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N-boson time-dependent problem: A reformulation with stochastic wave functions
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We present a numerically tractable method to solve exactly the evolution of aN boson system with binary
interactions. The density operator of the systemr is obtained as the stochastic average of particular operators
uC1&^C2u of the system. The statesuC1,2& are either Fock statesuN:f1,2& or coherent statesucoh:f1,2& with
each particle in the statef1,2(x). We determine the conditions on the evolution off1,2, which involves a
stochastic element, under which we recover the exact evolution ofr. We discuss various possible implemen-
tations of these conditions. The well known positiveP representation arises as a particular case of the coherent
state ansatz. We treat numerically two examples: a two-mode system and a one-dimensional harmonically
confined gas. These examples, together with an analytical estimate of the noise, show that the Fock state ansatz
is the most promising one in terms of precision and stability of the numerical solution.
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I. INTRODUCTION

Since the experimental realization of the first atomic g
eous Bose-Einstein condensates a few years ago@1–4#, the
physics of dilute Bose gases has been considered with
newed interest. One fascinating aspect of these new sys
is the possibility to accumulate in a single quantum stat
large fraction of the atoms confined in a trap.

At very low temperature, a simple theoretical descripti
of the dynamics of these systems is obtained by neglec
the uncondensed atoms, and by considering the wave f
tion of the condensate, which obeys a Schro¨dinger equation
with a nonlinear term originating from the mean-field inte
actions between the atoms. Such an approach neglects
and more-particle correlations and is valid under a we
interaction condition which is usually stated in terms of t
densityn and the scattering lengtha of the gas as (na3)1/2

!1. Current gaseous condensates satisfy such a cond
Nevertheless effects beyond the Gross-Pitaevskii equa
may be considered at zero temperature; also finite temp
ture phenomena are not accounted for by the pure state m
field approach.

More complex theories have been developed in orde
cope with effects beyond the Gross-Pitaevskii equati
Bogoliubov’s approach takes into account the next term
the (na3)1/2 expansion@5,6#. Also quantum kinetic theories
have been developed to study the formation of the cond
sate and to include the effect of the noncondensed part
@7–9#. Unfortunately the corresponding calculations are qu
heavy for 3D nonhomogeneous systems such as trap
gases, and this constitutes a first limitation to the use of th
methods. Also approximations used in some of the exis
mean field theories are not under rigorous control, makin
difficult to assess their domain of validity~for a review see,
e.g.,@10#!. Therefore a computational scheme capable to p
vide exact results can have a great importance both fro
purely theoretical point of view and for a quantitative ana
sis of experimental data.

When the Bose gas is at thermal equilibrium such an
1050-2947/2001/63~2!/023606~14!/$15.00 63 0236
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act numerical calculation of the properties of the gas is av
able, using the quantum Monte Carlo techniques, based
Feynman path integral formulation of quantum mechan
@11,12#. The aim of this paper is to present an alternat
exact and numerically tractable solution to the problem
the interacting Bose gas, a method not restricted to the c
of thermal equilibrium but which allows for the study of th
dynamics of the gas. The method is based on a stocha
evolution of Hartree states, in which all atoms have the sa
wave function, these Hartree states being either Fock st
~fixed number of atoms! or coherent states. As a particula
case of this solution with coherent states, we recover
stochastic scheme corresponding to the evolution of the d
sity operator of the system in the positiveP representation
@13–15#. This scheme, which has been applied already
study the dynamics of Bose-Einstein condensates in@16,17#,
is known to lead to strong unstability problems, which fo
tunately do not show up for other implementations of t
present method.

The outline of the paper is the following: In Sec. II, w
present the stochastic formulation of the evolution of the
Hartree states which, after average over the stochastic c
ponent, leads to the exact evolution. Section III is devoted
the presentation of two particular schemes implementing
stochastic formulation. We first present a ‘‘simple’’ schem
which minimizes the statistical spread of the calcula
N-atom density matrix. We also investigate a more elabor
scheme in which the trace of the calculated density ma
remains strictly constant in the evolution. With this co
straint, we recover for coherent states the known stocha
simulation associated with the positiveP representation@16#.
Finally we investigate in Secs. IV and V two examples,
two-mode model system and a one-dimensional Bose
respectively. These examples illustrate the accuracy and
limitations of the method. Generally speaking we find th
the ‘‘simple’’ scheme simulations are only limited by th
computation power: the number of realizations needed fo
good statistical accuracy increases exponentially with ti
for the simulation with Fock states. On the contrary t
simulations with constant trace are subject to divergence
©2001 The American Physical Society06-1
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I. CARUSOTTO, Y. CASTIN, AND J. DALIBARD PHYSICAL REVIEW A63 023606
the norms of the stochastic wave functions in finite time
phenomenon already known for coherent states in the c
text of the positiveP representation@13,18#.

II. STOCHASTIC FORMULATION OF THE N-BOSON
PROBLEM USING HARTREE FUNCTIONS

A. Model considered in this paper

The Hamiltonian of the trapped interacting Bose gas
der examination can be written in terms of the Bose fi
operatorĈ(x) as

H5E dx Ĉ†~x!h0Ĉ~x!1 1
2 E E dx dx8 Ĉ†~x!Ĉ†~x8!

3V~x2x8!Ĉ~x8!Ĉ~x!, ~1!

wherex is the set of spatial coordinates of a particle,h05
2(\2/2m)¹21Vext(x) is the single particle Hamiltonian in
the external confining potentialVext and where interactions
are assumed to occur via a two-body potentialV(x2x8).

In practice we consider the dilute gas and the low te
perature regimes, which correspond respectively tonuau3
!1 and uau!l for a three-dimensional problem (l
5h/(2pmkBT)1/2 is the thermal de Broglie wavelength!.
The true interaction potential can then be replaced by a s
pler model potential leading to the same scattering lenga
provided that the rangeb of this model potential is much
smaller than the healing lengthj5(8pna)21/2 and thanl
@5,6#. This ensures that the physical results do not depend
b. For simplicity we will use here repulsive Gaussian pote
tials corresponding to a positive scattering lengtha.0.

B. A stochastic Hartree ansatz with Fock states

From a mathematical point of view, the exact evolution
theN-body density matrixr can be obtained from the Hami
tonian~1! using the quantum-mechanical equation of mot

ṙ~ t !5
1

i\
@H,r~ t !#, ~2!

but any concrete calculation is impracticable even for m
erate particle numbersN, due to the multi-mode nature of th
problem leading to a huge dimensionality of theN-body Hil-
bert space.

