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Scissors mode of a rotating Bose-Einstein condensate
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A scissors mode of a rotating Bose-Einstein condensate is investigated both theoretically and experimentally.
The condensate is confined in an axisymmetric harmonic trap, superimposed with a small rotating deformation.
For angular velocities larger tham, /2, wherew, is the radial trap frequency, the frequency of the scissors
mode is predicted to vanish like the square root of the deformation, due to the tendency of the system to exhibit
spontaneous rotational symmetry breaking. Measurements of the frequency confirm the predictions of theory.
Accompanying characteristic oscillations of the internal shape of the condensate are also calculated and
observed experimentally.
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. Bosg—.Einstein condensate; rotating aF high angular veloc- VL(X,y):m(wi)(ZjLwiyZ)/z, (1)
ity exhibit spontaneous breaking of rotational symméiry
This phenomenon, which is the consequence of two-bodwherew§,y=wf(1i €). The (x,y) coordinates in the rotat-
repulsive interactions, shows up in the occurrence of considng frame are deduced from the coordinates in the laboratory
erable deformations of the trapped atomic cloud in the plan&ame by a rotatiof)t and the trap deformatioais positive.
normal to the rotation axis. These configurations have beeA simple descrlp'tlon of 'the collective OSCIIIatlonS_ of a rotat-
recently observed experimentally using a nearly axisymmeting condensate is provided by the hydrodynamic equations
ric harmonic trap, with a small deformation of the trapping ©f superfluids evaluated in the rotating frame:
potential rotating around theaxis[2].
d h conditions, the collective modes of the system op =

Under such ¢ ' ! Y —+V-[p(v—QAN]=0, @)
exhibit interesting features. In particular, one mode in the ot
transverse plan@rthogonal to the rotation axisorresponds 2
to a shape-prese_rvir_lg oscillation of the atpmic cloud with mﬁ—v+V m—U+V+gp—mv~(Q/\r) =0, 3)
respect to the principal axesy of the rotating trap. The dt 2
frequencyw of this scissors-type motion is much smaller . . . . i
than the mean transverse trap frequency. This surpris- Yvherep(r,t) is the spatial densny;A(r,t)Als thg velocity field
ingly low value originates from the fact that the restoring N the laboratory frame, an@=(Qu, (u, unit vector along
force of the oscillation is proportional to the small trap de-th€ Z axis. -';h‘; harmonic ~ confining potentiaV(r)
formation, while the moment of inertia of the condensate= V. (X,¥) +Mw;z%/2 is time independent in the rotating

remains finite due to its considerable deformation. This repff@me. The parametey characterizes the strength of the in-

resents a major difference with respect to the traditional scisiratomic interactions and is related to tieave scattering

_ 2 . . .
sors modd 3,4] of a nonrotating condensate where both the!ﬁ?gtha bg g_.4|.77h.t a/rE. Tht(:]se equa|t||ogs are tvalld in the
restoring force and the moment of inertia vanish in the limit omas-rermi imit, where e so-called guantum pressure
. . term can be neglected in E) [5]. We shall be interested
of an axisymmetric trap.

The purpose of this work is to provide both a theoretichere n vortex—free. solutions for wh|cﬁAv=0. . .
i . S i Stationary solutions of these equations can be obtained in

anq an experimental mvgstlgatlon o_f .the problem. We flrstthe form vo(r) = aV(xy) for the velocity field andpy(r)
derive the relevant equations describing the scissors mode. "~ ~o 5 ~2 5 25 , _
For a rotation frequency) larger than the critical value — L4~ M(@XX"+wyy”+w;2%)/2]/g for the density profile.
, 1\, we show that the scissors mode frequencyan- The density proﬂle~h§s Ehe form of an inverted parabola
ishes like the square root of the trap deformation. We thevhose parametersu(wy,w,) are determined in a self-
report on the experimental observation of this scissors mod&onsistent way as a function & [1]. The value of the

and we present results which confirm the theoretic predicParametera is determined by the soluti¢s) of the cubic

tions with good accuracy. equationa®+ a(w? —2 Q%)+ ew’Q=0. Itis related to the
The atoms of mass are confined in the transverse plane deformations=(y?—x2)/(x?+y?) of the atomic cloud by
by the potential the simple expressioa=—4. In the present work, we

will be interested in the so-called normal brarid, corre-

sponding to the stationary solutions which can be obtained

*Unite de Recherche de I'Ecole Normale Stipare et de by an adiabatic increase of the angular velocity of the trap,
I'Universite Pierre et Marie Curie, assoeieu CNRS. starting fromQ =0 (see Fig. 1L ForQ=w, /12, these so-

