ekman number. It is therefore convenient to introduce α, λx

and λy such that

h∗ = α L∗ E1/2, l∗
X = λx L∗ E1/2, l∗

Y = λy L∗ E1/2. (2.4a)
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Figure 1. Schematic of the fluid flow investigated in a rotating reference frame in a domain
� with a modulated bottom boundary and flat top boundary.

2.3. Dimensionless equations

We now introduce dimensionless quantities

X = X∗/L∗, Z = Z∗/L∗, t = t∗U ∗/L∗, (2.5a)

where U ∗ is the typical flow velocity. We also define

U = (U, V, W ) = U∗/U ∗, π = π∗/(ρ∗ΩU ∗L∗), f = f ∗L∗/(U ∗)2. (2.5b)

The governing equations then become

ε (∂t U + U · ∇U) + ∇π + 2z × U − E �U = ε f ,

∇ · U = 0,

}
(2.6)

where the Rossby number, ε = U ∗/(ΩL∗), and Ekman number E have been used. The
domain �∗ becomes

� = {(X, Z) , Γ (X) < Z < 1}, (2.7)

as shown in figure 1. The wavy boundary is described by the function

Γ (X) =
Γ ∗(L∗ X)

L∗ . (2.8)

2.4. Boundary layer construction

We wish to investigate the behaviour of U for small ε and E. Following the classical
approach for boundary layers, we distinguish between the mainstream, or interior,
flow, and a boundary layer correction.

2.4.1. Mainstream solution and boundary layer description

Far from the boundary, we seek an expansion for U of the form

U = U0(t, X, Z) + E1/2 U1(t, X, Z) + · · · . (2.9)

When ε/E1/2 � O(1) the classical geostrophic balance is recovered:

2z × U0 + ∇X,ZΠ0 = 0, ∇X,Z · U0 = 0, (2.10)
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so that U0 does not depend on Z, and V =(U 0, V 0) = 1
2
∇X

⊥Π0, where ∇X
⊥ =

(−∂Y , ∂X).
Because the traditional Ekman layer develops on a vertical length scale E1/2, it is

natural to introduce stretched coordinates. We define

x = X/E1/2, y = Y/E1/2, z = Z/E1/2. (2.11)

(Note that time is not rescaled.) Near the boundary, we consider an expansion of type

U = u0 (t, X, Y, x, y, z) + E1/2 u1(t, X, Y, x, y, z) + · · · (2.12)

where all ui are periodic in the x- and y-directions, with periods λx and λy respectively.
At leading order, the following system is derived:

ε

E1/2
u0 · ∇x,z u0 + 2z × u0 + ∇x,z π0 − �x,z u0 = 2z × U0,

∇x,z · u0 = 0,

⎫⎬
⎭ (2.13a)

where

∇x,z = (∂x, ∂y, ∂z), �x,z = ∂2
x + ∂2

y + ∂2
z . (2.13b)

These equations hold in the scaled semi-infinite boundary layer domain

ω = {(x, z), α γ (x) < z}, (2.14a)

where

γ : �2 → [0, 1], α γ (x) = Γ
(
E1/2x

)/
E1/2. (2.14b)

The system is completed with the boundary conditions

u0|∂ω = 0, lim
z→+∞

u0(t, X, Y, x, y, z) = U0(t, X, Y ). (2.15)

Let us make a few comments on this boundary layer system. First, if we integrate
the divergence-free condition

∇x,z · u0 = ∂xu
0 + ∂yv

0 + ∂zw
0 = 0, (2.16)

over the whole domain ω, integration by parts yields

0 =

∫
∂ω

n · u0 + lim
z→+∞

∫
x,y

w0(t, X, Y, x, y, z) dx dy = lim
z→+∞

∫
x,y

w0(t, X, Y, x, y, z) dx dy,

(2.17a)
where ∫

x,y

=
1

λx λy

∫ λx

0

∫ λy

0

. (2.17b)

Equation (2.15) then implies that U0 · z = 0, just as in the case of a flat boundary. The
interior flow U0 must therefore be horizontal:

U0 = (V , 0) = 1
2
(−∂Y Π, ∂XΠ, 0), (2.18)

and the mainstream vertical flow vanishes at leading order.
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Another interesting similarity with the case of a flat boundary is that t, X, Y act as
simple parameters. More precisely, if one ‘freezes’ (t, X, Y ) and denotes for short

V = V (t, X, Y ), u(x, y, z) = u0(t, X, Y, x, y, z), p(x, y, z) = π0(t, X, Y, x, y, z),

(2.19)

one can write system (2.13a), (2.15) as

ε

E1/2
u · ∇x,z u + 2z × u + ∇x,z p − �x,z u = 2z × (V , 0),

∇x,z · u = 0,

}
(2.20a)

u|∂ω = 0, lim
z→+∞

u(x, y, z) = (V , 0), (2.20b)

which yields a boundary value problem with (x, y, z) coordinates, set on the domain
ω (with boundary ∂ω), with parameter V .

