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Abstract

We first present the Casimir–Polder result, giving the interaction potential be-
tween a ground state atom and a mirror. This result, obtained within the framework
of quantum electrodynamics, is valid for any separation z between the atom and the
mirror, provided the electronic cloud does not overlap with the mirror. For large z,
this interaction potential varies as UCP(z) ∝ z−4. This results from the modifica-
tion of vacuum fluctuations by the mirror and this is quite different from the simple
electrostatic result obtained by neglecting any retardation effect, U(z) ∝ z−3. We
also indicate how the Casimir–Polder potential is modified when the mirror is re-
placed by a dielectric (Lifshitz theory). We then describe three recent experiments
which give a clear evidence for the existence of retardation terms in the atom-wall
problem, and which are in good agreement with the Casimir-Polder prediction.

1 Introduction

The fact that the electromagnetic vacuum can interact with atomic particles and produce
a measurable effect is certainly one of the most striking features of Quantum Mechanics.
The name of the Dutch physicist H.B.G. Casimir is attached to some very spectacular
manifestations of this interaction. In 1948 he predicted his famous result concerning the
attractive force between two perfectly conducting plates [1]. The review of the current
experimental state-of-the art for this problem will be done in the next presentation by
Reynaud. The same year, Casimir made another essential contribution, together with
his colleague Polder [2]. They addressed the following problem: what is the asymptotic
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behavior of the long range interaction between two atoms, or between an atom and its
mirror image?

The existence of long range forces, acting when the constituents are separated by more
than a typical atomic size, was predicted by van der Waals in 1881. The first quantitative
estimate of these forces was performed by London [3], using an analysis based on classical
electrodynamics. The question raised by Casimir and Polder, and that we would like
to address here, is the existence of sizeable effects, originating from the quantization of
the electromagnetic field, in the long range interaction between an atom prepared in its
ground electronic state and a mirror.

2 The Casimir-Polder problem

2.1 The (relatively) short range result

When a static electric dipole d is placed in front of an ideally conducting wall, it interacts
with its mirror image and the corresponding energy is

U(z) = −d2
x + d2

y + 2d2
z

64πε0z3
(1)

The − sign means that the corresponding interaction is attractive. Here Oz denotes the
axis normal to the plane and z is the distance between the atom and the plane. Consider
now an atom in its internal ground state |0〉, placed in front of such a wall. A similar
effect may occur, as long as the distance z is notably larger than the atom size, to avoid
the overlap between the electron cloud of the atom and the wall itself. The reason for
this attraction is clear: although the atom possesses no electric dipole moment in its
ground state (〈0|di|0〉 = 0, for i = x, y, z), the average values 〈d2

i 〉 are strictly positive.
A simple picture then emerges in which a fluctuating dipole is associated to the atom,
which polarizes the conducting charges of the wall; the induced charge distribution then
interacts with the initial atomic dipole. This effect, predicted by Lennard-Jones in 1932
[4], leads to the following interaction potential:

ULJ(z) = −〈0|d2
x + d2

y + 2d2
z|0〉

64πε0z3
(2)

The passage from a truly static to a time-dependent atomic dipole introduces a time
scale τ in the problem and hence, due to the finite speed of light, a length scale cτ . The
z−3 dependence of the electric field created by the dipole is valid only at distances smaller
than cτ . For larger distances, a new approach is needed to account for retardation effects,
as pointed out in 1941 by J. A. Wheeler [5]. For instance, if one deals with a classical
oscillating dipole de−iωt, it is well known that the electromagnetic field which is radiated
at long distances varies like the inverse of the distance to the dipole. The leading term in
the interaction energy between the oscillating dipole and the conducting wall is then [6]:

Large z : U(z) ∼ (d2
x + d2

y)k
2

32πε0z
cos 2kz , (3)
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where we set k = ω/c.
For an atom or a molecule, several questions now emerge. What is the relevant time

scale τ? Is the picture of an oscillating dipole valid? Does the physics depend on the
internal level (ground or excited) of the atom?