For this reason approximate theories have been develo
in order to get useful results at least in some specific ran
of parameters; the simplest one is the so-called mean-
theory, in which theN-particle density matrix is approxi
mated by a Fock state Hartree ansatz

r~ t !5uN:f~ t !&^N:f~ t !u, ~3!

where uN:f& represents the state withN particles all in the
same mode~or single-particle state! f. The evolution of the
normalizedcondensate wave functionf is determined using
either a factorization approximation in the evolution equat
for the field operator@6# or a variational procedure@19#. The
result is the well-known mean-field equation
02360
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]t
5S 2

\2¹2

2m
1Vext~x! Df~x!1~N21!

3S E dx8 V~x2x8!uf~x8!u2Df~x!. ~4!

For an interaction potentialV(x2x8) modeled by a contac
termgd(x2x8) ~whereg54p\2a/m in a three-dimensiona
problem! it reduces to the Gross-Pitaevskii equation co
monly used to analyze the dynamics of pure Bose-Eins
condensed gases.

A first attempt to improve the accuracy of the Hartr
ansatz~3! is to allow for a stochastic contributiondB in the
evolution of the macroscopic wave functionf:

f~ t1dt!5f~ t !1F dt1dB. ~5!

In all this paper the noisedB is treated in the standard It
formalism @20# so that it has a zero meandB̄50 anddB2

}dt; a deterministic contribution is given by the ‘‘force’
term Fdt. In this framework, theN-body density matrix
would result from the stochastic mean over noise or, in ot
terms, from a mean over the time dependent probability d
tribution Pt(f) in the functional space of the wave function
f:

r~ t !5
?

^uN:f~ t !&^N:f~ t !u&stoch5E Df Pt~f!uN:f&^N:fu.

~6!

An immediate advantage of this prescription over the p
state ansatz Eq.~3! is that it could deal with finite tempera
ture problems@21#. However as shown in Sec. II E, th
simple generalization Eq.~5! of the Gross-Pitaevskii equa
tion cannot lead to an exact solution of theN-body problem
@22#. Therefore we have to enlarge the family of dyadi
over which we expand the density operator; more precis
we use Hartree dyadics in which the wave functions in
bra and in the ket are different:

s~ t !5uN:f1~ t !&^N:f2~ t !u. ~7!

The two wave functionsf1(x) and f2(x) are assumed to
evolve according to Ito stochastic differential equations:

fa~ t1dt!5fa~ t !1Fa dt1dBa ~a51,2!. ~8!

The expansion Eq.~6! is then replaced by

r~ t !5^uN:f1~ t !&^N:f2~ t !u&stoch

5E E Df1 Df2 Pt~f1 ,f2!uN:f1&^N:f2u. ~9!

We will see in the following that within this extended Ha
tree ansatz one can find a stochastic evolution forf1,2 repro-
ducing the exact time evolution.

Actual calculations~see Secs. IV and V! will be per-
formed with a Monte Carlo technique, in which the evolutio
of the probability distributionP is simulated by a large bu
finite number N of independent realizationsf1,2

( i ) (t), i
6-2
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N-BOSON TIME-DEPENDENT PROBLEM: . . . PHYSICAL REVIEW A 63 023606
51, . . . ,N. At any time the~approximate! density matrixr
is given by the mean over such an ensemble of wave fu
tions:

r~ t !.
1

N (
i 51

N
uN:f1

( i )~ t !&^N:f2
( i )~ t !u. ~10!

The expectation value of any operatorÔ is thus expressed b

^Ô&.
1

N (
i 51

N
^N:f2

( i )~ t !uÔuN:f1
( i )~ t !&. ~11!

For an Hermitian operator one can equivalently consi
only the real part of this expression since the imaginary p
is vanishingly small in the largeN limit.

Consider as an example the one-particle density matri
the gas, usually defined as

r (1)~x,x8!5^Ĉ†~x8!Ĉ~x!&. ~12!

Inserting in this expression our form of the complete dens
matrix ~10!, we obtain the simple result

r (1)~x,x8!5N^f1~x!f2* ~x8!^f2uf1&
N21&stoch, ~13!

from which it is easy to obtain the spatial densityn(x)
5r (1)(x,x) and the correlation function g(1)(x,x8)
5r (1)(x,x8)/„n(x)n(x8)…1/2. Also, the condensate fractio
can be obtained from the largest eigenvalue ofr (1)(x,x8).

1. Remarks

~1! The desired stochastic evolution, which has to sati
Tr@r#51, cannot preserve the normalization off1,2 to unity;
we can write indeed

Tr@r~ t !#5^^f2~ t !uf1~ t !&N&stoch51, ~14!

which for uf1&Þuf2& imposesuuf1uu uuf2uu.1 for some re-
alizations.

~2! The expansion Eq.~9! is always possible with a posi
tive distribution functionPt(f1 ,f2). We prove this state-
ment by showing that a general density operatorr can be
written as in Eq.~10! in the limit N→1`. Using the identity

IdN5 lim
M→1`

1

M (
j 51

M
uN:c ( j )&^N:c ( j )u, ~15!

where the functionsc ( j ) have a uniform distribution over th
unit sphere in the functional space, we obtain

r5 lim
M→1`

1

M 2 (
j 1 , j 251

M
uN:c ( j 1)&

3^N:c ( j 2)u^N:c ( j 1)uruN:c ( j 2)&. ~16!

This expression is not yet in the form of Eq.~10! since the
matrix elements^N:c ( j 1)uruN:c ( j 2)& are complex. Fortu-
nately we can always write this matrix element as the 2Nth
power of the complex numberj ( j 1 , j 2) . It is then sufficient to
02360
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set f1
( j 1 , j 2)

5c ( j 1)j ( j 1 , j 2) and f2
( j 1 , j 2)

5c ( j 2)j ( j 1 , j 2)* , to put

N5M 2 and to reindex (j 1 , j 2) as a single indexi, in order
to recover the expansion Eq.~10!. Note that this expansion is
not unique and does not have the pretension to be the m
efficient one. For instance if the system is initially in a Ha
tree stateuN:f0&, such a procedure is clearly not need
since one has just to setf1

( i )(t50)5f2
( i )(t50)5f0. This

will be the case of the numerical examples in Secs. IV and

C. Stochastic evolution of a Fock state Hartree dyadic

In this subsection we calculate the stochastic time evo
tion during an infinitesimal time intervaldt of the dyadic
s(t) given in Eq.~7!. This will be used later in a compariso
with the exact master equation.

After dt, the dyadics has evolved into

s~ t1dt!5uN:f11df1&^N:f21df2u, ~17!

wheredf1 and df2, defined according to Eq.~8!, contain
both the deterministic contributionFadt and the stochastic
onedBa . Splitting each contribution into a longitudinal an
an orthogonal component with respect tofa and isolating a
Gross-Pitaevskii term in the deterministic contribution, w
can write

dBa~x!5fa~x! dga1dBa
'~x!, ~18!

Fa~x!5Fa
GP~x!1lafa~x!1Fa

'~x!. ~19!

