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Abstract: In this short review we present our recent results con-
cerning the rotation of atomic Bose-Einstein condensates con-
fined in quadratic or quartic potentials, and give an overview of
the field. We first describe the procedure used to set an atomic gas
in rotation and briefly discuss the physics of condensates contain-
ing a single vortex line. We then address the regime of fast rota-
tion in harmonic traps, where the rotation frequency is close to
the trapping frequency. In this limit the Landau Level formalism
is well suited to describe the system. The problem of the conden-
sation temperature of a fast rotating gas is discussed, as well as
the equilibrium shape of the cloud and the structure of the vor-
tex lattice. Finally we review results obtained with a quadratic +
quartic potential, which allows to study a regime where the ro-
tation frequency is equal to or larger than the harmonic trapping
frequency.
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The possibility to obtain quantum degenerate gases
by a combination of laser and evaporative cooling has
opened several new lines of research, at the border of
atomic, statistical and condensed matter physics (for a
review, see e.g. [1–4]). Among them, the rotation of a
Bose-Einstein condensate raises many interesting prob-
lems with respect to the case of a classical fluid. Since the
condensate is described by a macroscopic wave function
ψ(r) =

√
ρ(r)eiφ(r), where ρ and φ are the spatial den-

sity and phase of the fluid, there exist strong constraints on
the velocity field of the rotating gas. In a place where the
spatial density is not zero, this velocity field is given by
v = h̄∇φ/M (M is the particle mass), hence ∇×v = 0.
The circulation of the velocity field is quantized along any
close contour on which ρ �= 0, and it is a multiple of h/M .
The rotation of the fluid is thus only possible through the
nucleation of quantized vortices [5,6], which are singu-
lar points (in 2 dimensions) or lines (in 3 dimensions) of
vanishing density, and around which the phase φ varies by

multiples of 2π. Vortices are universal objects which ap-
pear in many macroscopic quantum systems, such as su-
perconductors and superfluid liquid helium.

Since the achievement of Bose-Einstein condensation
in atomic gases, many experimental and theoretical stud-
ies have been devoted to vortices in these systems ([7] and
refs. therein). A typical experiment is the following: One
starts with a condensate initially at rest, confined in an ax-
isymmetric trap (symmetry axis z), and stirs it by apply-
ing an elliptic potential rotating at frequency Ω around z.
For very small values of Ω no angular momentum is trans-
ferred to the condensate. Just above a critical value Ωc,
a single vortex is nucleated [8]. For a system in thermal
equilibrium, the existence of this critical frequency can
be viewed as a manifestation of superfluidity: for a slow
enough rotation frequency, the stirrer cannot drag the con-
densate and set it in motion. For stirring frequencies no-
tably larger than Ωc, the number of vortices in the conden-
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Figure 1 Quantized vortices. Absorption images of a stirred Rb
Bose-Einstein condensate. The rotation frequency is increasing
from left to right (for details see [8])

sate Nv increases, and values up to Nv = 200 have been
obtained experimentally [9,10].

In the following we will be mostly interested in the
large vortex number case, which is achieved by choosing
Ω close to the trapping frequency ω⊥ in the xy plane. Note
that in a purely harmonic trap, one must keep Ω below ω⊥;
the centrifugal force otherwise exceeds the trapping force
and the gas is destabilized [11]. The main features of the
vortex assembly in this large Nv regime are well known.
The vortices form a triangular Abrikosov lattice with a sur-
face density nv = MΩ/(πh̄) [12]. When Ω → ω⊥, the
radius of the gas tends to infinity since the confinement by
the trapping potential is nearly balanced by the centrifu-
gal force. Since the surface density of vortices is constant
(∼ Mω⊥/(πh̄)), the number of vortices Nv also increases
to arbitrarily large values.

In principle the number of vortices can reach and even
go beyond the atom number N . For such a fast rotation,
the description of the system by a single macroscopic wave
function is expected to fail, and the ground state of the sys-
tem should be strongly correlated. Up to now this regime
has been investigated only theoretically [13–17] and will
not be addressed here.