In the classical configuration, with flat boundaries, no dependence on x, y is
implied, and therefore u = u(z). System (2.20a) simplifies to a system of linear ordinary
differential equations, leading to the Ekman spiral. In the case of wavy boundaries,
however, (2.20a) is a genuine system of partial differential equations. It is of Stokes
type for ε/E1/2 � 1, and of Navier–Stokes type for ε/E1/2 = O(1). This considerably
affects the dynamical properties of the fluid inside and outside the boundary layer, as
will be shown in what follows. This also makes the mathematical analysis of (2.20)
more difficult, as no analytical expression is available. Such an analysis has been
partly carried out by one of the authors (Gérard-Varet 2003). In particular, it has
been shown that, for V such that

Re =
ε|V |
E1/2

sufficiently small, (2.21)

system (2.20) has a unique smooth solution u. Moreover, this solution converges
exponentially to V as z goes to +∞ (see Gérard-Varet 2003 for a precise mathematical
statement). Note that Re = (U ∗ |V |) L∗ E1/2/ν is a Reynolds number based on the
Ekman layer size, so that assumption (2.21) is a classical condition of hydrodynamic
stability. Under this assumption, we can introduce (following Dormy, Roberts &
Soward 2005) the volume flux deficit in the boundary layer:

Q‖ =

∫ ∞

αγ (x)

(u‖ − V ) dz =

∫ ∞

αγ (x)

((u, v) − V ) dz, (2.22)

which depends on both x and V . The global flux deficit is then given by

QQQ‖(V ) =

∫
x

Q‖ dx, (2.23)

and depends only on V . As V is a function of (t, X, Y ), then QQQ‖(V ) is a two-
dimensional vector field depending on t, X, Y .

2.5. The Ekman pumping

Our main concern in this paper is the qualitative behaviour of the boundary layer, and
the consequence of wavy boundaries for Ekman pumping. Although the roughness
makes the vertical component of the leading-order velocity non-zero in the layer, this
component vanishes at infinity (limz→+∞ w0 = 0). The Ekman pumping is O(E1/2), as
in the case of flat boundaries. More precisely, writing u = u0 + E1/2u1 + o(E1/2), we
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obtain

∇x,z · u1 = −∂Xu0 − ∂Y v0. (2.24)

An integration by parts over the domain ω leads to

lim
z→+∞

∫
x,y

w1 = −∂X

∫
ω

(u0 − U 0) − ∂Y

∫
ω

(v0 − V 0). (2.25)

Provided that ε|V (t, X, Y )|/E1/2 remains small enough, the pumping is expressed as

lim
z→+∞

∫
x,y

w1(t, X, Y, x, y, z) dx dy = −∇X ·QQQ‖(V ), (2.26a)

where

∇X · g = ∂Xg1 + ∂Y g2 = n · ∇ × (n × g). (2.26b)

In the case of flat boundaries, QQQ‖ simplifies to

QQQ‖(V ) = 1
2
(V ⊥ − V ) (2.27)

(resulting from the Ekman spiral). One thus recovers the classical Ekman pumping

w = 1
2
E1/2 ∇X · (V − V ⊥) = 1

2
E1/2 ∇X × V . (2.28)

We consider rough boundaries that are free of large-scale topography H (X, Y ), so
that the horizontal roughness depends only on (x, y). As a result, no term of the form
V · ∇H is present in (2.26a).

When the boundary is wavy, the resulting expression in (2.26a) is not explicit. The
steady profile thus depends nonlinearly on V when ε/E1/2 = O(1). One can, however,
retrieve a simpler expression by assuming both small-amplitude flow (ε/E1/2 <O(1)
in (2.20a)) and isotropic roughness. Linearization on the basis of a small-amplitude
flow provides

QQQ‖(V ) = QQQ‖V , (2.29)

where QQQ‖ is a 2×2 matrix. In the case of isotropic roughness, the matrix QQQ‖ commutes
to rotations which implies

QQQ‖ =

(
a b

−b a

)
, with (a, b) ∈ �2, (2.30)

and the Ekman pumping is thus very similar to the usual expression (2.28),

w = E1/2 b ∇X × V . (2.31)

2.5.1. The quasi-geostrophic equations

All quantities described above depend only on the interior flow U0 = (V , 0). The
equations satisfied by V = 1

2
∇⊥

X Π remain to be established. Writing

u = U0 + E1/2U1 + o
(
E1/2

)
, (2.32)

one obtains

∂t U0 + U0 · ∇X,ZU0 +
E1/2

ε
(2z × U1 + ∇X,ZΠ1) = (f1, f2, 0). (2.33)
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Considering the vertical component of the curl of this equation yields

∂t�XΠ + V · ∇X�XΠ − 4
E1/2

ε
∂ZW 1 = 2∂Xf2 − 2∂Y f1. (2.34a)

Integration with respect to Z from Z = sup Γ to Z = 1, and with respect to x over a
period leads to

∂t�XΠ + V · ∇X�XΠ + 4
E1/2

ε
lim

z→+∞

∫
x
w1 = 2

∫ 1

0

(∂Xf2 − ∂Y f1) dz. (2.34b)

Using (2.26a), we deduce

∂t�XΠ + V · ∇X�XΠ − 4
E1/2

ε
∇X ·QQQ‖(V ) = 2

∫ 1

0

(∂Xf2 − ∂Y f1) ,

V = 1
2
∇⊥

XΠ.

⎫⎪⎬
⎪⎭ (2.34c)

These are the classical quasi-geostrophic equations of relative vorticity, in which
Ekman pumping is modified by the roughness of the boundaries. It involves the
function QQQ‖, defined in (2.23), related to the boundary layer system (2.20).

