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Scissors mode of a rotating Bose-Einstein condensate
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A scissors mode of a rotating Bose-Einstein condensate is investigated both theoretically and experimentally.
The condensate is confined in an axisymmetric harmonic trap, superimposed with a small rotating deformation.
For angular velocities larger thanv' /A2, wherev' is the radial trap frequency, the frequency of the scissors
mode is predicted to vanish like the square root of the deformation, due to the tendency of the system to exhibit
spontaneous rotational symmetry breaking. Measurements of the frequency confirm the predictions of theory.
Accompanying characteristic oscillations of the internal shape of the condensate are also calculated and
observed experimentally.
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Bose-Einstein condensates rotating at high angular ve
ity exhibit spontaneous breaking of rotational symmetry@1#.
This phenomenon, which is the consequence of two-b
repulsive interactions, shows up in the occurrence of con
erable deformations of the trapped atomic cloud in the pl
normal to the rotation axis. These configurations have b
recently observed experimentally using a nearly axisymm
ric harmonic trap, with a small deformation of the trappi
potential rotating around thez axis @2#.

Under such conditions, the collective modes of the sys
exhibit interesting features. In particular, one mode in
transverse plane~orthogonal to the rotation axis! corresponds
to a shape-preserving oscillation of the atomic cloud w
respect to the principal axesxy of the rotating trap. The
frequencyv of this scissors-type motion is much small
than the mean transverse trap frequencyv' . This surpris-
ingly low value originates from the fact that the restori
force of the oscillation is proportional to the small trap d
formation, while the moment of inertia of the condensa
remains finite due to its considerable deformation. This r
resents a major difference with respect to the traditional s
sors mode@3,4# of a nonrotating condensate where both t
restoring force and the moment of inertia vanish in the lim
of an axisymmetric trap.

The purpose of this work is to provide both a theore
and an experimental investigation of the problem. We fi
derive the relevant equations describing the scissors m
For a rotation frequencyV larger than the critical value
v' /A2 , we show that the scissors mode frequencyv van-
ishes like the square root of the trap deformation. We th
report on the experimental observation of this scissors mo
and we present results which confirm the theoretic pre
tions with good accuracy.

The atoms of massm are confined in the transverse pla
by the potential
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V'~x,y!5m~vx
2x21vy

2y2!/2, ~1!

wherevx,y
2 5v'

2 (16e). The (x,y) coordinates in the rotat
ing frame are deduced from the coordinates in the labora
frame by a rotationVt and the trap deformatione is positive.
A simple description of the collective oscillations of a rota
ing condensate is provided by the hydrodynamic equati
of superfluids evaluated in the rotating frame:

]r

]t
1“•@r~v2V`r!#50, ~2!

m
]v
]t

1“Fmv2

2
1V1gr2mv•~V`r!G50, ~3!

wherer(r,t) is the spatial density,v(r,t) is the velocity field
in the laboratory frame, andV5Vûz (ûz unit vector along
the z axis!. The harmonic confining potentialV(r)
5V'(x,y)1mvz

2z2/2 is time independent in the rotatin
frame. The parameterg characterizes the strength of the i
teratomic interactions and is related to thes-wave scattering
lengtha by g54p\2a/m . These equations are valid in th
Thomas-Fermi limit, where the so-called quantum press
term can be neglected in Eq.~3! @5#. We shall be interested
here in vortex-free solutions for which“`v50.