The outline of this short review is as follows. In sec-
tion 1 we present the mechanism used to set a condensate
in rotation. Then in section 2 we briefly review some ex-
periments performed with a single vortex condensate. In
section 3, we focus on the fast rotation regime and discuss
some important features of this system, such as its conden-
sation temperature and its equilibrium shape. We use the
Landau Level approach, which makes a nice connection
between this physical problem and that of charged parti-
cles in a uniform magnetic field. In section 4 we turn to
a configuration that we recently investigated in our labo-
ratory, which consists in superimposing a trapping quartic
potential onto the usual quadratic one. This allows us to
explore the rotation regime Ω > ω⊥, and we review some
results obtained for the vortex patterns in this regime. We
conclude in section 5 by giving some perspectives of this
rapidly evolving field of research.

Note that due to the lack of space this paper does not
attempt to be a full review of the work that has been per-
formed on rotating quantum gases but will be subject to the
following restrictions: First we will only discuss studies on

single component condensates and refer the reader inter-
ested in rotating spinor condensates to the recent experi-
ments of the Boulder group ([18] and references therein).
Second we will illustrate our discussion using mainly ex-
perimental results from our laboratory and only give ref-
erences to the achievements of other groups. Finally our
reference list focuses on papers published after 2001. For
a discussions of earlier articles see the detailed review pa-
per by Fetter and Svidzinski [7].

1. Setting a BEC in rotation

In order to nucleate vortices in a condensate, two classes
of methods have been used. The first one consists in im-
printing on the condensate the phase pattern eiθ of the de-
sired wave function. It was successfully implemented ex-
perimentally by the Boulder group for a two-component
condensate [19]. A related scheme, based on the adiabatic
inversion of the magnetic field at the center of the mag-
netic trap, has been used at MIT [20]. The second method,
which is used in our group, consists in using a mechani-
cal stirring of the condensate. In order to do this, one can
use the potential created by a laser [8,9] or by a magnetic
field [21,22]. While the phase-imprinting method is well
suited for nucleating a single vortex, the stirring approach
seems to be more flexible and allows nucleation of a large
number of vortices.

Once the gas is rotating, a third method can be used
to increase the angular momentum per particle. It consists
in eliminating atoms with an angular momentum smaller
than the average, so that the remaining particles rotate at
a larger angular speed. This “evaporative spinup” method
has been implemented in Boulder [23].

We now present the system that we have been using
for rotation experiments in our group. We use rubidium
(87Rb) Bose-Einstein condensates produced in a cylindri-
cally symmetric Ioffe-Pritchard trap, with a frequency ω⊥
in the xy plane and ωz along the z axis. The magnetic trap-
ping potential thus reads:

Vmag =
1
2
Mω2

⊥(x2 + y2) +
1
2
Mω2

zz2 . (1)

Typically ω⊥ ∼ 10 ωz in our experiments so that the
equilibrium shape of the condensate is an elongated cigar.
For ωz/2π ∼ 10 Hz and N ∼ 3 × 105 rubidium atoms in
the trap, the length of the cigar is 100 µm and its diameter
is 10 µm.

We stir the condensate with a laser beam propagating
along the z axis. The beam has an anisotropic cross sec-
tion and its eigenaxes rotate at a frequency Ω. The time-
dependent potential created by the laser beam can be writ-
ten as

Vstir(t) =
ε

2
Mω2

⊥
[
(x2 − y2) cos(2Ωt)+ (2)

+ 2xy sin(2Ωt)
]

.
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Figure 2 Kelvin mode of a vortex line. Transverse images of a
Bose-Einstein condensate with a single, positively charged vor-
tex, obtained after excitation of the transverse quadrupole modes
m = −2 (a) and m = +2 (b). Fig. 2a gives an evidence for
the Kelvin mode of the vortex line. This mode has an angular
momentum m = −1, and it is thus excited by the decay of the
transverse quadrupole mode m = −2 into two “kelvons” (quanta
of the Kelvin mode). The two kelvons have the same energy and
propagate in opposite directions, which ensures the conservation
of linear momentum. By contrast, Fig. 2b shows no oscillation
of the vortex line, as expected since the decay of the quadrupole
mode m = +2 into kelvons (m = −1) is forbidden by angu-
lar momentum conservation. Figs. 2(c,d) are the corresponding
density profiles (for details see [54])

The parameter ε is a dimensionless measure of the rel-
ative strength of the stirring and the magnetic potentials.
In practice we choose ε ∼ 2–10%.

