
Eur. Phys. J. D 10, 9–18 (2000) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. We present a theoretical analysis of the evaporative cooling of an atomic beam propagating in
a magnetic guide. Cooling is provided by transverse evaporation. The atomic dynamics inside the guide
is analyzed by solving the Boltzmann equation with two different approaches: an approximate analytical
ansatz and a Monte-Carlo simulation. Within their domain of validity, these two methods are found to be
in very good agreement with each other. They allow us to determine how the phase-space density and the
flux of the beam vary along its direction of propagation. We find a significant increase for the phase-space
density along the guide for realistic experimental parameters. By extrapolation, we estimate the length of
the beam needed to reach quantum degeneracy.

PACS. 05.30.Jp Boson systems – 03.75.Fi Phase coherent atomic ensembles; quantum condensation
phenomena – 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

Forced evaporative cooling of trapped gases is a very pow-
erful technique to increase the phase-space density of an
ensemble of atoms up to quantum degeneracy [1]. Parti-
cles with a sufficiently large energy (typically 5 times the
thermal energy kBT ) are eliminated. Elastic collisions be-
tween the remaining particles restore thermal equilibrium
with a lower temperature and an increased phase-space
density. The most prominent success of evaporative cool-
ing is the achievement of Bose-Einstein condensation of
alkali and hydrogen atomic gases [2–5].

In this paper we present another possible application
of evaporative cooling. We consider atoms moving freely
along the z-axis and transversely confined by a magnetic
field gradient, which provides a harmonic potential in the
x−y plane (see Fig. 1). The atoms are injected in the plane
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Fig. 1. An atomic beam propagates in a transverse magnetic
guide. Evaporation eliminates particles whose transverse coor-
dinate exceeds some adjustable value Λevap(z). The emerging
beam is colder and it has a larger phase-space density than the
input beam.
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z = 0 with given flux, longitudinal and transverse veloc-
ity and spatial distributions. We suppose that a radio-
frequency field is applied so that only atoms inside a
tube-shaped region remain trapped, those outside are
evaporated. The bias magnetic field along the z-direction
is adjusted so that the cross-section of the tube decreases
as z increases. As the atoms move forward in the magnetic
guide, the ones with a large transverse energy are evap-
orated. We then rely on elastic collisions between the re-
maining atoms to decrease the longitudinal velocity width
and to increase the phase-space density of the beam.

We investigate theoretically the efficiency of this evap-
orative cooling scheme by solving the Boltzmann equation
with two different approaches: one is based on a truncated
distribution ansatz for the phase-space distribution func-
tion, while the other one is a direct Monte-Carlo simula-
tion of the atomic dynamics inside the guide. For a suit-
able geometry of the evaporation scheme, the results of the
analytical method fit quite well those of the Monte-Carlo
simulation. They show that, with reasonable experimen-
tal parameters, the cooling process can lead to a spec-
tacular increase of the phase-space density of the atomic
beam. This might be considered as a possible realization
of a continuous atom laser [6,7]. Such a coherent source of
atoms would have fascinating applications in atom inter-
ferometry and holography, metrology and atomic clocks,
and nonlinear atom optics [8].

The paper is organized as follows: in Section 2 we de-
scribe the magnetic guide (Sect. 2.1), we give some typical
parameters of the atomic beam source (Sect. 2.2), we in-
troduce the Boltzmann equation (Sect. 2.3), and we detail
the evaporation scheme (Sect. 2.4); in Section 3 we use
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a truncated Boltzmann distribution to obtain an approxi-
mate analytical solution of the Boltzmann equation for the
case of a 1D evaporation scheme; in Section 4 we explain
the Monte-Carlo simulation and we analyze the results of
the two methods in Section 5. The paper is concluded in
Section 6 with a brief discussion of the coherence proper-
ties of the beam when the cooling is sufficiently efficient to
reach quantum degeneracy, that is when the spatial den-
sity is of the order of λ−3, where λ is the local thermal
wavelength.

2 Model considered

2.1 The atomic guide

We assume that the magnetic guide consists of four par-
allel wires carrying the same current ±I along the z-
direction (see Fig. 1); each wire is at a distance a from
the line x = y = 0. The resulting magnetic field is
B = b′(x,−y, 0), with b′ = 2µ0I/(πa2). We superimpose
a longitudinal magnetic field B0 along the z-axis so that
the modulus of the total magnetic field can be written for
x, y sufficiently small:

B(r) =
(
B2

0 + b′2(x2 + y2)
)1/2 ' B0 +

b′2

2B0
(x2 + y2).

(1)

A magnetic moment µ which is prepared in the direction
opposite to the local B will therefore experience a trap-
ping harmonic potential in the transverse directions. This
potential is necessarily isotropic in the x−y plane because
of Maxwell equations for magnetostatics. The oscillation
frequency in this plane is given by

Ω⊥ = (µb′2/(mB0))1/2 (2)

where m is the atomic mass.
Typical experimental values are a = 4 mm, I = 500 A,

and B0 = 1 mT. For rubidium atoms with µ equal to
the Bohr magneton, this leads to an oscillation frequency
Ω⊥ ∼ 2π × 1000 Hz. The quadratic expansion leading
to (1) is valid for transverse temperatures up to 500 µK.