Stationary solutions of these equations can be obtaine
the form v0(r)5a“(xy) for the velocity field andr0(r)
5@m̃2m(ṽx

2x21ṽy
2y21vz

2z2)/2#/g for the density profile.
The density profile has the form of an inverted parab
whose parameters (m̃,ṽx ,ṽy) are determined in a self
consistent way as a function ofV @1#. The value of the
parametera is determined by the solution~s! of the cubic
equationa31a(v'

2 22 V2)1ev'
2 V50 . It is related to the

deformationd5^y22x2&/^x21y2& of the atomic cloud by
the simple expressiona52Vd. In the present work, we
will be interested in the so-called normal branch@1#, corre-
sponding to the stationary solutions which can be obtai
by an adiabatic increase of the angular velocity of the tr
starting fromV50 ~see Fig. 1!. For V>v' /A2, these so-
©2003 The American Physical Society02-1
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lutions exhibit large values of the cloud deformationd
;1) even if the trap deformatione is much smaller than 1

An important class of collective oscillations can be d
rived on top of such stationary configurations by looking
time-dependent solutions of the form

dr~r,t !5a01axx
21ayy

21azz
21axyxy, ~4!

dv~r,t !5“~axx
21ayy

21azz
21axyxy!, ~5!

whereai anda i are time-dependent parameters to be de
mined by solving Eqs.~2! and~3!. In the linear limit, one can
look for solutions varying in time likee2 ivt. The collective
frequencies in the rotating frame are then found to obey
equation

v81c3v61c2v41c1v21c050, ~6!

with the coefficientsci given in the Appendix. In Ref.@1#, it
has been shown that these collective oscillations are dyn
cally stable when evaluated on the normal branch. The
bility conditions for higher-multipole oscillations have bee
studied in Ref.@6#, where it has been shown that the norm
branch becomes dynamically unstable against the produc
of such excitations forV*0.8v' whene→0.

The solutions of Eq.~6! correspond to four differen
modes. In particular, forV50, e50, one recovers the well
knownm562 transverse quadrupole and the twom50 hy-
brid quadrupole-monopole modes of a cigar-shaped con
sate@7#. The situation changes in the presence of a rota
deformed trap. In fact, one finds that when evaluated on
normal branch~see Fig. 1!, the coefficientc0 in Eq. ~6! van-
ishes linearly ase→0, providedV.v' /A2. This gives rise
to a soft mode with frequency@9#

v252
c0

c1
5

10v'
2 V~v'

2 2V2!A2V22v'
2

3v'
4 13v'

2 V212V4
e. ~7!

FIG. 1. Deformationd of the cloud for the steady-state solution
of Eqs. ~2! and ~3! as a function of the angular velocityV of the
trap for a fixed value of the trap deformatione . The dotted line
represents the solution fore50 .
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The other three solutions of Eq.~6! instead remain finite for
all values ofe andV. It is worth noticing that result~7! does
not depend on the value ofvz . By looking at the form of the
solution fordr anddv, one can show that the soft oscilla
tion ~7! corresponds to a scissors mode, i.e., to the oscilla
of the angleu between the axes of the condensate and
principal axesx,y of the trap in the rotating frame. The os
cillation of u is accompanied by an oscillation of the co
densate deformationd around the equilibrium valued0. This
oscillation ofd is dephased byp/2 with respect to the one o
the angleu. For small trap deformations, we find

d~ t !2d05
v'

2 u̇

V2A2V22v'
2

. ~8!

The fact that the frequency~7! exactly vanishes whene
50 reflects the occurrence of spontaneous breaking of r
tional symmetry. ForV.v' /A2, the shape of the conden
sate on the normal branch is indeed deformed even in
limit of a rotationally invariant Hamiltonian~see dotted line
in Fig. 1!. Since fore50 all anglesu are equivalent, the
oscillation frequency of the condensate around any partic
valueu0 must vanish. This behavior deeply differs from th
scissors mode in a nonrotating condensate. In this case
deformation of the condensate vanishes when the anisot
of the static trap tends to zero. Consequently, the freque
of the static scissors mode does not have to vanish in
limit of a symmetric trap; it actually takes the valueA2v'

@3#. For a fixed anisotropye!1, the scissors frequency ca
culated in the rotating frame decreases quasilinearly from
valueA2v at V50, to a valuev!v' at V5v'/A2. For
V.v'/A2, it then connects to the value given by Eq.~7!.