We apply the stirring potential onto the condensate for
a fraction of a second, in order to transfer angular mo-
mentum to the gas. The condensate then equilibrates in the
cylindrically symmetric potential (1) for ∼ 1 second. The
trapping magnetic field is then switched off and the gas
undergoes a ballistic expansion for a period of ∼ 20 ms.
Finally, we perform absorption imaging along the rotation
axis z. The vortices which have been nucleated in this pro-
cess appear as density dips in the images, as seen in Fig. 1.

When studying theoretically the problem of a rotat-
ing gas, one usually assumes that an arbitrarily small
anisotropic potential, rotating at frequency Ω, is added to
the main isotropic trapping potential. In presence of this
stirring potential, the frame rotating at Ω is the only one
in which the state of the system is stationary. The hamilto-
nian H in this rotating frame is deduced from the hamilto-
nian in the lab frame Hlab by H = Hlab − ΩLz . Experi-
mentally, as we just described, the rotating potential is of-
ten switched off for some period before the measurement.
Ω then plays the role of the Lagrange multiplier associ-
ated with the deposited angular momentum Lz , which is

a constant of motion when the system evolves in the axi-
symmetric potential.

In the following we will mainly focus on the equilib-
rium properties of the rotating system. We refer the reader
interested in the dynamics of vortex nucleation and decay
to [24–38].

2. Single vortex physics

For a proper choice of Ω and the equilibration time after
stirring, it is possible to nucleate in a reliable way a single
vortex in the center of the condensate. Several experimen-
tal studies have been performed on such a system. First,
the average angular momentum per particle Lz has been
measured and found to be of the order of h̄ [39]. This mea-
surement was performed using the relation between Lz

and the frequencies of the transverse quadrupole modes of
the condensate [40]. Complementary information has been
obtained using atom interferometry to measure the phase
pattern of the wave function [41,42].

Concerning the vortex line itself, its equilibrium shape
has been determined: the line is often curved at the two
ends of the cigar [43]. This bending is a symmetry break-
ing effect, and it can be understood by noticing that a ra-
dially centered vortex is favored at the axial center of the
cigar, where the density is large, whereas it costs less en-
ergy to radially off-center the vortex line at the ends of the
cigar, where the density is low [44–49]. Some specific nor-
mal modes of the vortex line have also been observed, such
as the precession of a single vortex when it is not aligned
with the trap axes [50–53], and the Kelvin mode of the
vortex line (see Fig. 2) [54–58].

3. Fast rotation in a harmonic potential

We now address the case of a fast rotating gas where the
average angular momentum per particle is large compared
to h̄, i.e. in which many vortices have been nucleated. We
consider that the gas is confined in a purely harmonic po-
tential (1). We first present the Landau level approach to
this problem, which is directly connected to the descrip-
tion of the motion of a charged particle in a uniform mag-
netic field [59–61]. We then address the determination of
the critical temperature of the rotating gas, and we com-
pare the result of the semi-classical approach given in [62]
with the treatment using the Landau level basis. We then
turn to the discussion of the equilibrium shape of the rotat-
ing condensate and the structure of the vortex pattern.

3.1. The Landau level approach

In the frame rotating at frequency Ω, the non-interacting,
single particle hamiltonian is H0 = H⊥ + Hz with Hz =
P 2

z /(2M) + Mω2
zz2/2 and

H⊥ =
P 2

x + P 2
y

2M
+

1
2
Mω2

⊥(x2 + y2) − ΩLz = (3)
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Figure 3 Landau level structure. Single particle spectrum for the
transverse motion (in the xy plane) for Ω = 0.9. The index k
labels the Landau levels. The energy is expressed in units of h̄ω⊥

=
(P⊥ − A)2

2M
+

1
2
M(ω2

⊥ − Ω2)(x2 + y2) , (4)

where the vector potential is A = MΩ× r. Eq. (4) is for-
mally identical to the hamiltonian of a particle of charge 1
placed in a uniform magnetic field 2MΩẑ, and confined in
a harmonic potential of frequency

√
ω2
⊥ − Ω2. The Cori-

olis force, which has the same mathematical structure as
the Lorentz force, originates from the vector potential A,
whereas the term −MΩ2(x2 + y2)/2 corresponds to the
centrifugal potential.