2.2 Parameters of the atomic beam source

In our model the atoms – for the envisaged experiment
we consider rubidium atoms – enter the magnetic guide in
the plane z = 0 with a Gaussian velocity and space distri-
bution with the same initial temperature T0 for transverse
and longitudinal degrees of freedom. The longitudinal ve-
locity distribution is centered around a non zero value v̄0.

The ratio v̄0/∆v0 , where ∆v0 =
√
kBT/m is the r.m.s. of

the Gaussian velocity distribution, should be larger than 1
to ensure that only a very small fraction of atoms is ini-
tially moving “upstream”, that is with a negative longitu-
dinal velocity. We choose in the following

v̄0/∆v0 = 3. (3)

For an initial temperature T0 =400 µK, this gives v̄0 =
60 cm/s. The r.m.s. of the spatial transverse distribution
is R⊥0 = ∆v0/Ω⊥.

We further assume an initial on-axis density n0 at
x = y = 0 of the atomic beam of 8 × 1011 cm−3 which
corresponds to a flux Φ0 = 2πR2

⊥0n0v̄0 ' 3× 109 s−1 [9].
The initial stage of the evaporative cooling within the
guide can be described by classical dynamics as n0λ

3
0 ≈

7 × 10−7 � 1, where λ0 = h/
√

2πmkBT0 is the initial
thermal wavelength of the gas.

2.3 Collisional dynamics inside the guide

The collisional dynamics inside the guide can be the-
oretically described by the Boltzmann equation, which
gives the time evolution of the atomic phase-space den-
sity f(r,p, t):

∂f

∂t
+

p
m
· ∇rf −∇rU · ∇pf = Icoll [f ] , (4)

where U(x, y, z) = Ux(x) + Uy(y) with Ux(x) =
(1/2)mΩ2

⊥x
2 and Uy(y) = (1/2)mΩ2

⊥y
2. The distribution

f is normalized so that its integral over momentum gives
the spatial density. Considering only elastic and isotropic
collisions between guided atoms, we write the collisional
integral as:

see equation (5) above.

Here we assumed that the cross-section σ is independent
of atomic momentum, a valid assumption for alkali atoms
(in the absence of a zero energy resonance) if the tempera-
ture is low enough so that collisions essentially occur in the
s-wave regime. For instance for polarized rubidium atoms,
the region of s-wave scattering extends up to 400 µK, cor-
responding to a r.m.s. velocity ∆v0 = 20 cm/s. Above this
value, d-wave scattering is not negligible, and it may sig-
nificantly modify the results of this paper. We recall that
p-wave scattering (more generally any odd wave scatter-
ing) is forbidden at any energy for polarized bosons.

The collision rate of the atomic beam source γcoll is re-
lated to the on-axis density n0 by γcoll = (2/

√
π)n0σ∆v0.

For the s-wave collisional cross-section of rubidium (σ =
7.6× 10−16 m2) we get:

γcoll/Ω⊥ = 0.02, (6)
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which means that an atom performs on average several
transverse oscillations between two collisions, that is the
dynamics of the transverse degrees of freedom is in the
collisionless regime.

2.4 Evaporation scheme

Evaporation along the beam eliminates atoms outside
a section in the transverse xy plane. In order to opti-
mize the efficiency of this evaporation, we assume that
the size of this section varies with z in a controlled way
(forced evaporation). In practice this can be achieved us-
ing a radio-frequency field at a fixed frequency νrf , and
a spatially varying bias field B0 and gradient b′, produc-
ing thus a spatially varying bottom of the magnetic well
while keeping a constant Ω⊥ ∝ b′/

√
B0 [10]. The stability

constraints concern mostly the bias field B0 as it con-
trols directly the effective local trapping potential depth
∆U0 = (hνrf/g) − µB0 where g is the Landé factor of
the atomic level. As we shall see in Section 5.1 a typical
value for ∆U0 at the point where quantum degeneracy is
reached is ∼ 1 µK. This value is comparable to the po-
tential depth typically used in Bose-Einstein condensation
experiments, so that we do not anticipate any particular
difficulty with the control of B0. Another possibility to
achieve evaporation is to place an absorbing material at a
controlled distance Λevap(z) from the center of the guide.

Evaporation is taken into account in the model by
putting f(r,p, t) = 0 if the phase-space cell {r,p} is out-
side the domain where atoms are trapped. For the case of
a radio-frequency evaporation, which is cylindrically sym-
metric as long as gravity is negligible, the evaporation cri-
terion is:

x2 + y2 > Λ2
evap(z) (7)

where Λevap(z) is determined by the radio-frequency field:
gµ(B2

0 + b′2Λ2
evap)1/2 = hνrf . This corresponds to a 2D

evaporation scheme. We also will consider in this paper a
1D scheme with the criterion

x2 > Λ2
evap(z). (8)

As we will see below, this 1D scheme allows an approx-
imate analytical treatment. We also define the cut-off
energy:

εc(z) =
1
2
mΩ2

⊥Λ
2
evap(z). (9)

3 One-dimension hydrodynamic approach

3.1 The truncated Boltzmann distribution ansatz

In this section we restrict the discussion to the 1D scheme
of equation (8). We now assume that the flow of the gas is
in the hydrodynamic regime along the longitudinal direc-
tion, that is the macroscopic quantities – such as density
or mean velocity – vary slowly with z on a scale given by

the mean free path d(z) = ∆v(z)/γcoll(z). The assumption
of a hydrodynamic regime implies a local thermodynamic
equilibrium characterized by a local temperature T (z) at
abscissa z.