Result~7! holds for a small amplitudeDu of the oscilla-
tory motion ofu. To study motions with a larger amplitude
one has to solve numerically the hydrodynamic equations~2!
and~3!. UsingAnsätze~4! and~5!, we find that the frequency
of the motion decreases asDu increases, as for a simpl
gravitational pendulum.

We now turn to the experimental observation of this sc
sors mode. We use a87Rb gas in a Ioffe-Pritchard magneti
trap, with frequenciesvx/2p5182 Hz, vy.vx , and
vz/2p511.7 Hz. The cloud is precooled using optical m
lasses to a temperature;100 mK. The gas is further cooled
by radio-frequency evaporation to a temperature around
nK, corresponding to a quasipure condensate with 105 atoms.
We denote byt0 the time at which the evaporation pha
ends. For timet.t0, the atomic cloud is stirred by a focuse
laser beam of wavelength 852 nm and waistw0520 mm,
whose position is controlled using acoustooptic modulat
@2#. This laser beam creates a rotating optical-dipole pot
tial that is harmonic over the extension of the cloud. T
superposition of this dipole potential and the magnetic o
creates a transverse trapping potential identical to Eq.~1!.
The trap deformatione is proportional to the laser intensit
I L and can be adjusted between 0 and 4%.

The displacement of the center of the trap due to grav
and slight asymmetries in the trapping geometry produce
additional static deformation which has been estimated to
;1% by measuring the splitting between the center-of-m
2-2
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frequencies along thex or y axes. This static anisotropy play
a minor role in the present study and has been neglecte
the analysis above.

The frequencyV(t) of the stirrer is first varied linearly
during the time interval (t0 ,t1), starting fromV(t0)50 up
to V(t1)52p3139 Hz @so thatV(t1);0.76v']. The stir-
ring frequency then stays constant in the time inter
(t1 ,t2). At time t2, we switch off the magnetic trap and th
laser stirrer, allow for a 25-ms free fall, and image the a
sorption of a resonant laser beam propagating alongz. We
measure in this way the transverse density profile of the a
cloud, which we fit assuming a parabolic shape. We ext
from the fit long and short diameters in the transverse pl
@hence, the deformationd(t)] and the orientationu(t) of the
condensate axes with respect to the rotating frame of
laser stirrer.

The excitation of the scissors mode arises directly fr
the small nonadiabatic character of the condensate evolu
as V(t) increases, during the time interval (t0 ,t1). At time
t1, the state of the condensate slightly differs from the ste
state corresponding toV(t1). Consequently, the state of th
condensate still evolves in the rotating frame in the ti
interval (t1 ,t2), even though the characteristics of the stir
do not change anymore.

We have plotted in Fig. 2 the angleu and the condensat
deformationd as a function of the timet5t22t1. These
data have been obtained for a ramping timet12t0
5360 ms and a spoon anisotropye50.017(6). Theangleu
oscillates with a frequencyv/2p511.6(60.1) Hz, in a
good agreement with the value 11.4(62.1) Hz expected
from Eq. ~7!. The initial amplitudeDu is 43°, and the oscil-

FIG. 2. Variation of the angleu ~in degrees! and of the conden-
sate deformationd with the stirring timet5t22t1. The oscillations
of u and d are a signature of the scissors mode. The oscillat
frequencyv/2p.11.6 Hz is much smaller than the transverse tr
frequencyv'/2p, in agreement with Eq.~7!. The solid lines are a
fit to the data with a damped sine function. The dashed line in
lower graph shows the stationary valued5d0.
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lation is damped with a time constant;110 ms. The defor-
mationd of the condensate also exhibits a small oscillato
motion with an amplitudeDd50.16 around the mean valu
d050.51. This motion has the same frequency as that ou,
is phase shifted by;p/2, as expected from Eq.~8! for the
scissors mode, and it is damped with a similar time const

To confirm that the oscillatory motion shown in Fig.
indeed corresponds to the scissors mode described abov
have measured the variation of the frequencyv as a function
of the laser intensity, which is itself proportional to the tra
anisotropye. The data are plotted in Fig. 3. They clear
show the expected dependencev2}e. Actually, this scissors
mode constitutes a very precise way to measuree , once the
frequenciesv' andV are known with sufficient precision.

