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Relative phase of two Bose-Einstein condensates

Yvan Castin and Jean Dalibard
Laboratoire Kastler Brossel, 24 rue Lhomond, 75005 Paris, France
(Received 24 June 1996; revised manuscript received 21 January 1997

We show that two independent Bose-Einstein condensates, each initially containing a well-defined number
of atoms, will appear coherent in an experiment that measures the beat note between these condensates. We
investigate the role played by atomic interactions within each condensate in the time evolution of their relative
phase[S1050-294{®7)03606-3

PACS numbeps): 03.75.Fi, 42.50.Gy, 05.30.Jp

Since the recent observations of the Bose-Einstein cont provides a simple way of analyzing such an experiment,
densationBEC) of a dilute atomic gafl—3], the problem of ~ while, as we see below, Fock states are more difficult to
the phase of an atomic sample has been raised with renewé&dndle in such a situation.
interest. Theoretically, this phase appears naturally as a result The problem that we are facing here is analogous to the
of a broken symmetry in the theory of BE@,5]. At zero  question raised by P. W. Anders$8]: Do two superfluids
temperature, the atomic sample is described by a coheretitat have never “seen” one another possess a definite rela-
state, i.e., an eigenstate of the annihilation operator for &éve phase? As pointed out [#], the question is meaningless
particular state of the one-atom Hilbert space. A classicahs long as no measurement is performed on the system. J.
field |o|e'® with a well defined amplitudéy,| and phase Javanainen and S. M. Yoo recently addressed a similar ques-
¢ is associated with this coherent state. Experimentallytion by considering the spatial interferences of two conden-
however, one can, in principle, measure the exact number cfates prepared in the stdtd,N) and arriving on a given
trapped atoms. The condensate is then described by a Foekray of detector§9d]. He showed numerically that, after the
state(or number state and no definite phase can be attrib- detection of all the atoms of the two condensates, the count
uted to the gas. The question then arises of whether theghstribution on the set of detectors was similar to the one
two different descriptions lead to identical predictions for apredicted from a phase broken symmetry state.
given experimental setup. The paper is organized as follows. In the Sec. |, we ad-

To investigate this problem, we consider the following dress the simple particular case where all the detected par-
Gedanken experiment, using two trapped condensates of tliieles are bunched in the same output channel of the beam
same atomic species. The trapping potentials are isotropiplitter. In Sec. Il, we present a general reasoning showing
and harmonic, except for a finite barrier in a given direction,that the descriptions in terms of coherent or Fock states lead
through which the atoms can tunn@lig. 1). The phase be- to identical predictions for any type of measurements per-
tween the two emerging beams can be probed by “beating’formed on the system. In Sec. lll, assuming an initial Fock
them together, i.e., by mixing them with a 50-50 atomicstate for the system, we investigate the buildup of a relative
beam splittef6]. phase between the two condensates as the measurements pro-

If each condensate is in a coherent state with the sameeed. In Sec. IV, we add a device, shifting the atomic phase
average number of atoms, the beams incident on the beaim one of the channels of Fig. 1, in order to perform multi-
splitter are described by the two field$y,|e'®sa and  channel detection; we then recover analytically the numerical
| 4| €' #8. The intensities in the two outputs of the beam split-results of[9]. Finally, we include the effect of the atomic
ter are then interactions on the distribution of the relative phase between

the two condensates. We predict collapses and revivals for
this distribution with time scales that should be experimen-
I, =2|gol?co€d, |_=2|y|%sirte, (1)  tally accessible.

I. A PARTICULAR CASE: ALL THE DETECTIONS
where ¢=(¢pp— ¢g)/2. The recording of .. allows one to IN ONE CHANNEL

determine the absolute value of the relative phage Idote

that ¢ is an unpredictable random variable, which takes a \ye assume that atoms are detected dd. . Eor sim-

different value for any new realization of the experiment. pjicity we consider in this section the situation where all the
In a description of the system in terms of Fock states, ong getections occur in the|{) channel. If the system is ini-

supposes that the system is initially in the st&dg,Ng), i.e..  tially in a coherent state, the probability for such a sequence

there areN,,g particles in the condensatésB. Our purpose  (given thatk atoms have been detecidd co¥é. The aver-
is to show that the predictions corresponding to a statisticage gver the unknown relative phase Bives

mixture of stategN,,Ng) with a Poissonian distribution for
Na/g are identical to Eq(1). The notion of phase-broken