Our choice of the Gross-Pitaevskii term is the following on

Fa
GP~x!5

1

i\ Fh01
~N21!

ifai2 E dx8 V~x2x8!ufa~x8!u2G
3fa~x!2

1

i\ F ~N21!

2

^fafauVufafa&

ifai4 Gfa~x!.

~20!

The first term gives the standard Gross-Pitaevskii evoluti
including the kinetic term, the potential energy of the tr
and the mean-field interaction energy; the second te
which arises naturally because we are considering F
states~rather than coherent states as commonly done! takes
into account the difference between the total mean-field
ergy per particle of the condensate and its chemical poten
m @23#.

We split the field operator in its longitudinal and tran
verse components, keeping in mind that the wave functi
fa are not of unit norm:

Ĉ†~x!5
fa* ~x!

ifai2
âfa

† 1dĈa
†~x!, ~21!

with

âfa

† 5E dx fa~x!Ĉ†~x!. ~22!
6-3
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The relevant bosonic commutation relations then read

@ âfa
,âfa

† #5ifai2 and @ âfa
,dĈa

†~x!#50. ~23!

We will also need the projectorQa onto the subspace or
thogonal tofa :

Q a
(x)@c~x,x8, . . . !#5c~x,x8, . . . !2

fa~x!

uufauu2
E dy fa* ~y!

3c~y,x8, . . . !. ~24!

This projector arises in the calculation as we have introdu
02360
d

a component of the field operator orthogonal tofa . Using
*dx fa(x) dĈa

†(x)50 we shall transform integrals involv

ing dĈa
†(x) as follows:

E dx c~x,x8, . . . !dĈa
†~x!

5E dxQ a
(x)@c~x,x8, . . . !#dĈa

†~x!. ~25!

Inserting these definitions in Eq.~17! the expression fors
at time t1dt can be written as
fter

n, we
rce

y Eq.
trix

te
s~ t1dt!2s~ t !5S1
(0)uN:f1&^N:f2u1e.c.1E dx S1

(1)~x!dĈ1
†~x!uN21:f1&^N:f2u1e.c.

1E E dx dx8 S1
(2)~x,x8!dĈ1

†~x!dĈ1
†~x8!uN22:f1&^N:f2u1e.c.

1E E dx dx8 S(1,1)~x,x8!dĈ1
†~x!uN21:f1&^N21:f2udĈ2~x8!, ~26!

where the notation e.c. stands for theexchangedandconjugateof a quantity, that is the complex conjugate of the quantity a
having exchanged the indices 1 and 2. The explicit expressions for theSa

( i ) are

S1
(0)5N

^f1uF1
GP&

if1i2
dt1Nl1 dt1Ndg11

N~N21!

2
dg1

21
N2

2
dg1 dg2* , ~27!

S1
(1)~x!5AN$Q 1

(x)@F1
GP~x!#dt1F1

'~x!dt1dB1
'~x!1~N21!dg1 dB1

'~x!1N dB1
'~x!dg2* %, ~28!

S1
(2)~x,x8!5

AN~N21!

2
dB1

'~x!dB1
'~x8!, ~29!

S(1,1)~x,x8!5NdB1
'~x!dB2

'* ~x8!. ~30!

Analogous expressions forS2
(0) , S2

(1) , S2
(2) are obtained by exchanging the subscripts 1 and 2. In the next subsectio

evaluate the exact evolution of the same dyadic during a time intervaldt, so that we can determine the constraints on the fo
and noise terms entering into these equations.

D. Exact evolution of a Fock state Hartree dyadic

To make the stochastic scheme described in the previous sections equivalent to the exact dynamics as it is given b~1!,
the final result of the previous subsection, Eqs.~26!–~30!, has to be compared with the exact evolution of the density ma
s(t). Consider a dyadics5uN:f1&^N:f2u at timet; according to the equation of motion~2!, and using the fact that the sta
uN:fa& is a vacuum state for the operatordĈa(x), we find that the dyadic has evolved after an infinitesimal time stepdt into

s~ t1dt!5s~ t !1
dt

i\
~Hs~ t !2s~ t !H!5s~ t !1E1

(0)uN:f1&^N:f2u1e.c.1E dx E1
(1)~x!dĈ1

†~x!uN21:f1&^N:f2u1e.c.

1E E dx dx8 E1
(2)~x,x8!dĈ1

†~x!dĈ1
†~x8!uN22:f1&^N:f2u1e.c., ~31!

where theEa
( i ) are given by

E1
(0)5

N dt

i\ F ^f1uh0uf1&

if1i2
1

~N21!

2

^f1f1uVuf1f1&

if1i4 G , ~32!
6-4
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E1
(1)~x!5

dtAN

i\
Q 1

(x)F S h01
~N21!

if1i2 E dx8 V~x2x8!uf1~x8!u2D f1~x!G , ~33!

E1
(2)~x,x8!5

dtAN~N21!

2i\
Q 1

(x)Q 1
(x8)@V~x2x8!f1~x!f1~x8!#. ~34!
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Analogous expressions forE2
(0) , E2

(1) , E2
(2) are obtained by

exchanging the subscripts 1 and 2.

E. Validity conditions for the stochastic Fock state Hartree
ansatz

The similarity of the structures of Eqs.~26! and~31! sug-
gests the possibility of a stochastic scheme equivalent to
exact evolution: to achieve this, it is necessary to find
specific forms of deterministic~19! and stochastic~18! terms
for which the mean values of theSa

( i ) equal theEa
( i ) :

S1
(0)1S2

(0)* 5E1
(0)1E2

(0)* , ~35!

Sa
(1)~x!5Ea

(1)~x!, ~36!

Sa
(2)~x,x8!5Ea

(2)~x,x8!, ~37!

S(1,1)~x,x8!50. ~38!

From the last equation~38!, it follows immediately why
independent bras and kets are needed in the ansatz~7!: in the
casef15f25f such a condition would in fact lead to
vanishing orthogonal noise and finally to the impossibility
satisfying Eq.~37!.

In terms of the different components, these conditions
be rewritten as

~l11l2* !dt1
~N21!

2
@dg1

21dg2
2* #1Ndg1dg2* 50,

~39!

F1
'~x!dt1~N21!dB1

'~x! dg11NdB1
'~x! dg2* 50,

~40!

F2
'~x!dt1~N21!dB2

'~x! dg21NdB2
'~x! dg1* 50,

~41!

dBa
'~x!dBa

'~x8!5
dt

i\
Q a

x Q a
x8@V~x2x8!fa~x!fa~x8!#,

~42!

dB1
'~x!dB2

'* ~x8!50. ~43!