2.2 Retardation effects in the atom-wall problem

2.2.1 Atom in its ground electronic state

The problem for a ground state atom was solved in 1948 in a brilliant manner by Casimir
and Polder, using the formalism of quantum electrodynamics [2, 7]. Their results show
that the retardation effect anticipated above is indeed essential and that it leads to the
replacement of the Lennard-Jones z−3 variation of the interaction energy by a z−4 vari-
ation. The length scale on which the transition between the z−3 and the z−4 regimes
occurs is c/ω, where ω is a typical Bohr frequency of the atom. We shall not give the
exact result of Casimir and Polder (denoted hereafter as UCP(z)). We simply recall that
it is valid for any distance z, and that it coincides with ULJ(z) for short distances. We
now comment on its asymptotic form for large z. In this case, considering an atom with
a single valence electron prepared in its ground state |0〉, one obtains:

Large z : UCP(z) ∼ − 3

32π2ε0

h̄cα

z4
. (4)

Here α denotes the static polarisability of the atom in the state |0〉, of energy E0:

α =
2q2

3

∑
n�=0

|〈n|r̂e|0〉|2
En − E0

(5)

where the sum runs over all the atomic excited states n of energy En, and where r̂e is
the position operator of the electron with respect to the atom center-of-mass. Note that
for hydrogen and for alkali atoms, the largest contribution to the sum (5) comes from the
resonance line (1s↔2p and ns↔ np respectively).

The question now arises to interpret this result in terms either of vacuum fluctuations
(modification of the atomic electron dynamics by the quantized electromagnetic field)
or radiation reaction (action of the field radiated by the atom upon itself). Such a
separation is possible in an unambiguous manner when one expresses the measurable
physical quantities in terms of the correlation functions and linear susceptibilities of the
two interacting systems, the atom and the electromagnetic field [8]. Using this formalism,
the authors of [9] have shown that the result (4) is entirely due to vacuum fluctuations.

Actually one can recover (4) within a numerical factor by the following simple rea-
soning [10] (see also [11]). The physical origin of (4) is similar to that of the Casimir
d−4 force between two perfectly conducting walls separated by a distance d (for a review,
see the contributions of Balian and Duplantier, and of Reynaud in the same issue). At
a distance z from the mirror, the modes of the electromagnetic field which are strongly
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modified by the presence of the conducting wall are those with a frequency ω such that

ω ≤ c/z. The electric field associated with each mode is Eω = (h̄ω/2ε0L
3)

1/2
, where L3 is

an arbitrarily large quantization volume. The contribution of each mode to the Lamb shift
of the ground state of the atom is −αE2

ω/2. Here we use the static polarizability α; indeed
we assume that the atom is far enough from the wall so that all the considered modes
have a frequency ω much lower than any atomic Bohr frequency. This crude estimation
of the modification of the Lamb shift of the atomic ground state, due to the presence of
the wall, then gives

U(z) � −
∑

ω<c/z

2× αE2
ω/2 = − αh̄

4π2ε0c3

∫ c/z

0

ω3 dω = − 1

16π2ε0

h̄cα

z4
,

where the multiplicative factor 2 accounts for the two polarizations basis states for a given
wave vector. This is a remarkably good approximation of the exact asymptotic result (4).

2.2.2 Atom in an excited state

The result that we just obtained for a ground state atom is very different from the one
obtained for an atom prepared in an excited electronic state |n〉. In this case, one can
show indeed that the leading term is [9, 10]:

Large z : U(z) ∼ q2

8πε0z

∑
n′<n

k2
nn′

(
|〈n|x̂e|n′〉|2 + |〈n|ŷe|n′〉|2

)
cos(2knn′z) (6)

where we have set knn′ = (En − En′)/(h̄c) and where the sum over n′ runs only on levels
with an energy En′ lower than En. Here we recover the cos(2kz)/z behavior characteristic
of a classical oscillating dipole (3). As shown in [9], vacuum fluctuations and radiation
reaction contribute equally to this result.