2.5.2. Relation between dissipation and friction

We should stress here the relationship among Ekman pumping, energy dissipation
in the quasi-geostrophic flow, and friction in the boundary layer.

On the one hand, multiplying equation (2.34c) by Π , and integrating with respect
to X yields (we assume that f =0 for simplicity)

∂t

(∫
X,Y

|V (t, · )|2
)

+ 2
E1/2

ε

∫
X,Y

QQQ‖(V (t, · )) · V ⊥(t, · ) = 0, V ⊥ = (−V, U ). (2.35)

On the other hand, one can show that, for all V ,∫
ω

|∇ u|2 = 2QQQ‖(V ) · V ⊥, (2.36)

where u is the solution of (2.20), and |∇u| is the quadratic norm of the gradient
matrix. We refer to Gérard-Varet (2003) for a proof of this equality. Reverting to the
original variables, this implies∫

X,Y

∫
ω

|∇x,zu0(t, · )|2 = 2

∫
X,Y

QQQ‖(V (t, ·)) · V ⊥(t, ·), (2.37a)

and

∂t

(∫
X,Y

|V (t, · )|2
)

= −E1/2

ε

∫
X,Y

∫
ω

|∇x,z u0(t, · )|2. (2.37b)

One thus verifies that, at leading order, the kinetic energy dissipation in the geostrophic
flow is due to friction in the boundary layer. Moreover, it is linked to the Ekman
pumping through the function QQQ‖. The crucial quantity is

E(V ) = 2 (QQQ‖(V ) · V ⊥)/|V |2. (2.38)

Note that in the case of a flat horizontal boundary, this simplifies to

E(V ) = ((V ⊥ − V ) · V ⊥)/|V |2 = 1. (2.39)
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E(V ) which depends on X, Y through V corresponds to a local estimate of the
energy dissipation, or equivalently to a local estimate of the friction in the layer.
Note that it can also provide some partial information on the Ekman pumping.
In the case of a planar boundary, as in the case of an isotropic roughness and
small-amplitude flow, it is because the flux deficit QQQ‖ does not lie in the direction of
the mainstream flow V that the pumping ∇X ·QQQ‖ does not vanish. More precisely,
following the linear reasoning of (2.31), one easily verifies that the resulting Ekman
pumping is ∇X ·QQQ‖ = 1

2
E ∇×V .

If the mainstream flow V is uniform, there is no net pumping associated with the
boundary layer. However, the flux deficit QQQ‖ and the energy dissipation E remain
well-defined quantities. E(V ) is then a relevant quantity, not only as an estimate of
dissipation, but also as an estimate of the Ekman pumping that will result from a
variation of V with X and Y . If the roughness is anisotropic, however, the component
of QQQ‖ along the direction of V will also contribute to the Ekman pumping (but
obviously not to the energy dissipation).

We shall now focus our attention on the analysis of E for various types of
roughness and constant velocities at infinity V . Thus, with a proper choice of U ∗, one
can set |V | = 1. Special attention will be paid to whether E < 1 or E > 1, i.e. whether
dissipation is decreasing or increasing with respect to the case of a flat horizontal
boundary. We will limit consideration to small Re = ε/E1/2, for which linearization
of the equations is possible. In this regime, the boundary layer equations become

2z × u + ∇p − � u = 2z × (V , 0),
∇ · u = 0,

}
(2.40a)

u|∂ω = 0, lim
z→+∞

u(x, z) = (V , 0), (2.40b)

where the notation ∇ = ∇x,z and �= �x,z will be used throughout.
The system (2.40) being linear, QQQ‖(V ) =QQQ‖V , and since |V | = 1, the vector V takes

the form

V = (cosϕ, sinϕ), ϕ � 0. (2.41)

We will study the dependence of E on the angle ϕ of the mainstream flow, on
the amplitude α and on the wavelengths λx, λy of the roughness. The effect of
nonlinearities on QQQ‖ is the subject of a forthcoming paper.

3. Amplitude analysis
In this section, we study the case of small-amplitude wavy boundaries of the form

∂ω = {(x, z), z = αγ (x)}, (3.1)

with α � 1 and γ smooth. In this framework, one can compute the solution u of
(2.40) using an asymptotic expansion.

Let us first make the following change of variable:

z 
→ z − αγ (x), (3.2)

so that ω becomes the half-plane ω+ = {z > 0}. The boundary layer system is expressed
in these new variables as

2z × uα + ∇αpα − �α uα = 2z × (V , 0),

∇α · uα = 0,

}
(3.3a)

uα|z=0 = 0, lim
z→+∞

uα(x, z) = (V , 0), (3.3b)
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where

u(x, z) = uα(x, z − αγ (x)), ∇α = ∇ + α(−γx∂z, −γy∂z, 0), �α = ∇α · ∇α. (3.3c)

3.1. Asymptotic expansion

In view of (3.3), it is then natural to seek an expansion of the form

uα = u0 + α u1 + · · · . (3.4)

We first identify O(1) terms in (3.3), yielding

2z × u0 + ∇p0 − � u0 = 2(V ⊥, 0),

∇ · u0 = 0,

}
(3.5a)

u0|z=0 = 0, lim
z→+∞

u0(x, z) = (V , 0). (3.5b)

We find that u0 = uV (z) is the classical Ekman spiral

wV = 0, uV + ivV = exp(iϕ)[1 − exp((−1 − i)z)]. (3.6)

We then identify O(α) terms to obtain

2z × u1 + ∇p1 − � u1 = −(γxx + γyy) ∂zu0,

∇ · u1 = γx∂zu0 + γy∂zv0.