Common eigenstates of H0 and Lz have single particle
energies

Ej,k,n

h̄
= ω⊥ +

ωz

2
+ j(ω⊥ − Ω)+ (5)

+k(ω⊥ + Ω) + nωz

and angular momentum h̄(j − k), where j, k, n are non-
negative integers. For Ω close to ω⊥, the contribution of
the transverse motion to these energy levels (terms in j and
k) groups in series of states with a given k, correspond-
ing to the well known Landau levels (Fig. 3). The lowest
energy states of two adjacent Landau levels are separated
by h̄(ω⊥ + Ω), whereas the distance between two adja-
cent states in a given Landau level is h̄(ω⊥ − Ω). When
Ω = ω⊥, all states in a given Landau level are degenerate.
Physically, this corresponds to the case where the centrifu-
gal potential exactly balances the trapping force in the xy
plane, and only the Coriolis force remains. The system is
thus invariant under translation, hence the macroscopic de-
generacy.

When interactions between particles are taken into ac-
count, the Landau levels are no longer eigenstates of the
N−body hamiltonian. However they are still relevant in
the regime of fast rotation. Indeed as Ω → ω⊥, the restor-
ing force in the xy plane becomes very small and the
density of the gas drops. The interaction energy per par-
ticle is then small compared to the distance 2h̄ω⊥ between
two Landau levels, and the states of interest are essentially

those associated with k = 0, i.e. the lowest Landau level
(LLL) [59–61]. Any function ψ(x, y) of the LLL can be
cast in the form:

ψ(x, y) = e−(x2+y2)/2a2
⊥ P (x + iy) , (6)

where a2
⊥ = h̄/(mω⊥) and P (u) is a polynomial (or other

analytic function) of u. When P (u) is a polynomial of de-
gree n, it has n complex zeroes. Each zero is the posi-
tion of a singly-charged, positive vortex, since the phase
of ψ(r) changes by 2π along a closed contour encircling
the zero.

3.2. Critical temperature for a rotating gas

The critical temperature for an ideal rotating gas in a har-
monic potential has been derived by S. Stringari using a
semi-classical approach [62]. Let us briefly outline the rea-
soning. One starts from the semi-classical relation between
the atom number N and the temperature T at the BEC tran-
sition:

N =
1
h3

∫
d3r d3p

1
exp(H0(r,p)/kBT ) − 1

, (7)

where we assume that the minimum of the trapping po-
tential is at zero energy, so that we set the chemical po-
tential also equal to zero at the transition point. Using
the form (4) of H⊥ and making the change of variables
p′x = px +MΩy, p′y = py −MΩx, we obtain a new inte-
gral. This integral is identical to the one giving the conden-
sation criterion for a gas at rest, confined in a cylindrically
symmetric, harmonic potential. The transverse and longi-
tudinal frequencies for this model system are

√
ω2
⊥ − Ω2

and ωz , respectively, and we thus get:

N = ζ(3)
(

kBT

h̄ω̄

)3

, ω̄3 = (ω2
⊥ − Ω2)ωz , (8)

where ζ(x) =
∑

n n−x is the Riemann zeta function
(ζ(3) � 1.202). This entails that, within the semi-classical
approximation, the Coriolis force associated with the vec-
tor potential A(r) has no effect on the critical temperature.
This is formally identical to the Bohr – van Leeuven the-
orem, stating that there is no magnetism at thermal equi-
librium in a system of charges described by classical me-
chanics. The only effect of rotation in (8) is the change of
the transverse frequency due to the centrifugal force.

The result (8) can be recovered from the exact one-
body spectrum in terms of Landau levels given in (5). In-
deed this spectrum is the same as that of a 3D harmonic
oscillator with frequencies ω⊥ − Ω, ω⊥ + Ω, ωz , whose
geometrical mean is the frequency ω̄, hence the result (8).

We now discuss briefly the validity condition of (8).
From the reasoning based on the Landau level structure,
we see that kBT must be large compared to each of the
three energies h̄(ω⊥ ± Ω) and h̄ωz . In practice, we have
ω⊥ � ωz for a cigar-shape trap, so that when Ω ∼ ω⊥,

c© 2004 by Astro Ltd.
Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA



Laser Phys. Lett. (2004) / www.lphys.org 5

the most stringent validity condition for the use of (8) is
kBT � 2h̄ω⊥. It is not easy to recover this validity con-
dition directly from the use of (8). Indeed one could have
naively expected that kBT � h̄

√
ω2
⊥ − Ω2, h̄ωz would

be a sufficient condition, which is clearly not the case.