As we shall discuss in detail in Sec. III, several differe
stochastic schemes can be found satisfying Eqs.~39!–~43!;
each of them gives an evolution identical in average to
exact one, but the statistical properties can be very differ
02360
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F. A stochastic Hartree ansatz with coherent states

Up to now we have worked out the case of a Fock st
ansatzuN:f1&^N:f2u. Actually coherent states rather tha
Fock states are generally used, both in quantum optics an
condensed matter physics. We now show that our stocha
procedure also applies with a coherent state ansatz of
form

s~ t !5P~ t !ucoh:f1&^coh:f2u, ~44!

with

ucoh:fa&5expS N̄1/2E dx fa~x!Ĉ†~x! D uvac&, ~45!

whereN̄ is the mean number of particles. We have includ
here a prefactorP(t) which was absent in the case of th
Fock state ansatz~7!; in the Fock state case indeed such
prefactor could be reincluded into the definition off1 and
f2. The wave functionsfa(x) and the prefactor factorP
evolve according to Ito stochastic differential equations

dfa5Fadt1dBa ,

dP5 f dt1db. ~46!

Splitting the field operator as

Ĉ~x!5N̄1/2fa~x!1dĈa~x! ~47!

and using

dĈa~x!ucoh:fa&50, ~48!

we find that the equivalence of the stochastic scheme and
exact evolution translates into the following set of con
tions:

f 50, ~49!

F1~x!dt1
1

P
db dB1~x!5

dt

i\
h0f1~x!, ~50!

F2~x!dt1
1

P*
db* dB2~x!5

dt

i\
h0f2~x!, ~51!

dBa~x!dBa~x8!5
dt

i\
V~x2x8!fa~x!fa~x8!, ~52!

dB1~x!dB2* ~x8!50. ~53!
6-5
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As we shall see in Sec. III, such conditions are satisfied
several stochastic schemes. Very remarkably, the stoch
evolution deduced from the positiveP representation@24#
arises naturally as one of them.

Within this coherent state ansatz the one-particle den
matrix is evaluated using

r (1)~x,x8!5N̄^f1~x!f2* ~x8!P~ t ! exp~N̄^f2uf1&!&stoch.
~54!

In a practical implementation of the simulation it turns out
be numerically more efficient to representP(t) as the expo-
nential of some quantity

P~ t !5eN̄S(t) ~55!

and to evolveS(t) according to the stochastic equation

dS5
db

N̄P
2

]/db

]̄NP
~56!

III. PARTICULAR IMPLEMENTATIONS OF THE
STOCHASTIC APPROACH

In the previous section we have derived the conditio
that a stochastic scheme has to satisfy in order to recove
exact evolution given by the Hamiltonian~1!; in the case of
the Fock state ansatz~7!, we get the system~39!–~43!, while
in the case of the coherent state ansatz~44! we get the con-
ditions ~49!–~53!. As the number of these equations is ac
ally smaller than the number of unknown functions there
by no mean uniqueness of the solutions, that is of the si
lation schemes. We need a strategy to identify interes
solutions.

We therefore start this section by considering various
dicators of the statistical error of the simulation~Sec. III A!
which can be used as guidelines in the search for simula
schemes. These indicators are defined as variances o
evant quantities which are conserved in the exact evolu
but which may fluctuate in the simulation. We show th
these indicators are nondecreasing functions of time;
tempts to minimize the time derivative of a specific indica
will lead to particular implementations of the general s
chastic method, such as thesimplescheme~Sec. III B! and
the constant tracescheme~Sec. III C!.

A. Growth of the statistical errors

The first indicator that we consider measures the squa
deviation of the stochastic operators(t) from the exact den-
sity operatorr(t):

D~ t !5^Tr@„s†~ t !2r~ t !…„s~ t !2r~ t !…#&stoch

5^Tr@s†~ t !s~ t !#&stoch2Tr@r~ t !2#. ~57!

We now show thatD(t) is a nondecreasing function o
time. When the stochastic scheme satisfies the validity c
ditions derived in the previous section, we can write the s
chastic equation fors as
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ds5
dt

i\
@H,s#1dss , ~58!

wheredss is a zero-mean noise term linear indBa ~anddb
for the coherent state simulation!. In the case of simulation
with Fock states it is given by

dss5N1/2H E dx dB1(x)Ĉ†(x)uN21:f1&^N:f2u

1E dx dB2* (x)uN:f1&^N21:f2uĈ~x!J . ~59!

In the case of simulation with coherent states it is given

dss5dbucoh:f1&^coh:f2u1N̄1/2P H E dx dB1(x)

3Ĉ†(x)ucoh:f1&^coh:f2u1E dx dB2* (x)

3ucoh:f1&^coh:f2uĈ(x)J . ~60!

We calculate the variation ofD duringdt, replacings by
s1ds in Eq. ~57! and keeping terms up to orderdt. Using
the invariance of the trace in a cyclic permutation and av
aging over all possible realizations, we finally obtain

dD5^Tr@dss
†dss#&stoch, ~61!

which is a positive quantity. Minimization of this quantity i
the subject of Sec. III B. PhysicallydD>0 means that the
impurity of the stochastic density operators always in-
creases in average, while the exact density operator h
constant purity Tr@r2#.

The second kind of indicator that we consider measu
the statistical error on constants of motion of the exact e
lution. Consider a time independent operatorX commuting
with the Hamiltonian. The stochastic evolution leads to
statistical error on the expectation value ofX with a variance
given by the ensemble average

DX~ t !5^uTr@Xs~ t !#2Tr@Xr~ t !#u2&stoch

5^uTr@Xs~ t !#u2&stoch2uTr@Xr~ t !#u2. ~62!

From Eq.~58! we obtain the variation after a time stepdt of
the expectation value ofX along a stochastic trajectory:

d~Tr@Xs#!5
dt

i\
Tr~X@H,s#!1Tr@Xdss#. ~63!

Using the invariance of the trace under cyclic permutat
and the commutation relation@H,X#50 we find that the first
term in the right-hand side of Eq.~63! vanishes so that
6-6
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dDX5^Tr@Xdss#Tr@X†dss
†#&stoch, ~64!

a quantity which is always non-negative.
Using expression~64! one can ‘‘design’’ simulations pre

serving exactly the conserved quantity, the constraint to m
being Tr@Xdss#50: for instance in the Fock state simul
tion, one first chooses the transverse noisesdBa

' satisfying
Eqs.~42! and ~43!; then one simply has to take for the lon
gitudinal noise off1

dg152
1

AN
~^N:f2uXuN:f1&!21E dx dB1

'~x!

3^N:f2uXdĈ1
†~x!uN21:f1& ~65!

and a similar expression fordg2; finally the force termsFa
are adjusted in order to satisfy Eqs.~39!–~41!. As natural
examples of conserved quantities one can chooseX51 or
X5H; the former case is discussed in detail in Sec. III C

B. The simpleschemes

These schemes are characterized by the minimizatio
the incremental variation of the statistical spread of
N-particle density matrixs(t), a spread that we have alread
quantified in Eq.~57! by D(t). To be more specific we as
sume that we have evolved a dyadic up to timet, and we
look for the noise terms that minimize the increase
Tr@s†s# betweent and t1dt.