2.3 The Lifshitz approach

A few years after the work of Casimir and Polder, Lifshitz also addressed the problem
of long range interactions between atomic particles and a macroscopic body [12]. He did
not consider a metallic surface, but a bulk dielectric material characterized by a linear
susceptibility ε(ω). We shall not review Lifshitz theory in detail, and we simply give
the long range potential for an atom in its ground electronic state, assuming that one
electronic transition at frequency ωA is dominating (for a review, see e.g. [13, 14, 15]):

Large z : U(z) ∼ − 3

32π2ε0

h̄cα

z4

ε(ωA)− 1

ε(ωA) + 1
Φ(ε) . (7)

The function Φ(ε) is nearly constant and equal to 0.77 when the index of refraction n =
√
ε

varies between 1 and 2, which accounts for most glasses. Note that one recovers the case
of a perfectly conducting plate by taking the limit ε → ∞, in which case Φ(ε) → 1.
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We conclude this brief section on Lifshitz theory by noting that the use of a dielectric
opens new perspectives with respect to a perfectly conducting wall. One can arrange
the response function ε(ω) of the dielectric to be resonant with some particular Bohr
frequencies of the atoms. It is then possible to enhance or decrease the contribution of
some atomic transitions to the interaction potential. For example, one can modify the
coefficient appearing in front of the short range z−3 variation (2). It is even possible to
change the sign of the interaction energy if the atom is prepared in an excited state, so
that the Lennard-Jones attractive potential is turned into a repulsive one [16, 17].

3 Experimental results

3.1 A brief review of the experimental status

The main motivation of this presentation is to discuss the experimental tests of the
Casimir-Polder-Lifshitz prediction, i.e. the long range z−4 interaction energy for an atom
in front of a conducting wall or a dielectric material. We shall not address here the results
obtained recently in cavity quantum electrodynamics, where the atom is surrounded by a
cavity with a large quality factor, so that it couples resonantly to only one (or a few) of
the cavity modes. We refer the reader to [6, 10], where these experiments are discussed in
detail. We shall not discuss either the possible manifestations of long range forces inside
an atom. These can occur for instance within a Rydberg helium atom, for which the
outer electron sees a field which can be significantly different from the Coulomb field from
the nucleus+inner electron. We refer the reader to [18], which present several interesting
contributions on this topic.

Before addressing the Casimir-Polder z−4 prediction, we shall say a few words on
experimental studies in the short range regime, where the Lennard-Jones z−3 variation
dominates. This regime has first been studied in [19], for an atom or a molecule in front
of a conducting material. The idea is to send an atomic or molecular beam very close
to a metal cylinder and to look for the deflection of the beam. A deviation is actually
detected, but it is difficult to extract quantitative conclusions from these experiments, the
main reason being that the impact parameters are uniformly distributed over all possible
values. The effect of the atom-wall attraction on the deflected beam is then strongly
dominated by the atoms having the smallest impact parameter, where retardation effects
play no role, and only the Lennard-Jones potential can be tested. Similar experiments are
reported in [20, 21]. Note that the results of these experiments were only in qualitative
agreement with the theoretical prediction (2). One can also prepare the atoms in a highly
excited Rydberg state, so that the corresponding dipole is much larger, which allows for
a more precise study of the Lennard-Jones prediction [22].

The Lifshitz prediction has been tested using liquid-helium films on cleaved surfaces
of alkaline-earth fluoride crystals [23]. By varying the thickness of the film between 1 and
25 nm, the authors could obtain a test of Lifschitz theory over 5 orders of magnitude for
the potential strength. These experiments showed a first evidence for the deviation from
the z−3 law at long distances (i.e. thick films).

5



High resolution spectroscopy experiments can also reveal a position-dependent fre-
quency shift of the atomic energy levels in the relatively short range (z−3) regime. These
methods have been used to test the Lennard-Jones prediction for excited atoms [24, 25, 26],
and the atom-wall repulsion resulting from a well chosen dielectric response of the wall
has been observed [27].

We now turn to three experiments where the Casimir-Polder retardation effect for an
atom in its ground state has been observed and studied. We note that this observation
cannot be performed using a spectroscopic measurement. Indeed one measures in this
case an energy difference between the ground state and an excited state. Since the shift
for any excited state (6) is much larger than the shift of the ground state (4), one would
only access in this way to the excited level physics, and not to the ground state one.
Clearly, one has to rely on a measurement dealing only with the ground state to test
this prediction. This leaves several possibilities opened, as pointed out in [6]. One could
use atomic interferometry to measure the shift [28, 29, 30]. One could also measure a
differential shift between various sublevels of the ground state, in case the non-scalar
part of the static susceptibility is significant. Finally, as done in the three experiments
described below, one can look for a mechanical effect of the Casimir-Polder potential
[31, 33, 41].