}
(3.7)

Similarly, the O(αi) terms provide equations for ui , i � 2. Note that these equations
are all of Ekman type, with the Coriolis force and source terms due to the lower uk ,
k < i. They are completed with the homogeneous boundary conditions

ui |z=0 = 0, ui |z=+∞ = 0. (3.8)

These equations can be solved analytically using an Orr–Sommerfeld formulation. By
introducing

ϕi = ∂xvi − ∂yui, (3.9)

the pressure term can be dropped and, after differentiation, one obtains

−2∂zwi − �ϕi = fi, 2∂zϕi − �2wi = gi, (3.10a)

where ϕi , wi and ∂zwi are prescribed at the boundaries:

ϕi = wi = ∂zwi = 0 for z → ∞,

ϕi = wi = 0, ∂zwi = γx∂zui−1 + γy∂zvi−1 for z = 0.

}
(3.10b)

On performing a Fourier transform on the tangential variables x, y, (3.10a) reduces
to a differential system in variable z. In this way, one can compute the ui recursively.
Restoring the original variables,

u(x, z) = u0(x, z − αγ (x)) + α u1(x, z − αγ (x)) + · · · (3.11)

= ũ0(x, z) + α ũ1(x, z) + · · · . (3.12)

Note that the first term of the expansion ũ0 = u0 still corresponds to the Ekman
spiral. The expansion is justified provided

α � 1, λx, λy = O(1) or λx, λy � 1. (3.13)

When λx, λy go to zero, equations (3.7) and those following degenerate. The analysis
therefore loses its validity in this limit.
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3.2. Dissipation

From the asymptotic expansion, one can recover some interesting features of

E(V ) = 2

∫
ω

((u, v) − V ) · V ⊥, (3.14)

for α sufficiently small. One can write

E(V ) = 2

∫
ω+

((uα, vα) − V )⊥ · V

≈ 2

∫
ω+

((u0, v0) − V )⊥ · V + 2α

∫
ω+

(u1, v1)
⊥ · V + 2α2

∫
ω+

(u2, v2)
⊥ · V . (3.15)

The first term in the right-hand side is unity, as it stems from the classical Ekman
pumping. Integration of equations (3.7) then yields

2

∫
x
(u1, v1)

⊥ − ∂2
z

∫
x
(u1, v1) = 0, (3.16a)

∂z

∫
x
w1 = 0, u1|z=0,+∞ = 0. (3.16b)

Therefore
∫

x u1 = 0, and
∫

ω+
(u1, v1) · V ⊥ = 0. Finally, one obtains

E(V ) = 1 + α2 C(ϕ, γ ), (3.17)

where C(ϕ, γ ) = 2
∫

ω+
(u2, v2) · V ⊥ depends on the vector V = (cos(ϕ), sin(ϕ)) and the

boundary γ . Hence, if the roughness is O(α) with α small enough, the friction changes
at O(α2). More precisely, the analytic computations provide

C(ϕ, γ ) =
∑

k

|γ̂ (k)|2C
(

k,

∣∣∣∣ k
k

· V

∣∣∣∣
)

, (3.18)

with the Fourier coefficients of γ ,

γ̂ (k) =

∫
x
e−ik · xγ (x) dx, k = (kx, ky), kx ∈ (2π/λx)�, ky ∈ (2π/λy)�. (3.19)

The coefficient C(k, θ) is a function of the wave vector modulus k = |k| =
√

k2
x + k2

y

and the variable θ = |k/|k| · V |, which measures the inclination of the wave vector
with respect to V . Figure 2 presents plots of the function

f : (k, θ) 
→ C(k, θ)

1 + k4
. (3.20)

Note that f goes to zero in the limit of small and large k, and takes both positive
and negative values. One can draw two conclusions from this:

Remark 1. For small enough α, the minimal and maximal dissipations are reached
with one-dimensional boundaries γ = γ (x).

Let us clarify this statement. By minimal and maximal, we mean minimal and
maximal among all angles ϕ and all smooth boundaries γ with O(1) amplitude. To
be more precise, we must have a normalization condition on boundaries γ , for the
loose statement γ =O(1) to be quantified. Although any normalization ensuring the
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Figure 2. The correction term f (k, θ ): (a) the whole surface f ; (b) k 
→ f (k, θ ) for θ = 1
(solid line) and θ = 0, scaled by a factor 10 for clarity (dashed line).

regularity of γ will lead to the above conclusion, a convenient choice is∑
k

(1 + |k|4) |γ̂ (k)|2 = 1. (3.21)

This can be verified by computing the following quantities:

max
ϕ∈[0,2π],

γ ∈X

C(ϕ, γ ), min
ϕ∈[0,2π],

γ ∈X

C(ϕ, γ ), (3.22)

where X = {γ smooth, γ satisfies (3.21)}. The maximal and minimal dissipations are
then deduced from (3.17). One can write

C(ϕ, γ ) =
∑

k

(1 + |k|4) |γ̂ (k)|2f
(

|k|,
∣∣∣∣ k
|k| · V

∣∣∣∣
)