1. Simulation with Fock states

In the case of the Fock state ansatz, we calculate exp
itly the variation of Tr@s†s# from Eq. ~59! and we get

d Tr@s†s#

N Tr@s†s#
5N~dg11dg2* !~dg1* 1dg2!1 (

a51,2
uufauu22

3E dx dBa
'~x!dBa

'* ~x!1@dg11dg2* 1c.c.#.

~66!

We now look for the noise termsdga anddBa
' minimizing

this quantity subject to the constraints Eqs.~39!–~43!.
We first note that we can choosedg15dg250 without

affecting the transverse noises, as shown by Eqs.~39!–~43!:
the correlation function of the transverse noises do not
volve thedga , and we can accommodate for any choice
dga by defining appropriately the force termsFa

' ,la . In the
particular case defining our simple scheme we take all th
force terms equal to zero so that the force termsFa coincide
with the mean field forces defined in Eq.~20!:

Fa~x![Fa
GP~x!. ~67!

Note that the choice of vanishingdg ’s immediately leads to
a vanishing noise term in Eq.~66!.
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Secondly the terms involving the transverse noise in
~66! are bounded from below: As the modulus of a mean
less than or equal to the mean of the modulus, we have

udBa
'~x!dBa

'~x!u<dBa
'~x!dBa

'* ~x!, ~68!

with the left-hand side of this inequality fully determined b
condition Eq.~42!.

For the remaining part of the present section~Sec. III B!
we assume that the interaction potentialV(x) has a positive
Fourier transform

Ṽ~k!>0 for all k, ~69!

where the Fourier transform ofV(x) is defined as

Ṽ~k!5E dx V~x!e2 ikx. ~70!

In Sec. V, we will choose a repulsive Gaussian interact
potential, which satisfies the condition Eq.~69!. Note that as
a consequence of Eq.~69! and of the inverse Fourier trans
form formula the model interaction potential is maximal a
positive inx50:

V~0!>uV~x!u for all x. ~71!

Under the assumption Eq.~69! we have found for the
transverse noise a choice which fulfills Eqs.~42! and ~43!
and which saturates the inequality Eq.~68!. We first dis-
cretize the Fourier space with an arbitrarily small wave v
tor stepdk and we set

dBa
'~x!5S dt

i\ D 1/2

Q a
(x)

3Ffa~x! (
k

Adk

~2p!d/2
„Ṽ~k!…1/2eikxeiua(k)G ,

~72!

whered is the dimension of position space. The phasesua
have the following statistical property:

eiua(k)eiua(k8)5dk,2k8 ~73!

andu1 ,u2 are uncorrelated. In practice for half of thek-space
~e.g.,kz.0) ua(k) is randomly chosen between 0 and 2p;
for the remainingk’s we takeua(2k)52ua(k). One can
then check that this choice for the transverse noise re
duces the correlation function Eqs.~42! and ~43!.

We show now that the implementation~72! saturates the
inequality Eq.~68!, so that it leads to the minimal possib
value for d Tr@s†s# within the validity constraints of the
stochastic approach. We calculate explicitly the right-ha
side of Eq.~68!:
6-7
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5dBa
'~x!dBa

'* ~x!

5
dt

\
„Q a

(x)* Q a
(x8)@V~x2x8!fa* ~x!fa~x8!#…x5x8

5
dt

\
ufa~x!u2FV~0!22E dy

ufa~y!u2

uufauu2
V~x2y!

1
^fa ,fauVufa ,fa&

uufauu4 G , ~74!

whereQa* projects onto the subspace orthogonal tofa* and

where we have used the positivity of the Fourier transformṼ
of the model interaction potential. The left-hand side of E
~68! is calculated using Eq.~42!:

dBa
'~x!25

dt

i\
fa

2~x!FV~0!22E dy
ufa~y!u2

uufauu2
V~x2y!

1
^fa ,fauVufa ,fa&

uufauu4
G . ~75!

As the expressions between square brackets in Eqs.~75! and
~74! are real positive we deduce the equality in Eq.~68!.

We can now calculate explicitly the variation of Tr@s†s#
by integrating Eq.~74! over x:

d Tr@s†s#

N Tr@s†s#
5

dt

\ F2V~0!2 (
a51,2

^fa ,fauVufa ,fa&

uufauu4
G .

~76!

This expression is particularly useful since it allows one
derive an upper bound on the increase of Tr@s†s#: as we
assume here a positive Fourier transform of the poten
V(x2x8), the matrix element̂ fa ,fauVufa ,fa& is also
positive so that the right-hand side of Eq.~76! is smaller than
2V(0)dt/\. After time integration we obtain

Tr@s†s#~ t !<Tr@s†s#~0!e2NV(0)t/\. ~77!

An important consequence of this inequality is that none
the solutions of the stochastic equations of this scheme
plode in finite time.

Using Eq.~57! and the fact that the trace of the squar
density operatorr2 is a constant under Hamiltonian evolu
tion we can deduce an upper bound on the squared statis
error D(t):

D~ t !1Tr@r2#<†D~0!1Tr@r2#‡e2NV(0)t/\. ~78!

Note that it involves the model dependent quantityV(0) and
not only the physical parameters of the problem such as
chemical potential or the scattering length. It may be the
fore important to adjust the model interaction potentialV(x
2x8) in order to minimize the growth of the statistical err
for given physical parameters.

To summarize the proposed simple scheme has sev
noticeable properties. The deterministic force acting on
02360
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fa’s is simply the mean field contribution, so that the who
correction to the mean field evolution is provided by t
transverse noisesdBa

' . Also the evolutions of the two state
fa are totally independent from each other.

2. Simulation with coherent states

In the case of the coherent state ansatz, an explicit ca
lation of d Tr@s†s# from Eq. ~60! gives

d Tr@s†s#

Tr@s†s#
5Udb

P
1N̄E dx dB1~x!f1* ~x!1dB2* ~x!f2~x!U2

1N̄ (
a51,2

E dx dBa~x!dBa* ~x!

1Fdb

P
1N̄E dx dB1~x!f1* ~x!

1dB2* ~x!f2~x!1c.cG , ~79!

whereudzu2 stands fordz dz* in the Ito sense.
We now proceed to the minimization of the increment

Tr@s†s# within the coherent state ansatz along the sa
lines as the previous subsection. First we optimize the no
db on the normalization factorP:

db52N̄PS E dx dB1~x!f1* ~x!1dB2* ~x!f2~x! D .

~80!

This choice leads to a vanishing noise term in Eq.~79!. We
insert this expression fordb in the validity conditions Eq.
~50! and Eq.~51! and we obtain

Fa~x!5
1

i\ Fh01N̄E dx8 V~x2x8!ufa~x8!u2Gfa~x!.