We have also compared the measured amplitudesDu(t2)
andDd(t2) with the results from a numerical integration o
the equations of motion for the coefficientsai anda i when
V is ramped from 0 up to its final valueV(t1). The calcu-
lated results reproduce the behavior found experimenta
The amplitude of the scissors mode decreases when
ramping timet12t0 or the trap anisotropye are increased.
The physical reason for this variation is clear: the evolut
of the condensate during the time interval (t0 ,t1) is closer to
adiabatic following, and the condensate is left at timet1 in a
state closer to the stationary state expected forV5V(t1).
However, we could not reach a strict quantitative agreem
between the calculated amplitudes and the measured
~typical deviation of 50%!. We think that this is due to the
damping of the scissors mode, present in the experiment~see
Fig. 2! and neglected in our simple theoretical model.
proper description of this damping could be obtained usin
formalism similar to Ref.@8#, where the damping of the scis
sors mode in a static trap is investigated.

Our final study concerns the behavior of the ratioDd/Du
at t2, whereDd andDu are the oscillation amplitudes for th
deformation and for the angle, respectively. The results, p
ted in Fig. 4, show thatDd/Du varies linearly withv/2p

n

e

FIG. 3. Variation of the square of the scissors-mode freque
v/2p with the laser intensityI L ~arbitrary units!. The error bars
indicate the statistical spread of the results obtained for various
of the experiment. The dotted line is a linear fit according to
prediction of Eq.~7!.
2-3
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with a slope of 3.231024 (deg Hz)21 @i.e., Dd/(vDu)
.2.931023 s/radian2]. This is in good agreement with th
prediction of Eq.~8! that gives an expected slope of 4
31024 (deg Hz)21. The small deviation between predicte
and experimental slopes may be due to nonlinearities o
nating from the relatively large amplitude of the excitatio
This linear dependence ofDd/Du on the scissors frequenc
confirms the idea that for almost symmetric traps, where
→0 and thusv→0, the motion of the condensate is sha
preserving, similar to that of a rigid body.

To summarize, in this paper, we have presented the th
retic analysis and the experimental observation of a scis
mode of a trapped rotating condensate. The existence of
mode relies upon the breaking of the rotational symmetry
the condensate caused by atom interactions. The rota
condensate can have a sizable deformation even in the

FIG. 4. Variation of the ratioDd/Du as a function ofv/2p. The
point with a horizontal error bar corresponds to the average of th
results with very similar scissors frequenciesv. For smallv, cor-
responding toe→0, the oscillation of the cloud deformation i
negligible and the condensate motion is similar to that of a ri
body. The dotted line is a linear fit to the data.
ev
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of an arbitrarily small stirring potential, and this gives uniq
properties to the mode of interest, such as a frequency m
smaller than the trap frequency. Here, we have been mo
interested in the small oscillations of the condensate aro
its rotating steady state. A natural extension of this wo
consists in studying the nonlinear regime of the syste
where a chaotic dynamics can emerge.
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APPENDIX

The values of the coefficientsci entering into Eq.~6! are

c352v'
2 $8~11Ṽ2!13l2%,

c25v'
4 $4~522e2!116Ṽ2116Ṽ424@ã2~2Ṽ221!

23ãṼe#12l2~112ã2112Ṽ2!%,

c152v'
6 $16@~2Ṽ221!~2Ṽ2211e2!2ã2~2Ṽ221

13e2!2ãṼe~524Ṽ2!23Ṽ2e2#14l2@~1325e2!

18Ṽ2112Ṽ42ã2~2Ṽ221!13ãṼe#%,

c05v'
8 $40l2@~2Ṽ221!~2Ṽ2211e2!2ã2~2Ṽ221

13e2!2ãṼe~524Ṽ2!23Ṽ2e2#%,

where we have introduced the reduced quantitiesṼ

5V/v' , l5vz /v' and ã5a/v' .
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