We also assume that the mean free path is much larger
than the transverse extensionR⊥(z) of the beam, or equiv-
alently γcoll(z)� Ω⊥. As a consequence, in the 1D evap-
oration scheme, if an atom emerges from a collision with a
kinetic + potential energy along the x-axis higher than the
cut-off εc(z), it will fulfil after the further oscillation – and
before it undergoes another collision – the condition (8)
and it will be evaporated. Therefore it is equivalent to
formulate the evaporation criterion either in terms of the
coordinate x or in terms of εx(x, px) = Ux(x) + p2

x/(2m).
Consequently we replace equation (8) by

1
2
mΩ2

⊥x
2 +

p2
x

2m
> εc(z). (10)

The assumption of a local thermodynamic equilibrium
of the gas at each abscissa z around a mean velocity
v̄(z) = p̄(z)/m suggests the following ansatz for the clas-
sical phase-space distribution [11]:

f(r,p) = f0(z)e−β(z)(εx+εy)e−β(z)(pz−p̄(z))2/2m

× Y (εc(z)− εx(x, px)). (11)

Here β(z) = 1/(kBT (z)) and Y is the Heaviside step func-
tion. The truncation takes into account the evaporation:
f = 0 for an atom whose energy in the transverse direction
x exceeds the local depth εc(z). The on-axis phase-space
density f0(z) is calculated by the normalization condition∫

dxdy
∫

d3p f = ρlin(z); here ρlin(z) is the linear density
of the gas, that is the number of particles per unit length
in the guide. A straightforward calculation leads to

f0(z) =
1

1− e−η(z)

1
(2π)5/2

ρlin(z)
(m∆v(z))3R2

⊥(z)
(12)

where we have introduced the thermal velocity ∆v(z) =√
kBT (z)/m, the thermal transverse size of the beam

R⊥(z) =
√
kBT (z)/mΩ2

⊥, and the quantity

η(z) = εc(z)/kBT (z), (13)

which is a crucial parameter to control the efficiency of
evaporation.

This reformulation of the evaporation criterion in the
energy domain is difficult to extend to the 2D scheme.
It would require the further assumption of ergodicity of
the transverse motion, which is not correct for the present
axi-symmetric potential since the knowledge of the total
transverse energy ε⊥ = εx + εy is not a sufficient crite-
rion to determine whether an atomic trajectory will be
evaporated. For instance atoms moving along transverse
linear trajectories are evaporated when ε⊥ > εc(z), while
atoms with transverse circular trajectories remain trapped
as long as ε⊥ is below 2εc(z). This 2D case will be treated
using a Monte-Carlo technique in Section 5.2 [12].
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3.2 Hydrodynamic equations

We now derive a closed set of partial differential equations
for the three macroscopic quantities T (z, t), ρlin(z, t), and
p̄(z, t). We note that f(r,p) in the transverse direction
depends only on εx and εy, quantities preserved by the
Hamiltonian evolution. Therefore equation (4) reduces to

∂f

∂t
+
pz
m

∂f

∂z
= Icoll [f ] . (14)

We now proceed in a way analogous to the deriva-
tion of the standard hydrodynamic equations from the
Boltzmann equation: multiplying equation (14) by 1, pz,
and εx+εy+p2

z/2m, respectively, and integrating over the
five variables x, y, px, py, pz gives:

∂

∂t
ρlin +

∂

∂z

[ p̄
m
ρlin

]
= −Γρlin (15)

∂

∂t
[p̄ρlin] +

∂

∂z

[(
kBT +

p̄2

m

)
ρlin

]
= −Γ p̄ρlin (16)

∂

∂t

[(
ε̄x +

3
2
kBT +

p̄2

2m

)
ρlin

]
+

∂

∂z

[(
ε̄x +

5
2
kBT +

p̄2

2m

)
p̄

m
ρlin

]
=

−
(
Γ
p̄2

2m
+ ΓεkBT

)
ρlin (17)

where

ε̄x =
1
ρlin

∫
dxdy

∫
d3p εxf(r,p) = kBT

(
1− η

eη − 1

)
.

(18)

Equations (15–17) are the equations of conservation for
the number, the momentum, and the energy of the parti-
cles. On the right-hand side we have source terms due to
evaporation: Γ is the evaporation rate at abscissa z, and
ΓεkBT is the rate for the decrease of energy in the local
reference frame moving at velocity v̄(z).