/2 |
symmetry is therefore not indispensable in order to under- Wk:j d_d’ cokp= Lik% ~ L 2)
stand the beating of two condensaftés On the other hand, —ml2 T (2% o1k
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these two vectors are in the ratio 3:1. This indicates that once
a first atom has been detected in the)(channel, the prob-
A Beam B ability of detecting the second atom in the same channel is
/ Splitter A 3/4, while the probability of detecting this second atom in the

(=) channel is only 1/4. This somewhat counterintuitive re-
sult shows clearly that the successive detection probabilities
are strongly correlated in the case of an initial Fock state,
even if the number of detected atoms is very small compared

__\,/D D__ to the number of atoms present in the condgnsates. The rea-

* soning can be extended kodetectionssee Fig. 2 and we

find that the probability of detecting respectiveky, =k and

FIG. 1. A Gedanken experiment: atoms leaking from twok_=0 atoms in the two channels is
trapped condensates, and B, are detected in the output channels
(%) of a 50-50 beam splitter. 13 2k—1
PkO=32 T ©
For k=100, this probability of getting all counts in the
(+) channel is~6%.

We suppose now that the system is in a Fock state and f
simplicity we takeNg=N,>Kk. A naive argument could con-
sist of saying that sinck<N,, the probability of detecting
the nth atom (1<k) in the (+) channel is nearly indepen-
dent of then—1 previous detection results. The probability
of k detections in the {) channel should then be 2. This

which is equal toN, for anyk. Note that the explicit average
vaerNA andNg is correctly omitted in this last calculation in
the limit No=Ng>1, where the Poissonian fluctuations have
a negligible effect.

The predictions for an initial Fock state and for an initial
coherent state with random phase are therefore equivalent,
but the result for the coherent state is obtained in a much

is obviously very different from the resV, obtained from . S
the coherent state point of view (<10~ for k= 100). ;r:gtr: straightforward and intuitive manner than for the Fock

However, the latter reasoning is wrong; the first detection

of an atom in the {) channel projects the atom in a state
proportional to Il. ENSEMBLE AVERAGE WITH

AND WITHOUT PHASE-BROKEN SYMMETRY

(a+b)[Na:Na)<[W)=[Na,Na=1)+[Na=1Npn), (3) This equivalence between the Fock-state and the coherent

-~ A . o state descriptions is actually not restricted to the particular
wherea (b) annihilates a particle in the condensAteB). To  getection scheme considered in this paper. It is a conse-

calculate the probability of detecting a second atom in tthuence of the identity of the density operators of the total
(+) channel, we have to compare the squared norm of thgystem in those two descriptions. To prove this identity, we
two vectors corresponding to a detection in the)(chan-  first consider the coherent state with well-defined phases

nels: éa and dg:
(+)(é+6)|\lf>= \ NA_ 1(|NA_21NA>+|NA!NA_2>) |N_A1/2ei¢A'N_Bl/2eid>B>
+2NAINA—1Np— 1), (4) N2 a2
= A2 ¢i(Na¢atNede)|N, Ng)
(=):(a=b)[ W)= YNA—L(INAe—2Np) = INa,NA—2)). Na-Ng VNa! Ng!
(5) x @~ (Na+Ng)/2 @

For Npo=1, we recover the well-known interference effect L L
leading to a bunching of the two bosons in a single output ofvhere N, and Ng are the mean number of particles in the
the beam splittef11]. For Ny>1, the squared norms of condensateg andB. In the coherent-state description, the

|Na, Na)

1/2 1/2

FIG. 2. Possible outcomeg&nd the corre-
sponding branching ratipof the first three de-
tections in the output channels of the beam split-
ter. Initially, the system is in a Fock state, with
[Na—2,Na) + |Na, Na—2) INa—2,N4) + |NayNa — 2) the same numbers of particldg>1 in the two
42INs—1,Ns—1) INa=2Na) —INANa=2)" " 0 0y 'y gy condensates.