3.3. The equilibrium shape of the rotating
condensate

We now suppose that the gas is at zero temperature and re-
view possible approaches for determining its ground state
when repulsive interactions are taken into account. As
usual in the physics of cold gases, these interactions are
assumed to be point-like, and they are characterized by the
s-wave scattering length as. The ground state φ(r) of the
gas is obtained in the mean-field approximation by mini-
mizing the energy per particle [3,4]

E[φ] =
∫ (

φ∗ [H0φ] +
Ng

2
|φ|4

)
d3r , (9)

where g = 4πh̄2as/M and φ is normalized to unity.

3.3.1. Rotational hydrodynamics approach

This approach is based on the approximation of diffused
vorticity, where the singularities of the velocity field v(r)
and of the atom density n(r) at each vortex core are aver-
aged out. This method is adequate for describing the sys-
tem at macroscopic distances, larger than the intervortex
spacing. From the equations of motion of rotational hydro-
dynamics [56,63] (see also [65]), one derives the steady
state velocity field v(r) = Ω × r and the spatial density
n(r) = N |φ(r)|2:

n(r) = (10)

=
1
g

max

(
0, µ − Vmag(r) +

MΩ2

2
(x2 + y2)

)
,

where µ is the chemical potential. This density profile is
the usual inverted parabola corresponding to the Thomas-
Fermi result, for an axisymmetric potential with frequen-
cies

√
ω2
⊥ − Ω2 in the xy−plane and ωz along the z axis.

The result (10) is valid only if µ � h̄ωz . In the op-
posite regime µ � h̄ωz , the z motion is “frozen” to its
ground state (a gaussian of extension az =

√
h̄/(Mωz)).

The relevant wavefunctions can be written as φ(r) =
ψ(x, y)e−z2/2a2

z and one has to minimize

E⊥[ψ] =
∫ (

ψ∗ [H⊥ψ] +
NG

2
|ψ|4

)
d2r , (11)

where G = g/(
√

2π az). The spatial density in the trans-
verse plane n(x, y) = N |ψ(x, y)|2 is then:

n(x, y) = (12)

=
1
G

max
(

0, µ − 1
2
M(ω2

⊥ − Ω2)(x2 + y2)
)

,

As for the determination of the critical temperature, only
the centrifugal potential is important in this approxima-
tion. The Coriolis force plays no role in the global equilib-
rium shape of the condensate.

3.3.2. Equilibrium shape in the LLL

We now suppose that the interaction strength is small
enough so that the ground state of the system is essentially
a LLL wave function, corresponding to the quantum num-
ber k = 0 in Eq. 5 (µ � 2h̄ω⊥). We also assume that
µ � h̄ωz so that the z motion is “frozen” to its ground
state (n = 0 in Eq. (5)). The use of LLL wave functions al-
lows to notably simplify the energy functional in Eq. (11).
One can indeed prove after some algebra the two equali-
ties:

〈Ekin〉 = 〈Eho〉 =
h̄ω⊥

2
+

ω⊥
2

∫
ψ∗ [Lzψ] d2r , (13)

where the kinetic and harmonic oscillator energies are:

〈Ekin〉 =
h̄2

2M

∫
|∇ψ|2d2r , (14)

〈Eho〉 =
Mω2

⊥
2

∫
r2|ψ|2d2r .

The energy is then given by

E[ψ] = (15)

= h̄Ω +
∫ (

Mω⊥(ω⊥ − Ω)r2|ψ|2 +
NG

2
|ψ|4

)
d2r .

We can express the distances and the energies in units of
a⊥ =

√
h̄/Mω⊥ and h̄ω⊥, respectively. We then find that

the minimization depends only on the dimensionless pa-
rameter [64]

Λ = N
MG

h̄2

ω⊥
ω⊥ − Ω

=
√

8πN
as

az

ω⊥
ω⊥ − Ω

.

When Λ < 1, the interaction term NG|ψ|4 plays a neg-
ligible role and the minimizing function is essentially the
ground state of the one-body hamiltonian j = k = n = 0.
For Λ � 1 the minimum energy state is a linear combina-
tion of several states corresponding to different quantum
numbers j’s, and it involves several vortices in the region
where the atomic density is significant.