The 1D evaporation model [13] allows to derive explicit
expressions for Γ and Γε. We obtain for the loss rate of
particles:

Γ (z) = σρlin(z)
∆v(z)
R2
⊥(z)

e−η(z)S(η(z)). (19)

The analytical expression of the positive dimensionless
coefficient S(η) is given in the Appendix. As shown in
Figure 2, it is a nearly constant quantity, of the order
of 0.075, when η varies between 2 and 10. Equation (19)
shows that the decay rate Γ of the linear density, given
in equation (15), is proportional to the collisional cross-
section σ and to the local atomic density, as expected for
binary collisions.

For the loss rate of energy, we find:

Γε(z) = Γ (z)
(
η(z) +

3
2

+ S̃(η(z))
)
. (20)
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Fig. 2. Variations with η of the dimensionless parameters S
multiplied by 10 for clarity (full line) and S̃ (dashed line). The
analytical expressions for these parameters are derived in the
Appendix.

The expression of the positive dimensionless coefficient
S̃(η) is also derived in the Appendix, and plotted in
Figure 2. It increases from 0.43 to 0.66 when η varies from
2 to 10.

On the left-hand sides of equations (15–17) we have
neglected the terms arising from the z-dependence of the
cut-off εc(z). These terms would account for spilling, that
is the loss of particles even in absence of collisions due to
the lowering of the cut-off εc(z) along the beam. Neglec-
tion of spilling is valid for η � 1, which is well-verified for
the optimal evaporation with realistic initial parameters;
for instance, for the simulations presented in Section 4, we
have chosen η ' 5 [14]. For consistency we also replace in
the following ε̄x and f0 by their values for η →∞:

ε̄x = kBT (21)

f0(z) =
1

(2π)5/2

ρlin(z)
(m∆v(z))3R2

⊥(z)
· (22)

We finally obtain from equations (15–17) in the limit of
large η:(

∂

∂t
+
p̄

m

∂

∂z

)
ρlin + ρlin

∂

∂z

[ p̄
m

]
= −Γρlin (23)(

∂

∂t
+

p̄

m

∂

∂z

)
p̄+

1
ρlin

∂

∂z
[kBTρlin] = 0 (24)(

∂

∂t
+

p̄

m

∂

∂z

)
kBT +

2
5
kBT

∂

∂z

[ p̄
m

]
= kBT (Γ − 2

5
Γε).

(25)

3.3 Stationary regime: z-dependence of phase space
density

We are mainly interested in a stationary regime for which
we obtain a set of non-linear equations which can be solved
by standard numerical methods:

∂

∂z
(ρlin) = −m

p̄
ρlin

(
Γ + Γε

kBT

E

)
(26)

∂

∂z

( p̄
m

)
= Γε

kBT

E
(27)

∂

∂z
(kBT ) = −mkBT

p̄

(
2
5
Γε − Γ +

2
5
Γε
kBT

E

)
(28)
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where we have put

E ≡ 5
2
p̄2

m
− 7

2
kBT.

From the above we see that if p̄2/2m is bigger than
(7/10)kBT (i.e. E > 0), which is indeed the parameter
range studied in this article, the mean velocity increases
as a function of z. An interpretation of this result will be
given in Section 5.1.

A figure of merit for our scheme is the degree of in-
crease of the phase-space density along the beam. As a
measure of this increase we take the on-axis phase-space
density f0(z) ∝ ρlin/(kBT )5/2:

∂

∂z

[
ln

ρlin

(kBT )5/2

]
=
(
η + S̃(η)− 2

) m
p̄
Γ. (29)

Since the quantity S̃(η) is positive (see Fig. 2), we con-
clude that the phase-space density increases when η > 2.

4 Monte-Carlo simulations

In this section we compare results from the approximate
analytical ansatz of the previous section with results of a
Monte-Carlo simulation. The fact that the Monte-Carlo
simulation requires a long computing time restricts the
parameter space which can be explored. In particular, as
explicited below, the length of the guide influences the
memory requirement of the Monte-Carlo simulation. The
total length L of the system, expressed in units of
the mean free path d0 =

√
π/(2n0σ) is chosen in the fol-

lowing as

L/d0 = 2500. (30)

For the parameters given in Section 2.2 this corresponds
to a length of 3.7 meters; the average time T = L/v̄0 for an
atom to travel from the entrance to the exit of the guide is
T = 4×104Ω−1

⊥ (in absence of collisions and evaporation);
this time corresponds to 830γ−1

coll.

4.1 Principle of the Monte-Carlo method

This method has originally been introduced in the context
of molecular dynamics [15]. For the case of dilute gases, it
relies on the idea that one can separate the description of
the collision from that of the motion, allowing a simulation
of the dynamics on a time scale shorter than the mean
time between two collisions.