~81!

Finally if the model interaction potential has a positiv
Fourier transform@cf. Eq. ~69!# minimization of the contri-
bution of the noise termsdBa with the constraint Eq.~52! is
achieved with the choice

dBa~x!5S dt

i\ D 1/2

fa~x! (
k

Adk

~2p!d/2
„Ṽ~k!…1/2eikxeiua(k),

~82!

where the phasesua(k) are randomly generated as in E
~73!.

The first equation~81! fixes the deterministic evolution to
the usual mean-field equation~4!. We note here that the
mean-field term in Eq.~81! does not contain the normaliza
tion of the spatial densityN̄ufa(x8)u2 by uufauu2, a feature
present in the Fock state simulation@see Eq.~20!#. This is a
disadvantage of the coherent state simulation since this
malization factor appearing in the Fock state simulation ha
regularizing effect: the normsuufauu may indeed deviate sig
nificantly from unity in the stochastic evolution. The seco
6-8
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equation~82! determines the stochastic noise on the wa
functions in a way very similar to the Fock state case~72!. In
particular the evolutions off1 andf2 are still uncorrelated.
The only difference is the disappearance of the projectorQa
in the expression of the noise, which leads to an increa
noise with respect to the simulation with Fock states.

As in the Fock state case, the deterministic evolution
the present scheme has a Gross-Pitaevski form and thus
serves the normsuuf1,2uu. This condition, together with the
upper boundz1,2<V(0)dtuuf1,2uu2/\ on the eigenvaluesz1,2

of the noise covariance operatordBa(x)dBa* (x8), can be
used to prove that the stochastic equations possess a fi
non-explodingsolution valid for all times~see@25# in Sec.
IV E!.

As in the previous subsection we now estimate
squared errorD. We calculate the variation of Tr@s†s# for
the choice of noise Eq.~82!:

1

Tr@s†s#

d Tr@s†s#

dt
5

N̄V~0!

\ (
a51,2

uufauu2. ~83!

The average over all stochastic realizations of the no
squared of the wave functions can be calculated exactly

^uufauu2&stoch~ t !5etV(0)/\^uufauu2&stoch~0!. ~84!

This leads to a remarkable identity on the trace ofs†s:

^ ln Tr@s†s#&stoch~ t !5^ ln Tr@s†s#&stoch~0!1N̄~etV(0)/\21!

3K (
a51,2

uufauu2L
stoch

~0!. ~85!

Using finally the concavity of the logarithmic function, lea
ing to the logarithm of a mean being larger than the mean
the logarithm we obtain a lower bound on the squared e
D on theN-body density matrix:

D~ t !1Tr@r2#>Aexp@2BN̄~etV(0)/\21!#, ~86!

where we have introduced the constant quantities

A5exp@^ ln Tr@s†s#&stoch~0!#, ~87!

B5
1

2 K (
a51,2

uufauu2L
stoch

~0!. ~88!

We recall that a vanishingV(0) would correspond here to a
identically vanishing interaction potentialV(x), according to
Eq. ~71!.

C. The constant traceschemes

We have given the expression of the one-body den
matrix r (1) in terms offa(x) for the simulation with Fock
states Eq.~13!. This expressions shows thatr (1) is very sen-
sitive in the largeN limit to fluctuations of^f2uf1&. The
same remark applies to two-body observables. In orde
improve the statistical properties of the simulation one c
consider the possibility of a simulation scheme w
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^f2uf1&51 at any time. This actually corresponds to a co
served trace of each single dyadics(t). This possibility is
analyzed in Sec. III C 1; it is extended to the coherent st
simulation in Sec. III C 2, leading to the well-known positiv
P-representation formalism.

1. Simulation with Fock states

Within the Fock state ansatz, the conservation of the tr
of the dyadic Tr@s# can be achieved by~i! choosing the
transverse noisesdBa

' according to the formula Eq.~72! and
~ii ! using the expression Eq.~65! for the longitudinal noise
with X51. Point~ii ! gives

dg152^f2uf1&
21E dx f2* ~x!dB1

'~x!. ~89!

The force termsla andFa are fixed by the conditions~39!–
~41!:

l1 dt52
N21

2
^f2uf1&

22E dx dx8 f2* ~x!

3f2* ~x8!dB1
'~x!dB1

'~x8! ~90!

and

F1
'~x!dt5~N21!^f2uf1&

21

3E dx8f2* ~x8!dB1
'~x8!dB1

'~x!. ~91!

The expressions fordg2 ,l2 andF2
'(x) are obtained by ex-

changing the indices 1 and 2 in these results.

2. Simulation with coherent states

In the case of the coherent state ansatz, the value ofdss ,
which is the zero-mean noise term entering the variation
the dyadics during a time stepdt, is given in Eq.~60!. The
requirement of a constant trace Tr@s#5PeN̄^f2uf1& leads to
the following condition on the noise terms:

db1N̄PE dx„f2* ~x!dB1~x!1dB2* ~x!f1~x!…50.

~92!

We choose the noise termsdBa as in Eq.~82!. The remain-
ing parametersFa are now unambiguously determined b
Eqs.~50! and ~51!:

F1~x!5
1

i\ Fh01N̄E dx8 f2* ~x8!V~x2x8!f1~x8!Gf1~x!,

~93!

F2~x!5
1

i\ Fh01N̄E dx8 f1* ~x8!V~x2x8!f2~x8!Gf2~x!.

~94!

This scheme exactly recovers the stochastic evolution in
positiveP representation, which was originally obtained wi
a different mathematical procedure@24#.
6-9
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IV. STOCHASTIC VERSUS EXACT APPROACH
FOR A TWO-MODE MODEL

In order to test the convergence of the stochastic sche
developed in the preceding section we now apply t
method to a simple two-mode model for which the ex
solution of theN-body Schro¨dinger equation can also be ob
tained by a direct numerical integration. This allows~i! to
check that the stochastic methods when averaged over m
realizations give the correct result indeed, and~ii ! to deter-
mine the statistical error for each of the four implementatio
of the stochastic approach~‘‘constant trace’’ vs ‘‘simple,’’
Fock vs coherent states!.

The toy-model that we consider is motivated by the d
namics of two self-interacting condensates cohere
coupled one to the other, as it is the case for two condens
separated by a barrier@26# ~Josephson-type coupling! or for
condensates in two different internal states coupled by
electromagnetic field@27# ~Rabi-type coupling!. In this
model we restrict the expansion of the atomic field opera
to two orthogonal modes,

ĉ~x!5â ua~x!1b̂ ub~x!. ~95!