The minimization of (15) within the LLL has recently
been discussed in [66,67,64]. Let us briefly sketch the
main results. One first defines the coarse-grain average
n̄(x, y) of the spatial density n(x, y) = N |ψ(x, y)|2, in or-
der to smooth the rapid variations at the vortex cores. The
energy functional (15) can be written in terms of n̄ instead
of n, provided the interaction parameter G is renormalized
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to bG, where b � 1.16 is the so-called Abrikosov parame-
ter [68]. This parameter arises from the discreteness of the
vortex distribution: since the wave function ψ(x, y) must
vanish at the vortex location, the average value of |ψ|4 over
the unit cell, hence the interaction energy, is larger than
the result obtained if |ψ| was quasi-uniform over the cell.
Once this renormalization of G has been performed, the
minimization can be performed by letting n̄ vary over the
whole space of normalisable functions, the only constraint
being that n̄ varies smoothly over a⊥, which is the char-
acteristic length scale for vortex spacing. One finds that
the coarse-grain average of the spatial distribution is the
inverted parabola:

n̄(x, y) = (16)

=
1

bG
max

(
0, µ − Mω⊥(ω⊥ − Ω)(x2 + y2)

)
.

This result is valid when the chemical potential µ is much
smaller than the distance 2h̄ω⊥ between the LLL and the
first excited LL, which amounts to:

N
as

az
� ω⊥

ω⊥ − Ω
.

Except for the Abrikosov coefficient b, the two results (12)
and (16) nearly coincide in the fast rotation limit, since
ω2
⊥ − Ω2 � 2ω⊥(ω⊥ − Ω) when Ω ∼ ω⊥.

The fact that the equilibrium shape of the condensate
remains an inverted parabola even when the dynamics is
restricted to the LLL has been checked experimentally by
the Boulder group [69,70].

3.3.3. Structure of the vortex pattern

In first approximation the surface density nv of vortices
in a fast rotating condensate is uniform. One can show in
this case that the coarse-grain average of the velocity field
is equal to the rigid-body rotation result v(r) = Ωẑ × r
[12], with Ω = πh̄nv/M . For rotating BECs, this relation
has been checked experimentally at MIT [71]. The vortices
form a triangular lattice which is known to minimize the
interaction energy g

∫ |ψ|4 [72].
A closer analysis of the vortex distribution shows that

the vortex distribution is distorted on the edges of the con-
densate [73,66,67,64]. The distortion is particularly clear
in the LLL, as it can be seen in Fig. 4 obtained by Aftal-
ion et al. [64], where an example of vortex distribution is
given for the particular case Λ = 3000. This distortion of
the vortex lattice is essential to ensure the proper decay
of the atomic density given in (16). Indeed an LLL wave
function with a uniform vortex lattice always leads to a
Gaussian average distribution n̄(x, y) [61], instead of the
predicted and observed inverted parabola (16).

Another interesting characteristic of the LLL is that the
vortex core is of the same size as the distance between ad-
jacent vortices (∼ a⊥). In this respect the entrance in the
LLL for a rotating condensate in a magnetic trap is the

10

0

-10

-10 0 10

Figure 4 Vortices in the LLL. Equilibrium vortex pattern ob-
tained by minimizing the energy within the LLL, for Λ = 3000
(figure extracted from [64]). The distances are expressed in units
of a⊥. The LLL trial wave functions have 52 vortices and the cir-
cle represents the border of the Thomas-Fermi distribution (16)

equivalent of the field Hc2 in a type II superconductor [74,
65]. Finally we note that the dynamics of the vortex lattice
itself raises many interesting problems. In particular the
so-called Tkachenko modes of the lattice have been an-
alyzed theoretically [75,77–82] and observed experimen-
tally [76].

4. Fast rotation in a quadratic+quartic
potential

In this section we discuss some results obtained with a
quartic potential γr4

⊥ added to the usual harmonic con-
finement (we set r2

⊥ = x2 + y2). This quartic confinement
allows to study the regime of rotation where Ω > ω⊥.
This regime is unreachable otherwise, since the expelling
centrifugal potential −MΩ2

⊥r2
⊥ would exceed the trapping

potential. The properties of the rotating gas in a quartic po-
tential have recently attracted a lot of theoretical attention
[83–90].