, (3.23a)

so that

max
ϕ∈[0,2π],

γ ∈X

C(ϕ, γ ) � max
θ∈[0,1],

k�0

f (k, θ), (3.23b)

min
ϕ∈[0,2π],

γ ∈X

C(ϕ, γ ) � min
θ∈[0,1],

k�0

f (k, θ). (3.23c)

Denoting as (kM, θM ), resp. (km, θm), the points at which f is extremal, f (kM, θM ) =
max f (k, θ), resp. f (km, θm) = min f (k, θ), from figure 2 one can estimate kM ≈ 0.7,
θM = 1, km ≈ 2, θm = 0. We then introduce

kM = (kM, 0), km = (km, 0), ϕM = arccos(θM ) = 0, ϕm = arccos(θm) = π/2,

(3.24)
and the corresponding boundaries

γM =
eikM · x + e−ikM · x

2
(
1 + k4

M

) =
cos(kMx)

1 + k4
M

, γm =
cos(kmx)

1 + k4
m

; (3.25)
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γM and γm are one-dimensional boundaries. Moreover, using (3.18), we have

C(ϕM, γM ) = f (kM, θM ) = max f (k, θ), (3.26a)

C(ϕm, γm) = f (km, θm) = min f (k, θ). (3.26b)

We deduce that

C(ϕM, γM ) = max C(ϕ, γ ), C(ϕm, γm) = min C(ϕ, γ ), (3.27a)

which proves the above remark.
Remark 2. The dissipation may be strictly less than unity.
This stems from f taking negative values. More precisely, from the curve of

figure 2(b) one notes that f (km, 0) < 0. Let us introduce as previously

ϕm =
π

2
, γm =

cos(kmx)

1 + k4
m

. (3.28)

This implies C( 1
2
π, γm) = f (km, 0) < 0, and the corresponding dissipation is strictly less

than unity.
In physical terms, this means that the roughness may decrease the dissipation.

The physical interpretation of this phenomenon will be given in § 5, when dealing
with general amplitudes and numerical results. A comparison of the small-amplitude
analysis and the numerics is also postponed to § 5.

Stressing again that the above small-amplitude analysis does not hold when
λx, λy → 0, we will perform a small-wavelength analysis in the next section.

4. Wavelength analysis
Throughout the rest of the paper, we limit our investigation to boundaries

independent of one coordinate (say y):

∂ω = {(x, z), z = αγ (x)}, (4.1)

so that ϕ as defined in (2.41) measures the angle between the boundary profile
direction and the mainstream flow. Focusing on one-dimensional boundaries is a
natural approach in the light of § 3: at low amplitude α, all interesting features are
captured with such configurations.

We wish to analyse the behaviour of the boundary layer when the roughness
wavelength becomes very small (λ � 1). For clarity, we set α = 1. To emphasize the
role of the small parameter λ, let us introduce the fast variable x̃ = x/λ. The system
(2.40) becomes

2z × uλ +

(
1

λ
∂x̃pλ, 0, ∂zpλ

)
−

(
1

λ2
∂2

x̃ + ∂2
z

)
uλ = 2z × (V , 0),

1

λ
∂x̃uλ + ∂zwλ = 0,

uλ = 0 for z = γ̃ (x̃), lim
z→+∞

uλ(x̃, z) = (V , 0),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.2)

where γ̃ (x̃) = γ (λx̃) has wavelength unity.
As usual, one can expect an asymptotic behaviour of the type:

uλ(x̃, z) = u0(x̃, z) + higher order terms in λ. (4.3)
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The leading equations are

−∂2
x̃ (v0, w0) = 0, ∂x̃u0 = 0. (4.4)

They yield different behaviours for u0, depending on whether z < max γ̃ or z > max γ̃ .
For all z < max γ̃ , i.e. inside the humps, equations (4.4) are completed with Dirichlet
boundary conditions

u0(x̃, z) = 0, for x̃ such that γ̃ (x̃) = z. (4.5)

It follows that

u0 = 0 for all z < max γ̃ . (4.6)

For all z > max γ̃ , i.e. outside the humps, only periodic boundary conditions hold.
Equations (4.4) provide

u0 = u0(z) for all z > max γ̃ . (4.7)

To determine the equation satisfied by u0, one can average equations (4.2), and retain
only O(1) terms:

2(u0, v0)
⊥ − ∂2

z (u0, v0) = 2V ⊥, (4.8a)

∂zw0 = 0, u0 −−−→
z→+∞

(V , 0). (4.8b)

Moreover, by continuity, u0 = 0 at z = max γ̃ , and thus

u0 = uV (z − max γ̃ ) for all z > max γ̃ , (4.9)

where the Ekman flow uV is recalled in (3.6). In the limit of small wavelength,
the roughness therefore behaves as a non-permeable wall. The flow does not enter
the humps, and a classical Ekman layer forms above them. As a consequence, the
dissipation satisfies

E → 1, λ → 0. (4.10)

More information can be obtained on E at small λ, from higher-order correction
terms of uλ. One can compute an expansion of the form

uλ(x̃, z) = u0(x̃, z) +
∑
i�1

λi

(
ui(x̃, z) + U i

(
x̃,

z − max γ̃

λ

))
,

pλ(x̃, z) = P0

(
x̃,

z − max γ̃

λ

)
+

∑
i�1

λi

(
pi(x̃, z) + Pi

(
x̃,

z − max γ̃

λ

))
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.11)

with two types of velocity profile: ‘Ekman profiles’ ui , similar to u0, and ‘Shear layer
profiles’ (unaffected by rotation) U i , localized at the top of the humps. These shear
layers vary over a typical height λ, and compensate for the discontinuity of the stress
∂zui−1 at the top of the roughness.