5/(/\1/6 1 /%\1 /2 1/%\5/6

|[Na—1,Na)+|Ng, Na—1)  |[Na—1,N4)—|N4g,Ng—1)

3/4 1/4 1/4 3/4
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density operatop of the system is then obtained by a statis- ¢=(¢d5— ¢g)/2. Each count occurs with probabilities

tical average over the phaseés and ¢g: cog¢ and sif¢ in the (+) and () channels. Given that
k particles have been detected, the distribution of counts in
p:fzwfz’TdfﬁA dég (Nl N 2l ) the () channels is binomial and the probability for the
o Jo 27 2w A B result k. ,k_) is

X<N_Allzei¢A,N_Bllzei¢B|' (8) P(k+ K ’¢): g 'k!k | (COS(ﬁ)zk*(Sin(ﬁ)ZL- (11)

Using the explicit expressiof¥) of the coherent states, we .
find that all off-diagonal terms in the Fock-state basis arelhe number of countk, in the (+) channel has, therefore,

suppressed after the integration oy, ¢, a mean valu&kcos¢ and a standard deviatiofshot noisg
olk.]= k| cosp sing|.
NNANNB In the limit k..>1, using Im!~nInn—n for n>1, we find

A B

p= NN INA,Ng){(Na,Ng| e~MNatNe)  (9)  from Eq. (11) that P(k, ,k_,¢) is maximal for
Na.Ng NA: B:

k_/k, =tarf¢, as expected from Eq1). In other words, for
. L . . . - . k>1, the mean and most probable intensities coincide, since
which coincides with the Poissonian statistical mixture CON< < shot noise on the sianal in the two channety pecomes
sidered in the Fock-state descriptipfy12]. nealiaible 9

From the identity of the density operatgsswe can con- glgible.
clude that no measureme(dr no series of measurements
performed on the system can allow one to distinguish be-
tween the coherent state and the Fock-state descriptions. In- For an initial statd W) with a well-defined total number
deed, in a sequence of measurements, the probability of gesf particlesN, the evolution due to the sequence of measure-
ting a given set of results can always be expressed as thaents is conveniently analyzed by expandjdg) onto the
expectation value Tfp) of an operatorO [13]. For ex- overcomplete set gfhase statesp)y [4]:
ample, the probability that at leaktatoms are detected and
that the firstk detections occur in the) channel is ob- 1
tained from(see Appendix | bIn= V2 NI

B. Phase states

(éTei¢+6Te*i¢)N|0>, (]_2)

where|0) stands for the vacuum. If the system is in a given
state| )y, there exists a well defined relative phasebe-
tweenA andB: if a device shifting the phase of the matter
wave by 2p were placed in front of th8 input of the beam
splitter, all the atoms would be detected in the)(output of

(a+b)%, (10

= 2 (a1 +B1 '

2 (N+1)- - (N+k)
where N=a'a+b'b. It is shown in the Appendix that
Tr(Op) is nearly equal toP(k,0). The difference between the beam splitter.

the two quantities is due to the fact th&¢k,0) is acondi- Any state| W) with N particles can be expanded in the set
tional probability that the firstk detections occur in the ¢ phase states:

(+) channel, knowing that at leagt particles have been

detected. This difference is negligible in the limit where the w12 dep
mean numbers of atomN,=Ng are much larger thak, W):f—m? c(¢) |, (13
since the probability that at leaktdetections occur after an
arbitrarily long time approaches 1 in this case. where the phase amplitudé ¢) is obtained as
N
IIl. PROBABILITY OF A GENERAL  (k, ,k_) DETECTION e S Nal (N=Np!| " {(N—2Np) 6
RESULT c(¢)= D e

We now generalize the discussion of Sec. | to the general X (Na,N—Nu|W¥). (14)
case ofk. detected atoms in thex) channels for a fixed
number of measuremenks=k, +k_. We first address the In what follows, we will use the quasiorthogonality of the

case of an initial coherent state. We then define the so-callgshase states valid for larde and for — w/2< ¢, ¢’ < 7/2:
phase states, which correspond to a well defined total num-

ber of particles and a well defined relative phase between the (Db In=co(p— ¢ )=e N~ 972

two condensates. Finally, starting from the system in a Fock

state, we expand the state vector on those phase states as the =\2mINS(p—¢"). (15
measurements proceed, to show the emergence of a relative . .

phase. As an illustration of the relevance of the phase states we

now derive the probabilityP(k, ,k_) for the system in the
initial state [N/2,N/2). We show that it is approximately
equal to the result obtained for a statistical mixture of coher-

We assume that the system is initially in the coherentent states, as expected from the general discussion of Sec. II.
state, Eq(7). As the measurements proceed, the state of the Using the formula found in EqA4) of the Appendix, we
system remains coherent, with the same relative phasget as a starting point