1050-2947/2003/62)/0216024)/$20.00 67 021602-1 ©2003 The American Physical Society



RAPID COMMUNICATIONS

COZZINI et al. PHYSICAL REVIEW A 67, 021602ZR) (2003

The other three solutions of E¢p) instead remain finite for
all values ofe and(}. It is worth noticing that resul7) does
not depend on the value af,. By looking at the form of the

normal branch /'

05 . solution for p and sv, one can show that the soft oscilla-
tion (7) corresponds to a scissors mode, i.e., to the oscillation
9 of the anglef between the axes of the condensate and the
? 0 ; principal axesx,y of the trap in the rotating frame. The os-
I 12 cillation of # is accompanied by an oscillation of the con-
'o H

densate deformatiofi around the equilibrium valué,. This
_ oscillation of § is dephased byr/2 with respect to the one of
the angled. For small trap deformations, we find

w? 6 ®
02207 w?’

The fact that the frequency’) exactly vanishes whean
FIG. 1. Deformatiors of the cloud for the steady-state solutions =0 reflects the occurrence of spontaneous breaking of rota-
of Egs.(2) and (3) as a function of the angular velocifp of the  tional symmetry. Fo)>w, //2, the shape of the conden-
trap for a fixed value of the trap deformatian The dotted line  sate on the normal branch is indeed deformed even in the
represents the solution fer=0 . limit of a rotationally invariant Hamiltoniarisee dotted line
in Fig. 1. Since fore=0 all anglesd are equivalent, the
lutions exhibit large values of the cloud deformatiod ( oscillation frequency of the condensate around any particular
~1) even if the trap deformatioa is much smaller than 1. value 6, must vanish. This behavior deeply differs from the
An important class of collective oscillations can be de-scissors mode in a nonrotating condensate. In this case, the
rived on top of such stationary configurations by looking for deformation of the condensate vanishes when the anisotropy

0 02 04 0.6
Q/o,

time-dependent solutions of the form of the static trap tends to zero. Consequently, the frequency
of the static scissors mode does not have to vanish in the
Sp(r,t)=ag+ax’+ayy’+a,z°+agXy, (4 limit of a symmetric trap; it actually takes the valyRw,
[3]. For a fixed anisotropg¢<<1, the scissors frequency cal-
8o (1) =V (a,X?+ ayy?+ a,z%+ ay XYy), (5)  culated in the rotating frame decreases quasilinearly from the

value 2w at =0, to a valuew<w, atQ=w,/\2. For
wherea; and a; are time-dependent parameters to be deter€)>w, /1/2, it then connects to the value given by Eg).
mined by solving Eqs(2) and(3). In the linear limit, one can Result(7) holds for a small amplitudd ¢ of the oscilla-
look for solutions varying in time like~'“!. The collective tory motion of §. To study motions with a larger amplitude,
frequencies in the rotating frame are then found to obey thene has to solve numerically the hydrodynamic equati@ns
equation and(3). UsingAnsaze(4) and(5), we find that the frequency

of the motion decreases as¢ increases, as for a simple

0¥+ cwb+ c0t+ c w?+ =0, (6) gravitational pendulum.