The Hamiltonian Eq.~1! takes the simple form

H5
\V

2
~ â†b̂1b̂†â!1\k~ â†2â21b̂†2b̂2!, ~96!

whereâ,b̂ annihilate a particle in modesua andub , k char-
acterizes the strength of the atomic interactions inside e
condensate andV is the Rabi coupling amplitude betwee
the two condensates. Here we have restricted for simpli
to the case where~i! the condensates have identical intera
tion properties,~ii ! the interactions between atoms in diffe
ent wells are negligible, and~iii ! the Rabi coupling is reso
nant. The most general two-mode case could be treated a
the same lines.

The direct numerical solution of the Schro¨dinger equation
is performed in a basis of Fock statesuna ,nb& with na,b
particles in modesua ,ub . The numerical integration is sim
plified by the fact thatna1nb is a quantity conserved by th
Hamiltonian evolution. We start with a state in which a
atoms are in modeub , either in a Fock stateuna50,nb
5N& ~for the Fock state simulations! or in a coherent state
}exp(N1/2b̂†)u0,0& ~for the coherent state simulations!. We
watch the time evolution of the mean fraction of particles
modeua , pa[^â†â&/N.

Mean-field theory~the Gross-Pitaevskii equation!, valid
in the limit N@1 with a fixedkN/V @28#, predicts periodic
oscillations of^â†â&/N; the peak-to-peak amplitude of th
oscillations is equal to unity ifkN/V,1, and is smaller than
one otherwise@29#. In the exact solution the oscillations a
no longer periodic due to emergence of incommensura
frequencies in the spectrum ofH.

In the simulation method we evolve sets of two comp
numbers representing the amplitudes of the functionsf1(x)
and f2(x) on the modesua,b(x) ~plus theP coefficient in
the coherent state case!. The results are presented in Fig.
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for N517 particles andk/V50.1, together with the result o
the direct integration of the Schro¨dinger equation.

The first row in the figure concerns the constant tra
simulations. Figure 1~a! shows results of the simulatio
based on the positiveP representation, that is the consta
trace simulation with coherent states. As well known@13,18#
this scheme leads to divergences of the normuuf1uu uuf2uu for
some realizations of the simulation. We have cut the plo
Fig. 1 at the first divergence, a procedure shown to be ju
fied for the positiveP representation in@13,18#. The same
type of divergences occurs in the constant trace simula
with Fock states@Fig. 1~b!#, and we heuristically cut the
divergencies with the same procedure. Note however tha
characteristic time for the first divergence to occur is som
what longer. We have checked for these constant trace s
lations that the probability distribution ofuuf1uu uuf2uu broad-
ens with time, eventually getting a power law tail. Th
corresponding exponenta decreases in time below the crit
cal valueacrit53 for which the variance ofuuf1uu uuf2uu be-
comes infinite. This scenario is identical to the one fou
with the positiveP representation@13,18#.

The simple simulation schemes plotted on the second
of Fig. 1 provide results which are at all time in agreeme
with the direct integration within the error bars. Contrarily
the constant trace schemes we do not observe finite
divergences in the simple schemes. For a given evolu
time we have checked that the error bars scale as 1AN
whereN is the number of stochastic realizations. For a giv
N we found that the error bars increase quasiexponenti
with time.

FIG. 1. In the two-mode model mean fraction of atoms in t
modeua as function of time, obtained with~a! the positiveP rep-
resentation,~b! the Fock state simulation with constant trace,~c! the
simple simulation with coherent states, and~d! the simple simula-
tion with Fock states. The solid line represents the average o
N523105 simulations, with corresponding error bars. The dash
line is the direct numerical solution of the Schro¨dinger equation.
The number of atoms isN517, initially all in modeub . The inter-
action constant isk50.1V. The time step used in the numeric
stochastic calculation isVdt51023. The calculations in~a! and~b!
have been stopped after the divergence of one realization.
6-10
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The noise in the simple simulation schemes is inve
gated in more detail in Fig. 2 which shows the error estim
tor ^Tr@s†s#&stoch as function of time, for coherent states
Fig. 2~a! and for Fock states in Fig. 2~b!. The coherent state
result confirms the prediction Eq.~86!. The Fock state resul
is found to be notably smaller than the upper bound Eq.~78!.
This is due to the fact that the terms proportional
^fa ,fauVufa ,fa& in Eq. ~76! are not negligible as com
pared to the termV(0). Wehave checked these conclusio
for various values ofN andk/V.

For a large number of particles it is known@30# that the
oscillations of^â†â& experience a collapse followed by re
vivals. These revivals are purely quantum phenomena for
field dynamics and they cannot be obtained in classical fi
approximation such as the Gross-Pitaevskii equation. We
pect to see a precursor of this phenomenon even for the s
number of particlesN517. As the simple scheme simulatio
with Fock states is the most efficient of the four schemes
the investigation of the long time limit, we have pushed it
the time at which a ‘‘revival’’ can be seen, as shown in F
3. This figure is obtained withN5108 simulations.

V. STOCHASTIC APPROACH FOR A ONE-DIMENSIONAL
BOSE GAS

The interacting Bose gas is in general a multimode pr
lem, and the simulation schemes may have in this cas
behavior different from the one in a few-mode model such
in Sec. IV. We have therefore investigated a model fo
one-dimensional Bose gas. The atoms are confined in a
monic trap with an oscillation frequencyv. They experience
binary interactions with a Gaussian interaction potential
strengthg and rangeb:

V~x2x8!5
g

~2p!1/2b
exp@2~x2x8!2/~2b2!#. ~97!

At time t50 all the atoms are in the same normalized statf
solution of the time independent Gross-Pitaevskii equatio

FIG. 2. Statistical error on theN-body density matrix for the
two-mode model:~a! ‘‘simple’’ scheme with coherent states and~b!
‘‘simple’’ scheme with Fock states. The solid line is the numeric
result of the simulations. The dashed lines in~a! and~b! correspond
respectively to the lower and upper bounds, Eq.~86! and Eq.~78!.
The parameters are the same as in Fig. 1.
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mf~x!52
\2

2m

d2f

dx2
1

1

2
mv2x2f~x!1~N21!

3E dx8 V~x2x8!uf~x8!u2f~x!. ~98!

At time t501 the trap frequency is suddenly increased by
factor two, which induces a breathing of the cloud@31–33#.