3.2 Atom metal force : the Yale experiment [31]

This remarkable experiment constitutes to our knowledge the first quantitative study
of retardation effects in the interaction between an isolated ground state atom and a
conducting wall. This experiment is precise enough to clearly discriminate between the
Casimir-Polder value of the interaction energy and the Lennard-Jones result, in which the
interaction is modelled by the instantaneous electrostatic interaction between the atomic
dipole and its image in the metal. Figure 1 is a sketch of the experiment. A beam of
sodium atoms travels inside a cavity formed by two almost parallel, gold coated, plates.
The distance L between the plates can be varied between 0.7 µm and 8 µm. The length
of the cavity is D = 8 mm.

The experiment consists in measuring the transmission T (or rather the opacity 1/T )
as a function of the separation L. For L > 3 µm, the transmission is found equal (within
error bars) to the “geometrical” expectation. This geometrical expectation is determined
using a Monte-Carlo simulation, in which one neglects any interaction between the atoms
and the walls of the cavity. The straight (classical) atomic trajectories are determined by
the initial Maxwell-Boltzmann distribution, and only atoms that do not hit the walls are
transmitted.

For smaller separations L, the contribution of the atom-wall interaction to the opacity
becomes appreciable, and the measured transmission is smaller than the geometrical one
(see figure 2). This reduction can be easily understood if one remembers that the atom-
wall interaction is attractive, both for short and long distances. When an atom comes
close enough to one of the walls, its trajectory is bent towards this wall. Therefore the
number of atoms hitting the walls is larger than what is given by the geometrical analysis,
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Gold cavity

D = 8 mm

Detector

Figure 1: Yale experiment: an atomic beam is sent through a cavity made of two gold
coated plates making a small wedge. The number of transmitted atoms is measured as a
function of the distance L between the plates.
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Figure 2: Inverse of the measured transmission (opacity) as a function of the plate separa-
tion L. Curves (a), (b), and (c) result from a Monte-Carlo calculation, assuming various
atom-cavity interaction potentials : (a) Casimir Polder interaction (exact); (b) Lennard
Jones interaction (no retardation); (c) no interaction (geometrical model).

and the effective aperture of the cavity is thus smaller than the geometrical aperture.
To obtain an order of magnitude of the critical wall spacing Lc for which the losses due

to the atom–wall interaction become significant, we can compare the maximal transverse
kinetic energy EK⊥ ∼ kBT (L/2D)2 of an atom transmitted by the cavity (within the ge-
ometrical analysis), and the atom-wall interaction energy Ucav(L/2) for an atom located
at the center of the cavity. For simplicity, we evaluate Ucav(L/2) using the short distance
approximation (2). We notice that the value of 〈d2

i 〉 essentially results from the contri-
bution of the sodium resonance line 3s↔3p at λres = 589 nm, so that (2) can be written
ULJ(z) = (3/16) h̄Γ/(kz)3, where Γ is the radiative lifetime of the 3p level and k = 2π/λres

[10]. A back-of-the-envelope calculation then yields Lc ∼ 1 µm, in good agreement with
the observed value of the separation below which the measured transmission becomes
significantly smaller than the geometrical one.

These experimental results constitute more than a mere evidence of the dramatic role
of the atom-wall interaction at a distance z ∼ λres. They allow a precise comparison with
the exact Casimir-Polder result [32] and they clearly rule out a model which would simply
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extend the Lennard-Jones prediction (2) to any distance. Note that for the relevant atom-
wall distances in this experiment (z ∼ λres), the Casimir-Polder result significantly differs
from the simple asymptotic form (4). One must use the exact Casimir-Polder potential
UCP(z), which connects the short and long distance asymptotic forms. Now, if one fits
the experimental data using the potential ξ UCP(z), where ξ is an adjustable parameter,
one finds ξ = 1, within an uncertainty factor of 10% (at 1 standard deviation). To our
knowledge, this is the most precise measurement of the interaction energy of a ground
state atom and a metal wall at a distance sensitive to the retardation effects.