We now turn to the experimental observation of this scis-
with the coefficientss; given in the Appendix. In Ref1], it  sors mode. We use &Rb gas in a loffe-Pritchard magnetic
has been shown that these collective oscillations are dynamirap, with frequencies w,/2m=182 Hz, wy,=w,, and
cally stable when evaluated on the normal branch. The staw,/27=11.7 Hz. The cloud is precooled using optical mo-
bility conditions for higher-multipole oscillations have been lasses to a temperaturel00 uK. The gas is further cooled
studied in Ref[6], where it has been shown that the normalby radio-frequency evaporation to a temperature around 50
branch becomes dynamically unstable against the productianK, corresponding to a quasipure condensate withatoms.
of such excitations fof2=0.8», whene—0. We denote byt, the time at which the evaporation phase

The solutions of Eq.(6) correspond to four different ends. For time>t,, the atomic cloud is stirred by a focused
modes. In particular, fof2 =0, e=0, one recovers the well- laser beam of wavelength 852 nm and waigt=20 um,
knownm= =2 transverse quadrupole and the tme=0 hy-  whose position is controlled using acoustooptic modulators
brid quadrupole-monopole modes of a cigar-shaped condef2]. This laser beam creates a rotating optical-dipole poten-
sate[7]. The situation changes in the presence of a rotatingial that is harmonic over the extension of the cloud. The
deformed trap. In fact, one finds that when evaluated on theuperposition of this dipole potential and the magnetic one
normal branchsee Fig. 1, the coefficienty in Eq. (6) van-  creates a transverse trapping potential identical to (EQ.
ishes linearly ag— 0, providedQ>w, /2. This gives rise  The trap deformatior is proportional to the laser intensity

to a soft mode with frequendy] I and can be adjusted between 0 and 4%.
The displacement of the center of the trap due to gravity
¢ 1002 0(w?—02)/207%— o2 and slight asymmetries in the trapping geometry produce an
wi=— 2= = i S > )2 2 e (7) additional static deformation which has been estimated to be
C1 Bw| +3w0°+20 ~1% by measuring the splitting between the center-of-mass
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0 50 100 150 200 250 wl27 with the laser intensityl, (arbitrary unitg. The error bars
Stirring time t[ms] indicate the statistical spread of the results obtained for various runs
of the experiment. The dotted line is a linear fit according to the
FIG. 2. Variation of the angl@ (in degreesand of the conden-  Prediction of Eq.(7).

sate deformatiod with the stirring timer=t,—t,;. The oscillations L . )
of # and § are a signature of the scissors mode. The oscillatiornIatlon is damped with a time constant110 ms. The defor-