4.1. Implementation of a quartic potential

Experimentally, we have created a quartic potential using a
far detuned laser beam (wavelength 532 nm), propagating
along the axis of the trap [91]. The waist w of the beam
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Figure 5 Vortex pattern in the fast rotation regime. Pictures of the rubidium condensate rotating in the quadratic+quartic potential, for
various stirring frequencies Ω/2π. For these data ω⊥/2π = 65 Hz (pictures from [91])

is larger that the condensate radius, so that the potential
created by the laser U0 exp(−2r2

⊥/w2) can be written as:

U(r) � U0 − 2U0

w2
r2
⊥ +

2U0

w4
r4
⊥ . (17)

The laser frequency is larger than the atom resonance fre-
quency, so U0 > 0. The second term in (17) leads to a
reduction of the transverse trapping frequency ω⊥ and the
third term provides the desired quartic confinement, with
γ = 2U0/w4. In our experiments γ = 6.5 × 10−12 Jm−4.

The total trapping potential in the xy plane can be writ-
ten as:

V (r⊥) =
1
2
Mω2

⊥r2
⊥

(
1 + γ̃

r2
⊥

a2
⊥

)
, (18)

where the dimensionless number γ̃ = 2h̄γ/(M2ω3
⊥)

characterizes the relative strength of the quartic and the
quadratic potentials. For our setup we have ω⊥/2π =
65 Hz and γ̃ � 10−3. Hence the quartic term is only
a small perturbation of the ground state of the one-body
hamiltonian. Of course its importance grows when one
considers large Lz states, in which the particle is localized
further away than a⊥ from the center of the trap.

4.2. Critical temperature

We now determine the critical temperature Tc for a gas
rotating in a quadratic+quartic potential. For simplicity we
consider the case Ω = ω⊥ and we use the semiclassical
approximation, which is valid if kBTc � h̄ω⊥. Inserting

H0(r,p) =
p2

2M
+

1
2
Mω2

zz2 + γr4
⊥ (19)

in (7) we obtain

N = ζ(5/2)
√

π

4
M(kBTc)5/2

√
γωz

, (20)

with ζ(5/2) � 1.342. The experimental results shown
here were obtained with N = 3 × 105 rubidium atoms.
This corresponds to a critical temperature of Tc = 60 nK
for Ω = ω⊥, to be compared with Tc = 120 nK for a
non-rotating gas.

Our experiments were performed in presence of radio-
frequency evaporation, which removes all atoms at a dis-
tance r⊥ larger than xev = 19 µm from the center
(this corresponds to an angular momentum value m =
x2

ev/a2
⊥ ∼ 200). For Ω = ω⊥ the well depth is thus

U0 = γx4
ev � 60 nK, similar to kBTc. Since the effective

temperature T in evaporative cooling is a small fraction of
the well depth (typically U0/kBT ∼ 5–10), the rotating
gas is clearly in the degenerate regime when Ω = ω⊥.

4.3. Observed vortex patterns

We show in Fig. 5 the images of the rotating gas as the
stirring frequency Ω is increased. For Ω < ω⊥, the vor-
tex lattice is clearly visible. However when Ω > ω⊥ the
visibility of the vortices decreases and nearly vanishes for
Ω = 1.05ω⊥ (= 2π × 68 Hz).

The most plausible explanation of this effect is that
the vortex lines are still present, but strongly bent when
Ω > ω⊥. This bending may occur because of the fi-
nite temperature of the gas. A recent theoretical study
[88] seems to favor this hypothesis: when looking for the
ground state of the system using imaginary time evolution
of the Gross-Pitaevskii equation, it was found that much
longer imaginary times were required to reach a well or-
dered vortex lattice for Ω > ω⊥ than for Ω < ω⊥.

4.4. Transverse monopole mode

The study of the normal modes of a Bose-Einstein conden-
sate generally provides insightful information about the
system. In order to gain some understanding of the fast
rotation regime, we have studied the transverse monopole
(or breathing) mode for various rotation frequencies of the
condensate.