In essence the approach consists in solving (4) numer-
ically by evolving macro-atoms, each of which represent-
ing ` real atoms. The macro-atoms evolve in the same
potential as the real atoms, and they have the same ini-
tial velocity and position distributions. Their collisional
cross-section is `σ and their initial spatial density is n0/`,
so that the collision rate γcoll and the two dimensionless
parameters v̄0/∆v0 and L/d0 are not changed. This ap-
proach is valid since the Boltzmann equation is invariant

under the scaling σ → `σ, f → f/`. Using the symme-
tries of the problem we restrict the evolution to the first
quarter (x > 0, y > 0) of the entrance plane z = 0 reduc-
ing the memory requirement by a factor 4. We evolve the
macro-atoms in this first quarter with reflecting walls at
the planes x = 0 and y = 0.

We inject on average 84 macro-atoms (21 in the first
quarter) every Ω−1

⊥ . We take ` = 5600 to match the flux
of the atomic beam source presented in Section 2.2. In
absence of evaporation, N = 21 × 4 × 104 = 8.4 × 105

macro-atoms are present on average at a given time since,
as stated above, it takes on average 4 × 104Ω−1

⊥ for a
particle to travel along the guide.

Binary elastic collisions are taken into account using a
boxing technique [16–18]. We introduce in position space
a lattice with a unit cell volume δV , chosen such that
the average occupation pocc of any cell is much smaller
than 1. Collisions occur only between two macro-atoms
occupying the same cell, and the time step δt is adjusted
in such a way that the probability pcoll of a collisional
event during δt is also much smaller than 1. We choose
typically pocc ∼ pcoll ∼ 10%.

Evaporation is implemented in the simulation by elim-
inating the macro-atoms whose coordinates fulfil the
chosen condition of evaporation. In particular, we have
treated both the case of evaporation with a 1D position
cut (Eq. (8)) in order to compare with the results of the
analytical ansatz, and the case of evaporation with a 2D
position cut (Eq. (7)).

We let the simulation evolve until a steady-state is
reached. The corresponding time is ∼ 2L/v̄0 = 8 ×
104Ω−1

⊥ . This allows to obtain the average energies along
each axis and the linear density at a given location z. From
these quantities we can predict the decrease in tempera-
ture, the loss of particles and in consequence the phase-
space density increase.

4.2 Comparison with the hydrodynamic approach
for 1D evaporation

The results of the Monte-Carlo and of the hydrodynamic
approaches for 1D evaporation are plotted in Figures 3, 4
and 5, giving the variations with z of the mean veloc-
ity v̄(z), the flux Φ(z), and the phase-space density f0(z).
This set of data has been obtained by choosing an evapo-
ration barrier εc(z) approximately 5 times larger than the
mean local transverse energy, that is we kept η ' 5; as
shown below, this value for η leads to a gain of 7 orders
of magnitude for the phase space density with a minimal
length requirement.

Using the Monte-Carlo simulation, we have found that
the three components of the velocities have a nearly Gaus-
sian distribution, with dispersions equal to within a few
percent. This is consistent with the hypothesis of local
thermodynamic equilibrium at the basis of the hydrody-
namic approach.

The results shown in Figures 3, 4 and 5 show an excel-
lent agreement between the hydrodynamic approach and
the Monte-Carlo simulation. This allows one to make all
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Fig. 3. Longitudinal velocity as a function of the position
z measured in units of the initial mean free path d0 =√
π/(2n0σ). The unit for velocity is the initial velocity spread

∆v0. The continuous line corresponds to the numerical solu-
tion of the 1D hydrodynamic equation for η = 5. The markers
indicate the results of the Monte-Carlo simulation.
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Fig. 4. Flux as a function of the position z measured in units
of the initial mean free path d0 =

√
π/(2n0σ). The unit of flux

is the initial value at z = 0. The continuous line corresponds
to the numerical solution of the 1D hydrodynamic equation
for η = 5. The markers indicate the results of the Monte-Carlo
simulation.

0 500 1000 1500 2000 2500

10
0

10
1

10
2

10
3

Gain in phase 
space density 

z [d
0
] 

Fig. 5. Gain in phase-space density as a function of the
position z measured in units of the initial mean free path
d0 =

√
π/(2n0σ). The continuous line corresponds to the

numerical solution of the 1D hydrodynamic equation with
η = 5. The markers indicate the results of the Monte-Carlo
simulation.

optimization and design procedures for the choice of ini-
tial parameters and spatial variations of the cut using the
approximate hydrodynamic treatment while keeping the
Monte-Carlo simulation – which requires several days of
computation on a work station – for final checks.
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Fig. 6. Gain in phase space density as a function of the
position z expressed in units of the initial mean free path
d0 =

√
π/(2n0σ). These curves are the numerical solutions

of equations (26–28) in the case where η is fixed.

5 Discussion of the results

5.1 1D evaporation

Using the equations (26–28) in the regime of evaporation
with a constant η, we have first determined the optimal
choice for η. As shown in Figure 6, the shortest distance
providing a 107 gain in phase space density – required in
order to reach quantum degeneracy for the initial condi-
tions considered in Section 2 – is obtained for η ∼ 5. If
smaller phase space gains are needed, smaller values of
η would be more appropriate since they would lead to
shorter cooling lengths.