A. Case of an initial coherent state



55 RELATIVE PHASE OF TWO BOSE-EINSTEIN CONDENSATES

(N—K)! K

Pk k)= 2/ T K

X ||(a+b)k+(a—b)*-|N/2,N/2)||2. (16)

We expand the state vector over the set of phase states:

@2 d
IN/2,N/2) =cof_7ﬂ27¢ [ d)ns (17)
Co= 2“’2% ~ (mwN/2)Y4, (18

4333
We get, for instance, fop close tog,,
ok 1 K, k_
(cosp)“+(sing)“-=ex > k+logr+k,logr
—k(é— 4’0)2} (24)

We obtain therefore:

72
|~If(k+.k7>>ocj dp [e™K@=%0"
— /2

+H(—1)k-e KT gy . (25)

The interpretation of this result is quite clear: initially, the

We calculate first the action of the annihilation Operators inre|ative phase of the two condensates is indefinite, since the

Eq. (16) on the phase states:

(a+b)*+(a—b) | #)n
N! 2K
:<(N—k)!

1/2
) e'*-"2(cosp)*+ (sing) - |p)n_k, (19

with k=k, +k_. The quasiorthogonalityEq. (15)] of the
phase states in the limit of lardé then gives

k! w2 d
P(k+,k—)~mf_ /2%{) (cosp)®+ (sing)-
/2 dd)
=J’_W/277’(k+ K, b)), (20

which shows the announced equivalence.

C. Emergence of the relative phase for an initial Fock state.

For an initial Fock statéN/2,N/2), which has a flat phase
probability distribution [c(¢$)|?>, we now investigate the

vector state of the system projects equally onto the various
phase statgsee Eq(17)]. After k>1 detections, the system
has evolved into a state where the phdse well defined;
more precisely, the phase distribution is a double Gaussian,
centered on¢g, and — ¢y, with a standard deviation of
1/\/2k. This ambiguity betweems, and — ¢, also arises in

the determination ot from Eq.(1).

To summarize, we have two different points of view on
the system: for an initial coherent state, the measurement
“reveals” the pre-existing phase through fab=k_/k. ;
for an initial Fock state, the detection sequence “builds up”
the phase. A similar conclusion has been reached by a nu-
merical analysis of quantum trajectories in the framework of
continuous measurement thedrd2]. It is not possible to
favor one particular point of view, based on experimental
results. If the same experimental sequence involkidgtec-
tions is repeated, with the phase varying randomly from shot
to shot in the coherent-state point of view, the predicted oc-
currence of a given resukt, ,k_=k—k, is identical in the
two points of view.

IV. MOST PROBABLE MEASUREMENT SEQUENCES
IN A MULTICHANNEL DETECTION SCHEME

emergence of a relative phase between the two condensates,, ihis section, we analyze the results of a multichannel

during the sequence of measurements.

After a sequence ofk(, ,k_=k—k,) detections, the state

of the system is obtained from Eg4.7) and (19):
|W (k. k_))(a+b)k+(a—b)<-|N/2,N/2)
w2
« [ 4 (cosp)s(sin) | ).

(21

For k.>1, we use the stationary-phase method, which ap
proximates the integrand (c@x-(sing)<- by a Gaussian
around each of its maxima. The maxima| ia 7/2,7/2] are

located ingy and — ¢, with 0= ¢p=< /2 and
k, =kcoS g, (22)

k_=Kksirf¢yg. (23

experiment where a device shifting the atomic phase by an
adjustable quantity 2 is introduced in one of the input chan-
nels of the beam splitter, sketched in Fig. 1. Our analysis
also applies to the case of spatial interferences between two
condensates arriving simultaneously on an array of atom de-
tectors[9].

We imagine that the phase shiftis tuned successively to
the L different valuesy;=jm/2L,j=0,... t—1. We as-
sume, for simplicity, that exactlig>1 particles are detected
for each value ofy. Our goal is to show that the signals in
each+ and — channelk, (j) andk_(j), are equalwithin
shot noisg to k cos(¢—7;) andk sir’(¢,—7,), where the
parameterp,, varying randomly for any new realization of
the whole experiment, is the same for all channels.