We sketch the construction of the first correction terms U1 and u1 only. From (4.6)
and (4.9), one obtains

[∂zu0]|z=max γ̃ = u′
V (0) �= 0, (4.12)

where the prime denotes a z derivative. A correction term is needed to balance this
stress, namely λU1(x̃, (z − max γ̃ )/λ). The profile U1 = U1(x̃, ξ ) is defined in the shear
layer domain

ωsl = {(x̃, ξ ), 0 < x̃ < 1, ξ ∈ �}, (4.13)
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deduced from a vertical stretching of the hump. Injecting expansions (4.11) into (4.2),
gives

(∂x̃, 0, ∂ξ )P0 − �x̃,ξ U1 = 0, ∂x̃U1 + ∂ξW1 = 0. (4.14a, b)

The lateral boundary conditions on U1 are

U1(0, ξ ) = U1(1, ξ ), ξ > 0,

U1(0, ξ ) = U1(1, ξ ) = 0, ξ < 0,

}
(4.15)

which correspond respectively to periodic boundary conditions above the humps, and
solid boundary conditions inside the humps. As explained above, U1 should cancel
the jump of [∂zu0] at z = max γ̃ . Precisely, one can impose

[U1] |ξ=0 = 0, [∂ξ U1 + P0z]|ξ=0 = −u′
V (0). (4.16)

Equations (4.14), (4.15), (4.16) define the shear layer corrections U1. Note that V1

is decoupled from (U1, W1); it satisfies a simple Laplace equation, whereas (U1, W1)
satisfies a Stokes equation.

Similar elliptic equations with jump conditions have been considered in Jäger &
Mikelic (2001), in the study of roughness-induced effects for Poiseuille flow. The
crucial point is to understand the behaviour of U1 as ξ → ±∞. One can easily show
that

∇U1 → 0 as ξ → ±∞. (4.17)

From the no-slip condition (4.16) with ξ < 0, it follows that

U1 → 0 as ξ → −∞. (4.18)

However, the same does not hold for ξ → +∞: due to the periodic boundary
conditions, gradient control only provides

U1 − U1 → 0 as ξ → +∞. (4.19)

Yet the horizontal average satisfies

U1 → (V sl, 0) as ξ → +∞, (4.20)

for a non-zero velocity V sl . This is obtained after a few integrations. First, integration
of the divergence-free condition over ωsl yields

lim
ξ→+∞

W 1 = 0. (4.21)

Then, integrating (4.14a) with respect to x̃, for ξ > 0 yields ∂2
ξ (U 1, V 1) = 0, which leads

to

V sl = lim
ξ→+∞

(U 1, V 1) = (U 1(ξ = 0), V 1(ξ = 0)). (4.22)

Finally, multiplying (4.14) by U1, and integrating by parts, one obtains, by relying on
boundary and jump conditions (4.15) and (4.16),

U 1(ξ = 0) =
1

u′
V (0)

∫
ωsl

|∇(U1, W1)|2 ,

V 1(ξ = 0) =
1

v′
V (0)

∫
ωsl

|∇V1|2 ,
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so that

V sl =

(
1

u′
V (0)

∫
ωsl

|∇(U1, W1)|2 ,
1

v′
V (0)

∫
ωsl

|∇V1|2
)

�= 0. (4.23)

We refer to Jäger & Mikelic (2001) for more details. Returning to the approximation
uλ ≈ u0 + λU1, one needs an additional correction λ u1 to cancel the non-zero flow
λ V sl at infinity. The flow u1 is of the same type as u0, with V replaced by −V sl:

u1 = 0 for all z <max γ̃ ,

u1 = u−V sl
(z − max γ̃ ) for all z >max γ̃ .

}
(4.24)

Higher-order corrections could be derived following the same approach.
The computation of U1 and u1 casts useful light on how the dissipation E goes to

1 when λ tends to 0:

E(V ) ≈ 2

∫
ω̃

((u0, v0) − V ) · V ⊥ + 2λ

∫
ω̃

(u1, v1) · V ⊥ + 2λ2

∫
x̃,ξ

(U1, V1) · V ⊥ (4.25a)

≈ 1 + 2λ

∫
ω̃

(u1, v1) · V ⊥ (4.25b)

≈ 1 − 2λ(V sl + V ⊥
sl) · V . (4.25c)

Hence, the sign of
(
V sl + V ⊥

sl

)
· V determines whether E is less or more than unity

for small enough λ. It depends on the direction of V , and involves the solution
of (4.14) and (4.15). Let us rewrite this solution as U V = (UV , VV , WV ). When
V =(cos(ϕ), sin(ϕ)), the Ekman flow satisfies

u′
V (0) =

√
2 cos(ϕ + π/4), v′

V (0) =
√

2 sin(ϕ + π/4). (4.26)

In particular, u′
(1,0)(0) = 1, v′

(1,0)(0) = 1. The linearity of (4.14) and (4.15) then provides

(UV , WV ) =
√

2 cos(ϕ + π/4)
(
U(1,0), W(1,0)

)
, VV =

√
2 sin(ϕ + π/4)V(1,0). (4.27)

Together with (4.23), this yields

−(V sl + V ⊥
sl) · V = 2 cos(ϕ + π/4) cos(ϕ − π/4)

( ∫ ∣∣∇V(1,0)

∣∣2 −
∫ ∣∣∇(

U(1,0), W(1,0)

)∣∣2).