A close look at the data of fig. 2 reveals an a priori paradoxical fact. The discrimination
between the theoretical expressions with and without retardation effects is more dramatic
for the smallest values of the cavity width. In fact, only the atoms travelling close to the
center of the cavity are transmitted, and it is only for these atoms that the precise form of
the interaction energy is important. Now, even for the smallest value L = 0.7 µm used in
this experiment, the atom wall distance (0.35 µm) is not small compared to the wavelength
λres of the dominant transition. It is therefore not surprising that the retardation effects
play a significant role in this case. The fact that the relevant atoms are travelling at the
center of the cavity is important in another respect. For these atoms, the wavelengths of
the modes of the electromagnetic field which are affected by the walls are larger than L,
that is 0.7 µm. At these wavelengths, gold behaves as an almost perfect conductor. It
would not be so for shorter wavelengths, i.e. for smaller atom-wall distances.

3.3 Atom dielectric force : the Orsay experiment [33]

A key ingredient for the success of the experiment above is the fact that, for a small plate
separation, the detected atoms are at a well defined distance from the attracting plates,
since they travel close to the center of the cavity (atoms departing from this symmetry
plane are attracted and stick to the plates). With a well defined impact parameter, it is
possible to test the interaction energy law with a good accuracy.

With the advent of methods for laser cooling and manipulating atoms [34, 35, 36], it has
become possible to accurately control atomic trajectories, and this offers new possibilities
to define precisely the impact parameter. As suggested in [37], atomic mirrors allow
to control the distance of minimum approach to a dielectric wall, and to measure the
interaction energy. Figure 3 sketches an experiment recently performed in Orsay in this
purpose. Laser cooled and trapped rubidium (87Rb) atoms, at a temperature of about 10
µK (i.e. a r.m.s. velocity of 4 cm/s), are released on an atomic mirror located 15 mm
below. The incident atoms, with a kinetic energy dispersion less than 1%, are reflected
from the quasi resonant evanescent wave resulting from the total internal reflection of
a laser beam in the prism. The reflecting potential is due to the interaction between
the evanescent wave electric field and the atomic electric dipole induced by this field.
This dipole potential is proportional to the square of the electric field (intensity) in the
evanescent wave, and therefore decays exponentially as a function of the distance to the
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Figure 3: Orsay experiment: trapped cold atoms at 10 µK are released on an evanescent
wave atomic mirror located 15 mm below. The number of reflected atoms is measured by
monitoring the absorption of a resonant probe laser above the atomic mirror.

surface [38]:

Udip(z) =
h̄Γ

8

I

Isat

Γ

δ
e−2κz = h̄Λ e−2κz , (8)

where I is the light intensity at the surface of the prism, and δ = ωL −ωA is the detuning
between the laser frequency ωL and the atomic resonance frequency ωA (λres = 2πc/ωA =
780 nm). The quantity Isat = 16 W/m2 is the saturation intensity of the atomic transition
and Γ = 3.7×107 s−1 is the radiative width of the relevant excited state. The decay length
κ−1 is of the order of λres/2π, the exact value depending on the laser direction (in this
experiment, κ−1 = 114 nm).

The reflecting potential is repulsive, in contrast to the Casimir-Polder potential which
is attractive at all distances. For the choice of parameters of the experiment, the Casimir-
Polder potential, which varies with z as a sum of power laws, dominates at short and
very large distances, but there is an intermediate range of position z for which the dipole
potential dominates. In this case, a clear maximum of the total potential exists (Figure
4a). The height of this potential barrier depends univocally on the ratio I/δ, and the
experiment consists in decreasing this parameter to find the threshold value (I/δ)T below
which the atoms are no longer reflected. This measured value can then be compared to
the value predicted with different expressions of the atom-dielectric potential, by stating
that the potential barrier height is exactly equal to the kinetic energy of the incident
atoms.