As emphazised in Sec. Il, the probability for a given set of

results{k..(j)} is given by the average of an operafdover

the density matrix of the systef&q. (8)]. For the multichan-

nel detection scheme considered here, the probability of ob-
serving this sequence, knowing thatounts have been ob-
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tained in each channel, is obtained by a generalization of the L-1 coZ(p— i)
result of the Appendix: S(6g, ....0_1.0)=2, co§6jln<Tj)
i=o COSs 6);
L-1
_ w2 db k! Sif(¢— )
P[{ +(])}] T J'];[O k+(])| k,(])' +S|r]20]|n( SInZGJ . (32)
X[cog p—yj) 12+ W[sin(¢p— ;) 12K 1. We now look for the valuesd, . . .,0, ;) maximizing

(26)  P(6q, ...,0,_1). We note the positionp, of the absolute
maximum of S [15] as a function of ¢, for given
To demonstrate this result, we have used the operatofs,, ...,6,_;), and we perform the stationary-phase ap-
a=+e?7b associated with a count in the=() channel with a  proximation in the integralEq. (31)]:
phase shift ;.
We investigate first the cade=1 discussed in the pre- C
ceding section, to identify a physically optimal parametriza- (o, - ’0L—1)2\/|7—2?equ8(90’ cob-1.90) ],
tion of the problem. Fok>1k.>1, we get an approxima- ¢=1%0 33
tion of the right-hand side of Eq20) by using the stationary (33
phase method for the integrédEgs. (24) and (25)] and

s ' : where the normalization fact&@ depends ork andL only.
Stirling’s formula for the binomial factor:

If one neglects the slow variations of the prefactor, the maxi-
kI ( K )1/2 K K mum of P is obtained by maximizing in Eq. (33) over the
' exp( —k,In——

= — remaining variabled,, ...,0, _1. This is equivalent to a
k! k_! 2wk, k_ K k_In ak g o L-1 q

global maximization ofS in Eq. (32) over all the variables.
(27 We find [16] that the maximal value o6 is 0 and that it is

This leads to obtained for the measurement sequences

L ki(j)=kcoS(¢o—7v), j=0,...t—1,
Pk, k_)= T\/I (28 —m2< o< /2. (39

. o ) The curve defined by E¢34) for the ¢;'s is the straight line
The remaining slow variation witk.. can be suppressed by . = + (¢, y,)[7]. Along this line the probability density
charactgrizing the sequence of measurements by _thg angle constantiand equal toC/y4L). ExpandingS around the
$o, defined in Eq.(22), rather than byk. ; in the limit  gistributions[Eq. (34)], we find, after a rather involved cal-

k>1 we treatc, as a continuous variable, and the Jacobiargyation, that the probability density decreases away from
for the change of variablds, — ¢, satisfactorily leads to a this line as

flat probability density forg,:

~ C ,
dk, :; 29 P oM~ 2ke), (39

déo

We now generalize this calculation to an arbitrary valueWhered 's the Euclidian distance to t_he Iin_e. .
for the number of phase biris A sequence oL detections These results can be understood in a simple and physical

. R . . manner as follows. Assume that the system is initially in a
(with K dgtecuon in each bin{k.(j),j=0,... L—1} is coherent statdEqg. (7)], with a random relative phase
characterized by the angles;, such that da— Pg=2q uniformly distributed in — 7, 7. For a total
number ofk>1 counts, measured with a phase shift 2n
the input channeB of the beam splitter, we use the results of
Sec. Il A, replacing¢ by ¢o— v; in Eq. (11); we find that
the probability distribution for the anglé; in Eq. (30) is
strongly peaked aroung,— y;, with a standard deviation
1/\/4k, in agreement with Eq$34) and (35).

This exemplifies again the relevance of the coherent-state
point of view in the description of the measured results for a

T><¢O>E7><k+,k>‘

k+(j)=kco§0j , 0;€[0m/2], j=0,...L—-1. (30

In the limit k>1, we consider the;’s as continuous vari-
ables; expanding the binomial factors in Ef6), using Eq.
(27) as in the previous cade= 1, we find for the probability
density of thed;’s

P(bo, - \O-1) single realization of the beating experiment.
L—-1 .
. dki(j)

=P({k.(HH 1 a0, V. ROLE OF ATOMIC INTERACTIONS:

1=0 ] COLLAPSES AND REVIVALS

L2
:(Z_i() f’ﬂz _¢’ exgkS(y, . .. .0 )] (31) Up to now, we have neglected the time evolution of the
m —wl2 T 0 e PLm T system, except for the state projection consecutive to a de-

tection onD. . We now investigate the dynamics of the
where we have introduced phase distributiorc(¢,t) [Eq. (14)] for a state withN par-
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ticles, including the effects of atomic interactions. We con- 9
sider here the situation where no interaction takes place b¢ le(e, )l
tween A and B; this situation differs from the one ifiL0]
where the two condensates are spatially overlapping and tt
interferences are modified by their mutual interactions.