This expected breathing is well reproduced by the num
cal simulations. The mean squared spatial widthR2 of the
cloud as function of time is obtained by takingÔ
5(k51

N x̂k
2/N in Eq. ~11! wherex̂k is the position operator o

the kth particle. The quantityR2 is shown in Fig. 4 for the
simulation schemes with Fock states. One recovers the
feature of the constant trace simulation, that is a diverge
of the normuuf1uu uuf2uu in finite time for some realizations
Before the occurrence of the first divergence the stocha
variance of the size squared of the cloud, defined as

var~R2!stoch5
1

N (
i 51

N
@Ri

2~ t !2R2~ t !#2, with

Ri
2~ t !5Re@^N:f2

( i )~ t !uÔuN:f1
( i )~ t !&#, ~99!

is notably smaller in the constant trace scheme than in
simple scheme, as shown in Fig. 5~a!. This contrast between
the two schemes for the statistical error on one-body obs
ables was absent in the two-mode model of Sec. IV.

l

FIG. 3. Fraction of atoms in modeua in the two-mode model,
for the parameters of Fig. 1. The dashed line is the direct nume
solution of the Schro¨dinger equation. The solid line with error bar
is the result of the ‘‘simple’’ scheme simulation with Fock stat
with N5108 realizations. To keep a reasonable computation ti
with such a large value ofN we have increased the time step in th
numerical stochastic integration by a factor 25 with respect to F
1. This explains the small systematic deviation of the simulat
result from the exact result visible for example at timeVt52.6.
The quantum phenomenon of collapse and revival of the oscilla
amplitude clearly apparent on the exact result is well reproduced
the simulation.
6-11
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We have also investigated the noise on theN-body den-
sity matrix characterized bŷTr@s†s#&stoch @see Fig. 5~b!#.
As expected this error indicator is smaller with the simp
scheme. For this simple scheme it varies quasi exponent
with time with an exponentg.4v, which is smaller by a
factor roughly 2 than the one of the upper bound Eq.~78!.
This difference is due to the fact that the rangeb of the
interaction potential is chosen here of the same order as
size R of the cloud so that the termŝfa ,fauVufa ,fa&
neglected in the derivation of the upper bound are actu
significant. We have checked for various rangesb much
smaller thanR that g then approaches the upper bou
2NV(0)/\.

FIG. 4. Mean squared spatial widthR2 of a harmonically con-
fined cloud ofN510 atoms as a function of time. The breathing
the cloud is induced by an abrupt change of the trap frequency f
v to 2v. The widthR is measured in units of the harmonic osc
lator lengthaho5„\/(mv)…1/2. The interaction potential is chose
such thatb50.5aho andg50.4\vaho leading to a chemical poten
tial m51.7\v in the Gross-Pitaevskii equation~98!. The calcula-
tion is performed on a spatial grid with 32 points ranging fro
26aho to 16aho ~with periodic boundary conditions!. d: Constant
trace simulation withN51000 realizations. Forvt.3.5 a diver-
gence has occured for one of the realizations and the calculation
been stopped.h: Simple scheme simulation withN540 000 real-
izations.

FIG. 5. For the one-dimensional Bose gas in the conditions
Fig. 4, ~a! stochastic variance of the size squared of the cloud
~b! noise on theN-body density matrix. Solid lines: simple schem
with Fock states. Dashed lines: constant trace scheme with F
states.
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VI. CONCLUSION AND PERSPECTIVES

In this paper we have investigated a general method
solve exactly theN-body problem in the bosonic case. Th
principle of the approach is to add to the usual mean-fi
Gross-Pitaevskii equation a fluctuating term. We have de
mined the general conditions ensuring that the average
all possible realizations of this stochastic equation rep
duces the exactN-body Schro¨dinger equation.

This idea already received a particular implementation
quantum optics, in the frame of the positiveP representation.
We recover here the scheme based on the positiveP repre-
sentation as a particular case of a simulation evolving coh
ent states of the bosonic field with the constraint that
trace of the density operator should remain exactly equa
unity for each single realization. This provides a simple de
vation of the stochastic evolution within this representat
alternative to the usual one@24# based on analyticity proper
ties.

Among the many possible implementations of the gene
stochastic approach we have also investigated sche
evolving Fock states~that is number states! rather than co-
herent states. This is well suited to situations where the t
number of particles is conserved. In particular we have id
tified a scheme preserving exactly the trace of the den
operator which is for number states the counterpart of
one based on the positiveP representation.

Schemes with constant trace are subject to divergenc
the norm of some realizations in finite time. This effect,
ready known in the context of the positiveP representation
@13,18#, makes these schemes difficult to use.

In order to overcome this divergence problem we ha
investigated schemes in which the condition on the trac
relaxed. We have chosen instead to minimize the statist
spread on theN-body density matrix, which gave rise to th
‘‘simple’’ schemes, either with coherent states or Fo
states. In this case theN-body density operator is obtained a
a stochastic average of dyadics such
ucoh:N̄1/2f1&^coh:N̄1/2f2u or uN:f1&^N:f2u, where the evo-
lutions of f1 andf2 are fully decoupled. The deterministi
parts are given by Gross-Pitaevskii equations, which p
serves the norm off1,2, contrarily to the case of constan
trace schemes. The decoupling between the evolutions of1
andf2 allows a reinterpretation of our representation of t
N-body density operator. If the initial density operator
given byr(t50)5uN:f0&^N:f0u it will be given at timet
by

r~ t !5uC~ t !&^C~ t !u, ~100!

with the N-particle state vector

uC~ t !&5 lim
N→`

1

N (
j 51

N
uN:f ( j )~ t !&. ~101!

In this expressionf ( j ) are stochastic realizations with th
initial condition f ( j )(t50)5f0.

The ‘‘simple’’ schemes have much better stability pro
erties than the constant trace schemes: differently from

m

as

f
d

ck
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case of constant trace schemes, the deterministic evolutio
the ‘‘simple’’ schemes has a Gross-Pitaevskii form and th
conserves the normsuuf1,2uu. Furthermore we have show
that the corresponding stochastic equations possess a fi
nonexplodingsolution for all times.

We have numerically applied the simulation schemes
two-mode model and to a one-dimensional Bose gas. In b
cases we found that the constant trace schemes lead to
diverging realizations, while the simple schemes lead t
statistical spread on theN-body density operator increasin
exponentially with time with an exponentg}NV(0)/\. The
simple schemes are therefore not well suited to determ
small deviations from the mean-field approximation in t
largeN limit but can be more efficiently applied to system
with a small number of particles, such as small atomic clo
tightly trapped at the nodes or antinodes of an optical latt

In the one-dimensional numerical example of this pa
we have presented results for a simple one-body observa
the size of the atomic cloud. We have actually extended
calculations to more elaborate observables such as the
order and the second order correlation functions of the fi
We have not presented the results here as the initial sta
the gas was taken to be a~not very physical! Hartree-Fock
state. We are presently working on the possibility to gene
a more realistic initial state such as a thermal equilibrium
the gas, by extending our stochastic approach to evolutio
imaginary time.
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This work has several possible perspectives of extens
One can first use as building block a more sophisticated
satz than the Hartree-Fock stateuN:f&, such as Bogoliubov
vacua~that is squeezed states of the atomic field! or a mul-
timode Hartree-Fock ansatz~that is an arbitrary coherent su
perposition of number states in several adjustable mode
the field!. One can also look forapproximaterather than
exact stochastic solutions to theN-body problem but that
would be better than mean-field approaches in some g
situations. We hope to address some of these perspectiv
the near future.
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