We now consider Figure 3, obtained for η = 5, which
shows a slight increase of the mean velocity v̄(z), as the
atoms progress within the guide. This increase can be un-
derstood from kinematic arguments: the cooling along z
can be seen very crudely as a process in which a fast and a
slow particle collide, one of them being eliminated. Now,
at a given location, the fast particles are renewed with a
larger rate than the slow ones, because it takes less time
for them to go from the entrance plane to the considered
location. Therefore, the mean velocity in a location z > 0,
where particles have already undergone in average several
collisions, is larger than in z = 0. This acceleration effect
becomes negligible as soon as kBT (z) � p̄2/(2m) since
the beam is then quasi mono-kinetic.

Figures 4 and 5 show the flux and the phase-space den-
sity as a function of z for η = 5. A very significant increase
of phase-space density by a factor 500 proves the efficiency
of the evaporative cooling. This increase is accompanied
with a reduction of the flux by a factor 5.5. The phase-
space density and the flux both vary quasi-exponentially
with the position z.

To get a better understanding of the variations with
z of these quantities, we now consider equations (26–28)
in the limiting case where v̄ is constant and kBT � E.
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Assuming also a constant η, the solutions of these equa-
tions are:

ρlin(z) = ρlin(0)
(

1− z

zc

)αc

T (z) = T (0)
(

1− z

zc

)βc

(31)

with

zc = d0
v̄

∆v0

5eη

π3/2S(η)(η + S̃(η)− 6)

αc =
5

η + S̃(η)− 6

βc =
2(η + S̃(η)− 1)
η + S̃(η)− 6

· (32)

For the parameters of Figures 3, 4 and 5, where η = 5,
we find αc ' −12, βc ' −21.9 and zc ' −4300d0v̄/∆v0 '
−13 000d0, so that the relevant range of lengths z are much
smaller than |zc|. Consequently we can approximate the
previous results with:

ρlin(z) ' ρlin(0) exp(−αcz/zc)
T (z) ' T (0) exp(−βcz/zc). (33)

This leads to exponential variations exp(z/zps) and
exp(−z/zflux) of the phase space density and the flux,
with:

zps = d0
v̄

∆v0

eη

π3/2(η + S̃(η)− 2)S(η)

zflux = d0
v̄

∆v0

eη

π3/2S(η)
· (34)

This explains why the results in Figures 4 and 5 exhibit
a quasi-exponential variation with z. For η = 5, we get
zps ' 100d0v̄/∆v0 and zflux ' 360d0v̄/∆v0. The factor
3.6 between these two lengths suggests that a phase space
gain of 7 orders of magnitude can be achieved with a flux
reduction by less than 2 orders of magnitude. This is con-
firmed by the numerical solution of the hydrodynamical
equations (Eqs. (26–28)): the required length is 7600d0,
on the order of 11 meters for the parameters of Section 2;
it is accompanied by a decrease of temperature by a factor
4000 and of flux by a factor 90.

It is worth noting that the collision rate γcoll(z) does
not vary much for z � |zc|. Indeed, we have:

γcoll(z) = γcoll(0)
(

1− z

zc

)αc− βc
2

= γcoll(0)
zc

zc − z
·

The sign of zc is the same as the sign of η+S̃(η)−6, which
vanishes for η ' 5.4. Therefore, the collision rate γcoll

increases with z if η > 5.4 and decreases if η < 5.4. For
the particular value η = 5.4, the collision rate is constant,
as well as the loss rates for particles Γ (z) and energy Γε(z);
the quantities ρlin(z) and kBT (z) then have an exponential
variation for any z, since zc, αc, βc →∞.

5.2 Two-dimensions versus one-dimension evaporation
scheme

The experimental setup based on radio-frequency evapora-
tion and discussed in Section 2, corresponds to a 2D evap-
oration scheme while the analytical treatment of Section 3
is based on a 1D evaporation. One does not expect the two
situations to be equivalent. More precisely, since the x−y
degrees of freedom are not mixed by the collisionless mo-
tion in the axi-symmetric potential, the 1D evaporation is
expected to be less efficient than a 2D evaporation scheme:
a particle may emerge from an elastic collision with a large
transverse kinetic energy along the y-axis, without being
evaporated in the 1D evaporative scheme.

We have checked with our Monte-Carlo simulation that
2D evaporation is more efficient indeed than 1D evapora-
tion. We have first used a crude model of 2D evaporation,
with the truncation of equation (11) replaced by Y (εc(z)−
εtot +kBT (z)/2), where εtot = ε⊥+ (pz− p̄(z))2/2m is the
total energy in the frame moving at velocity p̄(z)/m. This
truncation assumes in particular quasi-ergodicity in the
x−y plane. Within this model we perform the same opti-
mization as in Figure 6; to achieve a gain in phase space
density by 7 orders of magnitude the optimal η is now
equal to 6. We have then run the Monte-Carlo simula-
tion for this value of η. The gain of a factor 500 in phase
space density, which was obtained for a length 2500d0 for
1D evaporation (see Fig. 5), is reached now for a length
900d0; the relative variation of the flux (reduction by a
factor ∼ 6) is similar. The variations with z of the phase
space density and the flux are quasi-exponential. Note that
the predictions of the crude model are in amazingly good
agreement with the Monte-Carlo results.

