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Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
(Dated: July 27, 2018)

EXPERIMENTAL SETUP

We confine 87Rb atoms in the |F = 1,m = 0〉 ground
state into a 2D rectangular box potential of size Lx × Ly =

30(1) × 38(1) µm. The trapping potential is made by a com-
bination of far-detuned repulsive optical dipole traps [1, 2].
The confinement along the vertical z direction can be ap-
proximated by a harmonic potential of frequency ωz/(2π) =

4.59(4) kHz corresponding to a dimensionless interaction pa-
rameter g̃ = 0.16(1). The value of g̃ is slightly modified by
the effect of interactions. We estimate that g̃ varies by about
10% for the range of surface densities explored in this work.
We control the temperature T thanks to evaporative cooling
by varying the height of the potential barrier providing the in-
plane confinement. The surface density n2D of the cloud is
varied from 10 to 80 µm−2 by removing a controlled fraction
of the atoms from our densest configuration. This removal is
realized by a partial transfer of the atoms to the |F = 2,m = 0〉
state with a microwave resonant field and a subsequent blast-
ing of the transferred fraction with a resonant laser beam. We
determine the ratio T/Tc by a method inspired from Ref. [3]
and based on a measurement of the equation of state of the
system that we detail below.

PROTOCOL FOR CHARACTERIZING STANDING WAVES

We consider a cloud in a rectangular box of size Lx × Ly.
We create an excitation of density at frequency ω at one end
of the rectangle and we choose this excitation to be invari-
ant along the x-direction. We decompose this excitation on
density modes whose gradient vanishes on the edges of the
box and which are invariant along the x-direction. We de-
fine these spatial modes by S j(x, y) =

√
2/(LxLy) cos(k jy/2),

where k j = 2 jπ/Ly and j ∈ N∗.
In the linear regime, the response of the system is expected

to occur at the same frequency ω, and each mode S j will be
excited with an amplitude B j(ω) and a phase shift ϕ j(ω) with
respect to the excitation. Therefore, the density profile at time
t will be given by

n2D(ω, t, x, y) = n̄2D+∑
j

B j(ω)

√
2

LxLy
cos

(
k jy
2

)
cos[ωt + ϕ j(ω)], (1)

where n̄2D is the mean density. Our aim is to determine the
amplitudes B j(ω). However, measuring the full time evolution
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FIG. 1. Integrated spatial profile of the density modulation as a func-
tion of the modulation frequency. Each column shows q2 which is
the squared amplitude of the density modulation integrated along
the x direction, determined from four pictures at different times and
averaged over two runs. For this specific experiment, the length
of the cloud is Ly = 57(1) µm and the degree of degeneracy is
T/Tc = 0.41(7).

of n2D for all frequencies would correspond to a large amount
of data acquisition. Instead, even without any prior knowledge
of ϕ j(ω), the amplitudes can be extracted using the following
strategy: We measure the density profile at four different times
ti, i ∈ {1, 2, 3, 4}, and we choose these times so that we explore
one oscillation: ωti = ωt1 + (i − 1)π/2. We get four density
profiles ρi(ω, y), and we compute two quantities q1 and q2:

q1(ω, y) = ρ3(ω, y) − ρ1(ω, y) (2)

= −2
∑

j

B j(ω)

√
2

LxLy
cos

(
k jy
2

)
cos[ωt1 + ϕ j(ω)],

(3)

and

q2(ω, y) = ρ4(ω, y) − ρ2(ω, y) (4)

= 2
∑

j

B j(ω)

√
2

LxLy
cos

(
k jy
2

)
sin[ωt1 + ϕ j(ω)].