One may, at this point, raise the experimental problem of having a perfectly uniform
evanescent wave intensity, in order to have an abrupt threshold. This is so difficult that
the authors of [37] renounced to make a precise measurement. The Orsay group has
circumvented the difficulty by keeping the standard gaussian transverse profile of the
laser beam, and by noticing the following fact. When one changes the parameter I0/δ
(where I0 is now the intensity at the center of the laser beam), the number NR of reflected
atoms varies as ln ((I0/δ)/(I0/δ)T). Indeed the effective mirror – i.e. the location where
the potential barrier height is larger than the kinetic energy of the incident atoms – is an
ellipse of area proportional to that quantity.
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Figure 4: (a) Atoms incident on the atomic mirror experience a total potential which
is the sum of the evanescent wave reflecting potential Udip(z) and of the atom-dielectric
interaction U(z). The height of the resulting potential barrier is controlled by changing
the parameter I/δ of the evanescent wave and it depends on the mathematical form
assumed for U(z). Solid line: total potential neglecting retardation in the atom-dielectric
interaction U(z) (Lennard-Jones). Dotted line: total potential with the Casimir-Polder-
Lifshitz expression for the atom-dielectric interaction.
(b) Number of reflected atoms as a function of ln (I0/δ) (expressed in suitable units, hence
the notation Λ0). The various symbols correspond to different laser intensities. The results
can be fitted by a straight line, whose extrapolation to 0 gives the measured value of the
threshold, to be compared to the values calculated with the various potentials of figure 4a,
and indicated by arrows. Λdip

T : no atom-dielectric interaction; ΛLJ
T : Lennard-Jones form

of the atom-dielectric potential (no retardation); ΛCP
T : Casimir-Polder-Lifshitz potential.

We have plotted in figure 4b the number of reflected atoms as a function of ln (I0/δ).
One clearly sees that the experimental points are aligned. A fit to a straight line then
yields the measured threshold value (I0/δ)T. We have indicated on the x axis the various
threshold values corresponding to the various potentials shown in Figure 4a. The threshold
Λdip

T is calculated for the dipole potential alone, without any atom-dielectric interaction.
It differs from the observed value by a factor of 3, clearly showing the dramatic effect of
this atom-dielectric interaction.

The threshold ΛLJ
T is calculated with the non retarded Lennard-Jones potential (2).

Here we take into account that we deal with a dielectric prism and not an ideal mirror;
we assume a dielectric constant ε independent of the frequency [39] so that:

ULJ(z) = −ε− 1

ε+ 1

〈d2〉
48πε0z3

= −A h̄Γ

(2kz)3
, (9)

where we used the fact that the dipole is isotropic: 〈d2〉 = 3〈d2
i 〉, i = x, y, z. We take the

value of ε at the wavelength λres of the resonant transition, that completely dominates
the dipole fluctuations. Using known atomic data, we calculate the square of the atomic
electric dipole in the ground state and find A = 0.88 with an accuracy of 1%.

We see on Figure 4b that the threshold ΛLJ
T slightly exceeds the experimental value.
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Actually, the difference is of the order of our estimation of the uncertainty, which is
dominated by the uncertainty on the absolute value of the laser intensity. Therefore the
agreement between our result and a model using the Lennard Jones potential is only
marginal. On the other hand, it is clear that the threshold ΛCP

T agrees better with the
experimental result. To calculate this threshold, we have used an expression of the Casimir
Polder potential given by [40]. As for the case of the Yale experiment, this measurement is
done at an intermediate distance, where one cannot use the asymptotic form of equation
(4). More precisely, at the position of the potential barrier – i.e. at 48 nm from the wall,
see Figure 4a – the correction to (9) due to retardation is 30%.

3.4 Quantum reflection by a Casimir-Polder potential: the Tokyo
experiment [41]

We start by explaining briefly the concept of quantum reflection. For z > 0, consider
a potential U(z) < 0 which tends to zero at infinity. We assume that this potential is
attractive (dU/dz > 0) and we consider incident atoms with an energy Ei at z = +∞.
Quantum reflection is predicted to occur for atoms with a low incident kinetic energy
Ei, if the potential changes rapidly enough. In this case, the atoms are reflected well
before reaching the minimum of the potential U(z) located in z = 0, so that the presence
probability of the atoms remains vanishingly small around this minimum (fig. 5a).