To conclude the length of the guide needed to achieve a
specified gain of the phase-space density is a factor of ∼ 3
smaller for 2D than for 1D evaporation. E.g. the 11 meters
of evaporation length necessary in 1D for the experimental
conditions of Section 2 are now reduced to 4 meters.

6 Perspectives

For a typical experimental source of cold atoms, the length
needed for a phase-space increase of seven orders of mag-
nitude – which should bring the system close to the de-
generacy point – is of the order of a few meters. The pos-
sibility of quantum degeneracy in such a system raises
interesting questions. As it is well-known [19], there is no
Bose-Einstein condensation in the thermodynamic limit in
a 1D geometry, obtained here [20] in setting N,L → ∞,
while keeping a constant linear density ρlin = N/L, a con-
stant temperature T and a constant transverse oscillation
frequency Ω⊥. Therefore we do not expect a macroscopic
occupation of a single quantum state of the longitudinal
motion.

In order to get more insight in the output of this sys-
tem, we assume that the transverse extension of the ther-
mal component of the beam R⊥ =

√
kBT/(mΩ2

⊥) is much
larger than the thermal wavelength λ = h/

√
2πmkBT
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Γ (z)ρlin(z) =
σ

πm2

∫
dxdy

∫
d3 p

∫
d3 p2

∫
d3 p3

∫
d3 p4 (f(r,p)f(r,p2)− f(r,p3)f(r,p4))

× δ(p + p2 − p3 − p4)δ
(
p2

2m
+

p2
2

2m
− p2

3

2m
− p2

4

2m

)
(38)
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Fig. 7. For an ideal Bose gas fraction of atoms in the transverse
ground state, as a function of the linear density. This figure has

been obtained for kBT = 20~Ω⊥, so that ρ
(c)
lin ' 536λ−1.

(that is kBT � ~Ω⊥). In this case, elastic collisions en-
sure that thermodynamic equilibrium is reached in the
frame moving with the mean velocity of the gas. In this
frame, we describe the properties of the system using as
an approximation the grand canonical Bose-Einstein dis-
tribution for an ideal gas. The gas being at temperature
T , we obtain the maximal linear density that can be put
in states corresponding to an excited transverse motion

ρ
(c)
lin =

1
λ
ζ(5/2)

(
kBT

~Ω⊥

)2

(35)

with ζ(5/2) ' 1.34. When one increases the linear den-
sity above this critical value (which corresponds to a spa-
tial density on axis larger than n(c) = ζ(3/2)λ−3), the
transverse degrees of freedom undergo a Bose-Einstein
condensation [21], that is atoms start accumulating in
states corresponding to the ground transverse motion (see
Fig. 7). By convention, we set the energy of this ground
state to zero. Since the chemical potential µ then satisfies
|µ| � ~Ω⊥ � kBT , the longitudinal momentum distribu-
tion for these atoms can be approximated as:

n(p) =
1
h

1
exp [(p2/(2m)− µ)/kBT ]− 1

' h

πλ2

1
p2 + p2

c

(36)

that is a Lorentzian distribution of half width pc =
[−2mµ]1/2. Such a distribution leads to a spatial corre-
lation length of the gas along z given by ξc = ~/pc. By
integrating n(p) over p, we can relate µ and therefore ξc to
the linear density of atoms in the transverse ground state
ρlin − ρ(c)

lin :

ξc =
λ2

2π
(ρlin − ρ(c)

lin ) =
1
2
ζ(3/2)

~
mΩ⊥λ

n− n(c)

n(c)
(37)

where n is the 3D on-axis density. This correlation length
can be much larger than the thermal wavelength. Thus,
for ρlin > ρ

(c)
lin , the output of the system can be viewed as

propagating independent trains of matter waves, each of
which having a length of the order of ξc and containing on

average
[
λ(ρlin − ρ(c)

lin )
]2
/(2π) atoms.

To conclude, we have presented in this paper the prin-
ciples of the evaporative cooling of an atomic beam. In the
classical regime, where the mean interparticle distance is
much larger than the thermal wavelength λ, we have eval-
uated the characteristic lengths for the flux and the phase
space density variations. We have also outlined briefly the
coherence properties of the beam once quantum degener-
acy is reached. A more detailed characterization of these
coherence properties, including the effect of interactions
between particles, will be the subject of a future work.
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was partially supported by CNRS, Collège de France, DRET,
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Appendix

In this appendix we derive explicit expressions for the
loss rates for particles Γ and for energy Γε in equa-
tions (15–17). Integrating (4) over x, y, and p to de-
rive (15), we obtain:

see equation (38) above.