frequencyw/2m=11.6 Hz is much smaller than the transverse trapMation é of the condensate also exhibits a small oscillatory
frequencyw, /27, in agreement with Eq(7). The solid lines are a  Motion with an amplitudel 6=0.16 around the mean value
fit to the data with a damped sine function. The dashed line in the’o=0.51. This motion has the same frequency as that, of
lower graph shows the stationary valde: 5. is phase shifted by-#/2, as expected from E@8) for the
scissors mode, and it is damped with a similar time constant.
frequencies along theor y axes. This static anisotropy plays ~ To confirm that the oscillatory motion shown in Fig. 2
a minor role in the present study and has been neglected indeed corresponds to the scissors mode described above, we
the analysis above. have measured the variation of the frequencss a function
The frequency()(t) of the stirrer is first varied linearly of the laser intensity, which is itself proportional to the trap
during the time intervaltg,t;), starting from{(t;)=0 up  anisotropye. The data are plotted in Fig. 3. They clearly
to Q(t;)=2mwx139 Hz[so thatQ(t;)~0.76w,]. The stir-  show the expected dependenc®x e. Actually, this scissors
ring frequency then stays constant in the time intervalmode constitutes a very precise way to meagurence the
(t1,t,). At time t,, we switch off the magnetic trap and the frequenciesw, and() are known with sufficient precision.
laser stirrer, allow for a 25-ms free fall, and image the ab- We have also compared the measured amplitddé,)
sorption of a resonant laser beam propagating albriye  and A 5(t,) with the results from a numerical integration of
measure in this way the transverse density profile of the atorthe equations of motion for the coefficierssand «; when
cloud, which we fit assuming a parabolic shape. We extracf) is ramped from 0 up to its final valu@(t,). The calcu-
from the fit long and short diameters in the transverse plantated results reproduce the behavior found experimentally.
[hence, the deformatiof(t)] and the orientatior®(t) of the  The amplitude of the scissors mode decreases when the
condensate axes with respect to the rotating frame of theamping timet, —t, or the trap anisotropy are increased.
laser stirrer. The physical reason for this variation is clear: the evolution
The excitation of the scissors mode arises directly fromof the condensate during the time interviy,¢,) is closer to
the small nonadiabatic character of the condensate evoluticsdiabatic following, and the condensate is left at timén a
as()(t) increases, during the time interval(t;). At time  state closer to the stationary state expected(ferQ(t,).
t;, the state of the condensate slightly differs from the steadyHowever, we could not reach a strict quantitative agreement
state corresponding @ (t;). Consequently, the state of the between the calculated amplitudes and the measured ones
condensate still evolves in the rotating frame in the time(typical deviation of 50% We think that this is due to the
interval (t1,t,), even though the characteristics of the stirrerdamping of the scissors mode, present in the experifseet
do not change anymore. Fig. 2 and neglected in our simple theoretical model. A
We have plotted in Fig. 2 the angleand the condensate proper description of this damping could be obtained using a
deformationé as a function of the timer=t,—t;. These formalism similar to Ref[8], where the damping of the scis-
data have been obtained for a ramping time-t,  sors mode in a static trap is investigated.
=360 ms and a spoon anisotropy 0.0146). Theangled Our final study concerns the behavior of the ratié/A ¢
oscillates with a frequencyw/27w=11.6(+0.1) Hz, in a att,, whereA § andA 6 are the oscillation amplitudes for the
good agreement with the value 11#42.1) Hz expected deformation and for the angle, respectively. The results, plot-
from Eq. (7). The initial amplitudeA 6 is 43°, and the oscil- ted in Fig. 4, show thai\ 5/A 6 varies linearly withw/27
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T T T of an arbitrarily small stirring potential, and this gives unique
— properties to the mode of interest, such as a frequency much
P 6T ’ smaller than the trap frequency. Here, we have been mostly
g RS interested in the small oscillations of the condensate around
2 + its rotating steady state. A natural extension of this work
S 4} J consists in studying the nonlinear regime of the system,
- { where a chaotic dynamics can emerge.
s 1w
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FIG. 4. Variation of the ratid 6/A 6 as a function ofw/27r. The APPENDIX
point with a horizontal error bar corresponds to the average of three
results with very similar scissors frequencies For smallw, cor- The values of the coefficients entering into Eq(6) are
responding toe—0, the oscillation of the cloud deformation is -
negligible and the condensate motion is similar to that of a rigid C3= —wi{8(1+02)+37\2},

body. The dotted line is a linear fit to the data.
_ 4 _ 5 2 2 N4 _Ar172(902_

with a slope of 3.X10°4 (degHz)* [i.e., Adl/(wAd) Cy=w {4(5-2€9) + 1607+ 160"~ 4[ 2720 1)
22.9.)><.10‘3 s/radian]. This is in good agreement with the —3a0e]+ 20311 a2+ 1202)),
prediction of Eq.(8) that gives an expected slope of 4.0
X104 (degHz) 1. The small deviation between predicted
and experimental slopes may be due to nonlinearities origi-
nating from the relatively large amplitude of the excitation. 2~ B2 af2.2 2 2
This linear dependence df5/A 6 on the scissors frequency T3€%) ~alle(5-40%) — 307"+ AN (13- 5¢€7)
confirms the idea that for almost symmetric traps, where +8§2+12?)4—52(262—1)+35(~25]}
—0 and thusw—0, the motion of the condensate is shape ’
preserving, similar to that of a rigid body. g 20 n =2 ~, oy ~9, Ao

To summarize, in this paper, we have presented the theo- Co=w {40NT(20°—1)(20°—1+€) —a”(20°~-1
retic analysis and the experimental observation of a scissors o ~= =5 =5,
mode of a trapped rotating condensate. The existence of this +3€e)—aQe(5-40% - 30%],
mode relies upon the breaking of the rotational symmetry of
the condensate caused by atom interactions. The rotatifghere we have introduced the reduced quantities
condensate can have a sizable deformation even in the lim# Q/w, , A\=w,/w, anda=alw, .

— o {16(202-1)(20% 1+ €?)— a?(202-1
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