For a 2D gas at rest in an isotropic harmonic poten-
tial of frequency ω, this mode has a frequency ωmp = 2ω,
which does not depend on the strength of the interactions
[92,93]. The state of the condensate at time t can be de-
rived from the state at time 0 by a simple scaling trans-
form. The same result holds for a 3D gas confined in
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an axisymmetric, cigar shaped potential [94]. In particu-
lar the frequency of the transverse breathing mode is still
ωmp = 2ω⊥ [95]. For a rotating condensate one could
have naively expected that the frequency of the mode is
changed to

√
ω2
⊥ − Ω2 as a consequence of the centrifu-

gal potential. As shown in [63] this result is not correct
and the predicted frequency is still ωmp = 2ω⊥ for all
rotation frequencies Ω. This is a striking example of the
influence of the Coriolis force on the system: even though
it affects neither the BEC transition temperature nor the
cloud’s equilibrium shape at T = 0, it has a strong im-
pact on the condensate’s normal modes. Note that the re-
sult ωmp = 2ω⊥ holds for any 2-dimensional gas with
contact interactions confined in a harmonic potential [92,
93], so that the monopole mode cannot be used to moni-
tor any phase transition – like that to a strongly correlated
state.

We have studied experimentally this mode in the
quadratic+quartic potential described above [96]. We have
checked that the frequency ωmp remains at 2ω⊥ for rota-
tion frequencies notably smaller than ω⊥, for which the
quartic term plays no significant role. When the rotation
frequency approaches ω⊥ we measure however a small de-
viation from this value. This deviation increases with the
rotation frequency and reaches ∼ 10% when Ω ∼ ω⊥.
This result is a consequence of the action of the quartic
potential and it can be accounted for by a simple analytic
model [96]. Due to this deviation the monopole frequency
might represent a sensitive tool to monitor the emergence
of new quantum phases of the rotating gas.

A remarkable feature of the transverse monopole mode
in the region Ω ∼ ω⊥ is the time evolution of the den-
sity profile of the cloud. Instead of being simply a scaling
transform as in the pure harmonic case, we observe a phe-
nomenon of entering waves (Fig. 6). This structure can be
explained by noticing that for Ω ∼ ω⊥ several m = 0
modes have a frequency close to ωmp [96], so that beating
between them can lead to the observed phenomenon.

5. Conclusions and perspectives

To conclude, the physics of a rotating Bose gas presents
strong analogies with several aspects of condensed matter
physics: superconductivity in large magnetic fields, Quan-
tum Hall phenomena, superfluidity and rotating bucket ex-
periments. It has already led to spectacular findings such
as the possibility to directly visualize the vortices and to
observe their vibration modes such as the Kelvin mode
(oscillation of a vortex line) and the Tkachenko mode
(oscillation of the vortex lattice). However, important as-
pects of the problem remain experimentally unexplored.
Let us briefly outline three lines of research that seem very
promising:

– The possibility to generate quadratic + quartic poten-
tial opens the way to the nucleation of stable giant vor-
tices. In a quadratic potential a vortex with a topolog-
ical charge larger than 1 is unstable, and it can only

time

Figure 6 (online color at www.lphys.org) Transverse breathing
mode of a condensate rotating at Ω = 1.05ω⊥ (Ω/2π = 68 Hz).
The condensate is confined in the quadratic+quartic potential de-
scribed in the text. The structure of the mode corresponds to en-
tering waves, instead of a simple scaling transform as in the pure
harmonic case. The time interval between two successive pictures
is 1 ms

be observed in a transient way [23,97]. When a quar-
tic potential is present, this instability may disappear
and a giant vortex can be stabilized at the center of the
trap, possibly surrounded with singly-charged vortices
[83–89,74].

– The combination of rotation and optical lattices opens
a very interesting class of problems. If a 1D optical lat-
tice is applied along the axis of rotation, one obtains a
stack of rotating parallel layers. The structure of vor-
tices in this system remains to be investigated. One can
qualitatively expect that the vortex cores in neighbor-
ing layers will remain aligned if the tunneling between
layers is large enough, whereas they may decorrelate
otherwise [98].

– When the rotation speed increases, the number of vor-
tices Nv also increases. When it becomes of the or-
der of the particle number N , one expects that the
ground state of the gas will no longer be well described
by a mean-field approximation. Instead it becomes a
strongly correlated state, with a structure very similar
to those appearing in fractional quantum Hall effect
[13–17]. In practice these type of states are expected
to be observable only for small particle numbers.

With such general lines of research still fully open, the
next few years should bring us a lot of novel and fascinat-
ing physics.
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