In this integral, the phase space cell (r,p) is the variable
of integration of the left hand side of (4) and it is always
in the trappable domain defined by:

p2
x

2m
+

1
2
mΩ2

⊥x
2 < εc(z). (39)

For the first part of the integral, representing the collision
p + p2 → p3 + p4 and involving f(r,p)f(r,p2), the cell
(r,p2) is also in the trappable domain, while the two cells
(r,p3) and (r,p4) may be either in or out of the trap-
pable domain. For the second part of the integral, rep-
resenting the collision p3 + p4 → p + p2 and involving
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Γ (z)ρlin(z) =
σ

πm2

Z
dxdy

Z
d3p1

Z
d3p2

Z
d3p3

Z
d3p4 f(r,p1)f(r,p2)δ(p1 + p2 − p3 − p4)δ

�
p2

1

2m
+

p2
2

2m
− p2

3

2m
− p2

4

2m

�

(40)

Γ (z)ρlin(z) = 64π
σ

m
f2

0 (z)

Z xc

−xc

dx

Z Q

0

dPx

Z ∞
−∞

dy

Z ∞
−∞

dPy

Z ∞
−∞

dPz e−2(Ux+Uy)/kBT e−P
2/mkBT

×
Z Q−Px

0

dqx

�Z Q+Px

Q−Px
dq qe−q

2/mkBT

Z q

Q−Px
dq′x +

Z ∞
Q+Px

dq qe−q
2/mkBT

�Z Q+Px

Q−Px
dq′x + 2

Z q

Q+Px

dq′x

��
(42)

ΓεkBTρlin = 64π
σ

m
f2

0

Z xc

−xc

dx

Z Q

0

dPx

Z ∞
−∞

dy

Z ∞
−∞

dPy

Z ∞
−∞

dPz e−2(Ux+Uy)/kBT e−P
2/mkBT

×
Z Q−Px

0

dqx

�Z Q+Px

Q−Px
dq qe−q

2/mkBT

Z q

Q−Px
E3 dq′x +

Z ∞
Q+Px

dq qe−q
2/mkBT

�Z Q+Px

Q−Px
E3 dq′x +

Z q

Q+Px

(E3 + E4) dq′x

��
(45)

f(r,p3)f(r,p4), the two cells (r,p3) and (r,p4) are in
the trappable domain, while the cell (r,p2) may be either
in or out of the trappable domain.

We now rearrange the second part of this integral by
exchanging the role of (p,p2) and (p3,p4). After cancel-
lation of various terms, we are left with:

see equation (40) above

where (r,p1) and (r,p2) are in the trappable domain,
(r,p3) is out of the trappable domain, and (r,p4) is either
in or out of the trappable domain. We now put

P =
p1 + p2

2
, q =

p1 − p2

2
,

P′ =
p3 + p4

2
, q′ =

p3 − p4

2
· (41)

The δ-distributions entering into (40) impose P = P′ and
|q| = |q′|. We perform some rearrangements, using as in-
tegration variables for the vectors q and q′ the coordinates
qx, q

′
x along x, the moduli q, q′ and the azimuthal angles

around x-axis. We integrate over those angles and we split
the integration domain into a part where only particle 3
escapes and a part where both 3 and 4 escape. We then
obtain:

see equation (42) above

where P = |P| and q = |q|. The length xc(z) is the positive
solution of mΩ2

⊥x
2
c(z) = 2εc(z), and Q(x, z) is the local

escape momentum given by Q2/2m = εc(z)− Ux(x). The
expression (42) is the direct transcription of equation (26)
of [13], to the situation considered in the present paper.

The integrations over y, Py, Pz are immediate, as well
as for qx. After an integration by part over q, we get:

Γρlin = 16π3σ(kBT )9/2m3/2Ω−2
⊥ f2

0

∫ √2η

−
√

2η

dw e−w
2

×
∫ a

0

du (a− u)e−u
2
(erfc(a− u) + erfc(a+ u)) (43)

where we have put w = x/R⊥, a = Q/
√
mkT =√

2η − w2, u = Px/
√
mkT and:

erfc(u) =
2√
π

∫ ∞
u

dv e−v
2
.

Using finally the relation (12) to express f0 in terms of
the linear density ρlin, we arrive to (19) with:

S(η) =
1

2π2

eη

(1− e−η)2

∫ √2η

−
√

2η

dw e−w
2

×
∫ a

0

du (a− u)e−u
2
(erfc(a− u) + erfc(a+ u)). (44)

The calculation of Γε proceeds along the same line. We
multiply (4) by εx + εy + p2

z/2m and integrate over x, y,
and p. Using the same rearrangement as above, we get:

see equation (45) above

where:

E3 =
p2

3

2m
+ Ux + Uy =

(P′ + q′)2

2m
+ Ux + Uy

E4 =
p2

4

2m
+ Ux + Uy =

(P′ − q′)2

2m
+ Ux + Uy.
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The expression (45) is also the direct transposition of
equation (26) of [13]. After integration and changes of vari-
ables similar to the ones given above for the calculation
of S(η), we reach (20) where

S̃(η) =
1

4π2S(η)
eη

(1− e−η)2

∫ √2η

−√2η

dw e−w
2

×
∫ a

0

du (a− u)e−u
2

{
a+ u√
π

e−(a−u)2
+
a− u√
π

e−(a+u)2

− (a2 − u2)(erfc(a− u) + erfc(a+ u))

}
. (46)

with a =
√

2η − w2 as in (44).
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