(4.28)

In particular, when V = (1, 0)

−(V sl + V ⊥
sl) · V =

∫ ∣∣∇V(1,0)

∣∣2 −
∫ ∣∣∇(

U(1,0), W(1,0)

)∣∣2. (4.29)

This quantity can easily be estimated numerically: finite-element simulation yields∫ ∣∣∇V(1,0)

∣∣2 −
∫ ∣∣∇(

U(1,0), W(1,0)

)∣∣2 ≈ 0.4. (4.30)

On the other hand, when V = (0, 1)

−(V sl + V ⊥
sl) · V = −

∫ ∣∣∇V(1,0)

∣∣2 +

∫ ∣∣∇(
U(1,0), W(1,0)

)∣∣2 < 0. (4.31)

For general angles ϕ, the correction to the dissipation remains bounded by the two
extreme values ±(

∫
|∇V(1,0)|2 −

∫
|∇(U(1,0), W(1,0))|2).
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One can draw two conclusions based on this small wavelength argument:
1. The dissipation is determined by the orientation of V with respect to the roughness

(i.e. to ex = (1.0)). In other words, the extreme behaviour of the dissipation is obtained
for V parallel to (1, 0) (ϕ = 0) and V orthogonal to (1, 0) (ϕ = π/2).

2. When V is parallel to (1, 0), the dissipation is strictly more than 1. On the other
hand, when V is orthogonal to (1, 0), the dissipation is stricly less than one.

Note that these results are compatible with those derived from the small-amplitude
analysis. They will be interpreted from a physical point of view in § 5.

5. Numerical solutions and global physical interpretation
5.1. Numerical computations

We discuss here the numerical simulations of system (2.40). Computations are carried
out in a finite domain, checking that the solutions obtained are independent of
the domain height. Since p vanishes as z → ∞, it is set to zero at the top of the
computational box. The computations have been performed using Femlab, finite-
element software, and have been validated with Freefem, a freeware finite-element
package.

We consider sinusoidal boundaries of the type

∂ω =

{
(x, z), z = α sin

(
2π

λ
x

)}
, (5.1)

for various parameters α and λ. Special attention has been paid to the variation of
the dissipation E(V ) with respect to α, λ and the flow at infinity V = (cos(ϕ), sin(ϕ)).

The problem under investigation being linear, it is not necessary to compute the
dissipation for the whole range of angles ϕ. Instead the dependence of the dissipation
on the angle ϕ can be made explicit, provided only three quantities are estimated.
One can write

E (V (ϕ)) = E0 cos2(ϕ) + E1 sin2(ϕ) + E2 cos(ϕ) sin(ϕ), (5.2a)

where

E0 = E (V (ϕ = 0)) =

∫
|∇u0|2, E1 = E (V (ϕ = π/2)) =

∫ ∣∣∇uπ/2

∣∣2, (5.2b)

E2 =

∫
∇u0 · ∇uπ/2. (5.2c)

In all the computations we have carried out, the third term E2 was negligable
compared to the two other terms E0 and E1. For this reason, we focus our investigation
on the two cases ϕ =0 and ϕ = π/2.

The outputs of the numerical simulations can be compared with the analytical
results of the previous sections. Various curves of E0 and E1 are shown in figure 3, in
the extreme cases ϕ =0 and ϕ = π/2. They exhibit typical features that were pointed
out in § 3 and § 4. For instance, E0 is always larger than in the flat case. Note that
the dissipation increases rapidly with the amplitude α of the roughness. When α

increases by a factor about 3 (from 2.1 to 6.1), the maximum dissipation increases by
a factor 10. This highlights that the quantitative behaviour relevant to the classical
Ekman theory no longer holds with wavy boundaries. When ϕ = π/2, the dissipation
can be either larger or smaller than 1, depending on the wavelength λ.

When α → 0, the numerical quantities converge to those obtained in the asymptotic
analysis. The analytical expression (3.17) can be estimated in the special case of a
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Figure 3. E0 and E1 vs. λ. The dissipations associated with the numerical solutions of the
governing equations (2.40) are shown for α ranging from 2.1 to 6.1 with steps of 0.5 by
continuous lines of increasing solidity.
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Figure 4. (E0 − 1)/α2 and (E1 − 1)/α2 vs. λ. The dissipations associated with the numerical
solutions of the governing equations (2.40) are shown for α ranging from 3.03 to 0.4 with a
geometric progression of ratio 2/3 by continuous lines of increasing thickness; the dissipations
provided by the asymptotic equation (3.17) are identified by the dot-dashed curves. The smaller
the value of α, the closer the curve is to the asymptote.

sinusoidal boundary. It then matches remarkably well the finite element computations
performed at low values of α. This is illustrated in figure 4, in which (E0 − 1)/α2 and
(E1 − 1)/α2 are plotted as a function of wavelength λ, for various small amplitudes.
Theoretical and numerical approaches are found to be in excellent agreement.