More precisely, the condition for quantum reflection is

dλdB

dz
≥ 1 , (10)

where λdB(z) is the local de Broglie wavelength of the particle at a distance z, calculated
in a semi-classical analysis (λdB(z) = h/

√
2m(Ei − U(z))). This condition can be seen

as a breakdown of the validity of the semi-classical (WKB) approximation, which would
imply that an incident particle always reaches z = 0, whatever its initial energy. For a
power law potential U(z) = −Cn/z

n with n > 2, and for particles with a sufficiently low
incident energy Ei, the condition (10) is fulfilled over some range of distances z. Indeed

the maximum of φ(z) = dλdB/dz is found in zmax = ((n− 2)Cn/(2(n+ 1)Ei))
1/n and this

maximum scales as E
(2−n)/(2n)
i . Both quantities zmax and φ(zmax) tend to infinity as Ei

tends to zero.
Suppose now that the potential U(z) is created by a bulk material located in the

domain z < 0. In the case of quantum reflection on the surface of the material, the
particle is reflected before it reaches the immediate vicinity of the material, where it
could stick. One therefore expects an elastic reflection coefficient R(Ei) which tends to 1
when the incident energy Ei goes to zero.

This phenomenon has first been observed for the reflection of helium and hydrogen
atoms on a liquid helium surface [42, 43, 44, 45]. In the experiment that we wish to
describe here [41], quantum reflection has been demonstrated for a solid surface: very
slow metastable Neon atoms bounce elastically and specularly on the purely attractive
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Figure 5: Tokyo experiment. (a) Quantum reflection of a particle with incident energy
Ei on a purely attractive potential U(z). (b) Reflectivity vs. velocity for metastable neon
atoms impinging on a silicon surface. The solid curve is the reflectivity calculated using
the model potential (11) with C4 = 6.8 10−56 J/m4 and z0 = 64 nm.

potential created by a piece of silicon (semi conductor) or glass (dielectric). The idea is
then to extract information on the potential U(z) from the measurement of R(Ei).

As shown in fig. 5b, obtained with silicon, the author measures the reflectivity for a
range of incident velocities between 1 mm/s and 30 mm/s. As expected, he finds that the
reflectivity increases when the velocity decreases. The largest reflectivity is R = 0.5 at
1 mm/s, and the data are consistent with the extrapolated value R = 1 at zero velocity.

The data are fitted by a simple theoretical model, which consists in connecting the
asymptotic behaviors of the semi-classical atom wave function for short and long distances
z. In this model, one assumes that a particle which can reach the location z = 0 sticks to
the surface (absorptive boundary conditions). The atom-bulk silicon potential is modelled
by

U(z) = − C4

(z + z0)z3
, (11)

which gives an account for the behavior seen above for both short (z−3) and long (z−4)
distances. The C4 coefficient deduced from the fit is in agreement with the one expected
from the Casimir-Polder theory: C4/C

CP
4 = 0.7 ± 0.4. The value of λ is z0 = 0.06 µm,

with a range within σ confidence of 0 − 0.7µm. This value for z0 is much smaller than
the distance between the turning point and the surface that one derives from the above
considerations (typically 1 µm). This shows that, in this experiment, one is sensitive
mostly to the retarded z−4 Casimir-Polder potential.
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4 Conclusion

Thanks to experimental results obtained during the last ten years, there is now a clear
evidence for retardation effects in the interaction between a ground state atom and a wall,
either a metal, a semi-conductor, or a dielectric. The experiments clearly rule out a pure
Lennard-Jones z−3 potential, which would exist in absence of retardation.

For the three experiments that we have described, the typical minimum distance be-
tween the atom and the surface varies between 0.05 µm to 1 µm. The most accurate fit
to the Casimir-Polder potential is obtained in the Yale experiment, where an agreement
between theory and experiment is found at the 10 % level. There is a strong hope that
the theoretical predictions can be tested with an improved accuracy when coherent atom
sources, emerging from Bose-Einstein condensates, will be easily available. With these
atom lasers [46], one will be able to have a better control of the parameters of the atomic
beam incident on the surface. Together with the possibility of performing an interfero-
metric measurement of the shift induced by the atom-wall potential, this should allow for
an extension of the range of distances over which the Casimir-Polder potential is tested.
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