In our case, the Fock statfs, ,Ng) are eigenstates of the
total Hamiltonian, with an energ§(Na,Ng). To express the
phase distribution at time in terms ofc(¢,0), we expand
the initial state to the Fock states using E@k2) and (13),
we evolve the Fock states for the timeavith the appropriate
phase factors, and we calculaté,t) from Eq. (14). This
leads to

250 -

72 dd)’ (;5
C((f),t):f P K(p—a';t)c(¢’,0), (36) time {second]
Y
with FIG. 3. Short time evolution of the phase probability distribu-
tion |c(¢,t)|? for No=Ng=10* rubidium atoms. The scattering
N length isa=10 nm. The frequencies of the two traps are identical,
K(gp;t)= > ell(Ns=Na)é—E(Na Ng)t/A] (37)  Qap=2mXx100 Hz. The initial phase distribution(¢,t=0) is
Na=0 real Gaussian, withc(¢,t=0)|? leading to a standard deviation

. o A ¢o=1/10. Note the emergence of fractional revivals after the col-
where Ng=N—N,. Assuming a distribution of the Fock lapse of the wave packet.

states peaked around,=Ng=N/2 with a width<N [14],

we expand wherem is the atomic mass and is the s-wave scattering

_ _ _ length; this leads to ik=(ua+wg)/(10N). Using
E(Na;Ng)=E(N/2N/2)+ (p = 1a) (Ng—Na)/2 0,=27x100 Hz [1], we find togapse AdoX 18 s for
+hk(Ng—Np)2+-- -, (38)  N/2=10" rubidium atoms 4~ 10 nm). The phase collapse is
followed by partial fractional revivalg¢see Fig. 3 a known
where u g are the chemical potentials for the condensatephenomenon in quantum mechan[@0]. The first full re-
A/B. From Eq.(38), we find that the effect of the linear term vival occurs at a time~14 s, with an average phase shifted
is a mere phase drift, with a velocitp=(ug— ua)/(2%). by
For an ideal gask=0 and this drift is the only possible

. 6/5 6/5
evolution, with¢ = (3/4) (Qg— Q,), where(Q » 5 are the trap _m 57 Qa0
oscillation frequencies. =5+, N Q%5 0% (41

When atomic interactions are presemt#0, and the
(Ng—Np)? term in E(Na,Ng) is responsible for a phase For N>1, this shift is very sensitive to any asymmetry be-
spreading analogous to the spreading of the wave function g{veen the two traps.
a free massive particle. This phenomenon is similar to the Tq summarize, we have developed an approach to the
“phase diffusion” predicted in17]. If we replace the sum problem of relative phase of two macroscopic entities that is
over N, in Eq. (37) with an integral, we find that an initial based on microscopic measurements. In this way, quantita-
Gaussian phase distribution remains Gaussian; the variangge predictions can be obtained about the phase distribution

for ¢ calculated inc(¢,t)|? then evolves as and its time evolution. This approach is complementary to
) ) , the one dealing with a macroscopic variable, such as a Jo-
Apr=A¢o+ (kt/Ago)”. (39 sephson current, connecting these two entftie&1. It can

. ) . be extended to the case of more than two condensates in
Therefore, a state with a well- defined initial phase ,rqer 1o discuss the problem of an “atomic phase standard”
(Ago<1l) will be “dephased” in a time [22] we note, however, that the phase dynamics described

~Leollapsé= A o/ k. FOr times longer thatgapse We have 10 5p6ve makes it difficult to establish a long-lived phase co-
keep the discrete sum ovbi, in Eq. (37). We find that this  harence between separate atomic samples.
phase collapse is followed by revivals occurring at times

tj=mjl4k, j integer[18], with an average phase displaced
by ¢t;+jm/2 from its initial value.