When λ → 0, one can verify several features described in the asymptotic expansion.
First, for small enough values of λ, a plain Ekman layer forms above the humps (see
figure 5). Moreover, as λ increases from zero, it is clear from figure 3 that E0 increases,
whereas E1 decreases, as expected from the asymptotic description of § 4.

5.2. Physical interpretation

A physical description of the above results must capture the evolution of the
dissipation E both with λ and with the angle ϕ, as depicted on figure 3.

A clear characteristic of these graphs is that behaviour depends very strongly on
whether V is oriented along the roughness (i.e. ϕ = π/2) or across the roughness (i.e.
ϕ = 0).

When λ → +∞, the horizontal variations of the boundary are infinitesimal, so that
it behaves locally as a flat horizontal wall. As a consequence, as observed in the
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Figure 5. Detachment of the boundary layer for sufficiently small values of λ. Streamwise
component of the velocity u for ϕ =0, α =1, and λ= 0.7, 1.5, 3.1, 6. The computational domain
extends to higher z but has been truncated for clarity of representation. The colour code ranges
between −0.35 (orange) and 3 × 10−2 (red).

graphs, both

E0, E1 → 1, λ → +∞. (5.3)

For smaller values of λ, the horizontal variations can no longer be neglected, and
the slope effects play an increasingly important role. The effect on the rotating flow
differs according to the value of ϕ (here ϕ = 0 or ϕ = π/2). For very large λ and any
point x0, z0 =α sin(2π/λ x0) on the boundary, the wavy shape of the boundary near
x0, z0 is approximated well by

z ≈ z0 + cos

(
2π

λ
x0

)
2π

λ
(x − x0). (5.4)

In other words, in this regime the boundary can be interpreted locally as an inclined
planar boundary.

On the one hand, when ϕ = 0, the flow at infinity goes transversally to the boundary.
Hence, the fluid must deviate drastically when approaching the boundary. This creates
strong vorticity, and thus friction. Therefore, the quantity E(V ) increases strongly as
λ decreases. When ϕ = π/2, on the other hand, this situation does not hold, since
the flow at infinity is oriented tangentially to the wall. Such a configuration (Ekman
flow near a slope) is very well described by Pedlosky (1979). It is well-known that
the Ekman pumping, and so the friction, is larger then than in the horizontal case,
because of the increase in the effective Ekman number as E is replaced by E/ cos(θ).
The quantity E(V ) therefore also increases as λ decreases, but the effect is much less
pronounced than in the case ϕ = 0.

As λ continues to diminish, the above localy planar approximation no longer holds,
curvature becomes important and the boundary becomes significantly hollowed. In
these gutter-like structures, the orientation of the flow is forced to be mainly along
(0, 1), tangential to the boundaries of the hollows. When ϕ = 0, it amplifies the
deflection of the flow with depth characterizing the Ekman spiral. As a consequence,
the dissipation E(V ) continues to increase. On the other hand, when ϕ = π/2, the
spiralling tends to be reduced by this effect; the dissipation E(V ) thus decreases. The
gutter-like structure associated with our two-dimensional boundaries therefore tends
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Figure 6. Cross-sections at x =3λ/4 for γ (x) = sin(2πx/λ) (corresponding to the boundary
minimum) for varying λ. Isovalues of (a) u and (b) v in the (λ, z)-plane. The top line corresponds
to ϕ = 0, the bottom line to ϕ = π/2. The boundary layer expulsion at small λ is clear from
these graphs.

to orientate the flow, respectively strengthening or reducing the flow u⊥ orthogonal
to the mainstream V , depending on the relative orientation of the mainstream to the
roughness, respectively transverse or tangential.

The evolution just described holds as long as λ is large enough. For smaller values
of λ, a new phenomenon occurs: the boundary layer detaches from walls of large
curvatures. This detachment should not be confused with nonlinear detachments in the
framework of Prandtl layers, since it does not involve the same physical ingredients.
This phenomenon is exemplified well in figures 5 and 6. In the limit λ= 0, the layer
develops outside the hollows, as was already deduced mathematically in § 4. This
suppression of motion inside the narrow humps can be understood by considering
the local effective Reynolds number in these regions: |V |λ. This number decreases
with λ, hence motion eventually vanishes inside the hollows.

Owing to this detachment of the boundary layer, the constraints imposed by the
boundary of the hollows on the flow get weaker in the small-λ limit. As a result E(V )
decreases for ϕ = 0, whereas it increases back to unity for ϕ = π/2.

6. Concluding remarks
The investigation of Ekman layers near wavy boundaries offers an unexpected

variety of effects. We have only considered smooth and periodic boundary profiles
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in this work. Sharp structures (such as sawtooth) could yield more complicated
behaviour. The rotation axis was taken as normal to the large-scale boundary
(equivalent to the poles on a sphere like the Earth); new effects could be expected if
the axis were slanted with respect to the boundary normal. In addition, only linear
problems have been considered here. It well known that nonlinearities can trigger
Ekman layers instabilities which are not trivial even in the planar case. Next to a
wavy boundary nonlinearities can strongly affect the solution even before the layer
itself becomes unstable. We delay such investigations to future studies.

We wish to thank Professor Emmanuel Grenier and more generally participants
in the ACI program “Aspects mathématiques de la géodynamo” for discussions at
preliminary stages of this work. We are grateful to Daniel Nethery for help with the
manuscript revision.
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