This discussion implies that the results derived in the first We are grateful to Claude Cohen-Tannoudji, Franck La-
part of this paper are valid provided the measurement sdeg, and Christophe Salomon for useful discussions, and to
guence is performed in a time short enough that the phas&arl Berggren for a careful reading of an early version of the
spreading or drift is small compared to the final phase widthmanuscript. This work is partially supported by the DRET,
As a typical situation, we consider a condensate in theCollege de France, Ultimatech and the European Commu-
Thomas-Fermi regimgl9] for which nity. The Laboratoire Kastler Brossel is unite Recherche
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APPENDIX A: PROBABILITY FOR A GIVEN DETECTION trarily long measurement time, the firktcounts involving
SEQUENCE k. counts in the output channets:

Consider first a single condensaeleaking with a loss

. . ; 1 !
ratel’ towards an ideal detector. As usual, in the continuous Q(k, ,k_)=

—  Tr p(O)(é_T-i-E)T)k*'(éT—E)T)k—

=
measurement theorj23,24] the state of the system under- 25kt k!

goes a sequence of quantum jumps; the operator characteriz-

. . . =n A - . . 1 ~ A ~ A

ing these jumps isTa, wherea annihilates one particle in X — _ a—b)*-(a+b)k+|.
the condensate. Between these jumps, the evolution of the (N+1)---(N+k)

system is governed by the non-Hermitian Hamiltonian
—i#T'N/2, whereN,=a'a. From [23], we find that the
probability density that k counts occur at times The operatorO introduced in Eq.(10) is readily obtained
ty<t,=<---<t, (with no additional count betweer=0 and  from this expression, witlk, =k,k_=0.
t=t,) is given by We now calculate the probabilit®(k, ,k_) when the
system is in the coherent state Ed), assumingN,=Nj.

i R The action of the annihilation and creation operators in Eq.

Q(ty, ... L) =T T p(0)e MNali2gT. .. e~ TNal—t-1)/2 (A4) is easily obtained and we are left with

(A4)

x atae TNAt—t-0/2. . 3o~ TNat2], Q(ks ko)

M @y s s

The probability of getting at least counts for an arbitrarly
long measurement time is obtained after some algebra: < 1 >

. . (A5)
(N+1)---(N+k)

+oo +oo +oo where¢=(¢pp— ¢g)/2 and where the average- -) is taken
Q(k)= fo dt; ft dt; ... t dt Q(ty, ... tw in the coherent state. Since the total number of particles has
! k-1 a Poissonian distribution with a mean value

. 1 . Na+Ng=2N,, this average is given by
=Tr| p(0)(a")*— - ak], (A2)
(Na+1)---(Nat+k)
()

which, in the present case of a single condensate, reduces to = =
the expectation value of the projector onto the states with at (N+1)...(N+k)
leastk particles. o 1 1 .

This can be generalized to the case of two condensates = 2 — (2N,)Ne=2Na
A and B, with identical loss rate¥ and whose outputs are N=o (N+1) ... (N+k) N!
mixed on a 50-50 beam splittésee Fig. 1. The measure-
ment process now involves two types of quantum jumps, [1—H(k,N_A)], (AB)

characterized by the two operatog®/2(a+b). The non- (2Np)*
Hermitian Hamiltonian governing the evolution between the

quantum jumps is given by-iAT'N/2, with N=a'a+b'b. where we have introduced

We now define the probability densi@(t; 74, - -.tx ) k=1 TN

: . g — (2Np)
thatk counts occur at timeg <t,< ...=<t, (with no addi- II(k,Ny)=e 2Na | (A7)
tional count betweebh=0 andt=t,) in the output channels N=o N!

Mm==*, ... p==: I "
which is the probability that the total number of counts re-

mains smaller thak for an arbitrarily long time. This quan-
tity becomes exponentially small whéi,> k.
For a statistical mixture of coherent states with random

Q(ty 71, -+ -tk M)

=(T/2)*Tr p(0)e "N2(3T+ 5,BT) . .- phasegsee Eq(8), with No=Ng], Q(k. ,k_) becomes
XefFN(tkftk_l)/Z(aT_i_ b _ k! 72 dep
A Q(ky ,k-)=[1-TII(k,Np)] WJ —
X(é-i— nkB)e*FN(tk*tkfl)/Z. .. Kt -
X (cosp)?+ (sing)?*- . (A8)

X (a+ p,b)e " TNw2), (A3)

The conditional probabilityP(k, ,k_) defined in the text is

From this expression, we can determine the probabilityequal toQ(k, ,k_)/[1—1I], since 1-1II is the probability
Q(k4 ,k_) of getting at leask=k,. +k_ counts for an arbi- of getting at leask counts.
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