(5)

We separate the contribution of the different modes by pro-
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FIG. 2. Surface density in the dip as a function of the applied poten-
tial Vdip along with the fit with the equation of state. The two insets
are the average of absorption images for two example values of the
potential in the dip. The star shows the expected position of the BKT
phase transition. The value of the fit to Vdip = 0 gives the degree
of degeneracy of the cloud. For this cloud we get T/Tc = 0.21(11),
where the uncertainty is given by the 95% confidence interval from
the fitting procedure. Each data point is the average of three mea-
surements.

jecting q1(ω, y) and q2(ω, y) on the eigenmodes of the box:

c( j)
l (ω) =

√
2

LxLy

∫ Lx

0

∫ Ly

0
ql(ω, y) cos

(
k jy
2

)
dx dy (6)

= −2B j(ω) cos
[
ωt1 + (l − 1)π/2 + ϕ j(ω)

]
, (7)

for l = 1 or 2. The contribution of the j-th mode is then given
by

[B j(ω)]2 =
1
4

([
c( j)

1

]2
+

[
c( j)

2

]2
)
. (8)

We display in Fig. 4 of the main text a quantity proportional
to B2

j (ω) for the three first modes.
In addition we also compute the quantity

q2(ω, y) = q2
1(ω, y) + q2

2(ω, y), (9)

which is displayed in Fig. 1. If the different modes are well
separated, the excitation frequency ω is resonant with at max-
imum one spatial mode and the sum in Eq. (1) contains only
one term. Therefore, we have

q2(ω, y) ≈ 8B2
jω (ω)/Ly cos2(k jωy/2), (10)

where jω is the number of the mode that is excited at fre-
quency ω. In this case, q2(ω, y) has a simple interpretation:
It is proportional to the squared amplitude of the mode and it
reveals the spatial dependence of the mode with y.
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FIG. 3. Two additional examples of the determination of the degree
of degeneracy for different parameters (violet diamonds: T/Tc =

0.95(5), red squares: T/Tc = 1.86(19). Each data point is the av-
erage of three measurements. The stars correspond to the positions
of the BKT phase transition. In the inset we show that all points of
Fig. 2 and this figure, when properly rescaled in terms of phase-space
density and chemical potential, collapse on the EoS of the 2D Bose
gas (black solid line).

DETERMINATION OF THE DEGREE OF DEGENERACY

The state of a weakly-interacting two-dimensional Bose gas
at equilibrium and for a given g̃ can be characterized by a
single dimensionless parameter, for instance T/Tc or equiv-
alently its phase-space density D = n2Dλ

2
T , where λ2

T =

2π~2/(mkBT ). Taking advantage of this scale invariance, we
use here a method inspired from [3] to determine directly the
phase-space density of the cloud without independent mea-
surements of the atomic density and the temperature, and
hence without accumulating errors in these two calibrations.

The principle of the measurement is to use an additional
potential Vdip in a small region of the cloud (dip zone). Atoms
inside this zone are in thermal equilibrium with the rest of the
cloud but they experience an effective local chemical potential
µdip shifted from the overall chemical potential µ: µdip = µ −
Vdip. By measuring the surface density in the dip as a function
of Vdip and using the known equation of state (EoS) of the gas,
we determine the degree of degeneracy of the cloud.

In more detail, we shine on the cloud confined in the usual
box potential an additional disk-shaped repulsive laser beam,
as shown in the insets of Fig. 2. The disk-shaped region has
to be small enough so that the change of potential in this part
does not influence the rest of the gas: We use here a disk of ra-
dius 5 µm in a rectangle of 30 µm × 38 µm which corresponds
to approximately 7 % of the total area of the box.

We now write the equation of state of the gas with phase-
space densityD and in the dip zone with phase-space density
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Ddip,

D = f
(
µ

kBT

)
and Ddip = f

(
µdip

kBT

)
, (11)

where we have assumed equal temperatures for the two re-
gions and where µdip = µ − Vdip. The function f describes the
equation of state of the 2D Bose gas. Introducing the surface
densities n and ndip in the main region and in the dip of the
cloud we get

n =
1
λ2

T

f
(
µ

kBT

)
and ndip =

1
λ2

T

f
(
µ − Vdip

kBT

)
. (12)

A typical measurement of the surface density ndip as a func-
tion of the applied potential Vdip is shown in Fig. 2. For a large
value of the potential Vdip the density tends to zero in the dip
(see left inset). In the limit of no additional potential we re-
cover a uniform density distribution (see right inset). Note that
the range of measured ndip being large we use a partial imag-
ing method [4] to adjust the density of cloud probed with our
absorption imaging beam. It is indeed crucial that the mea-
sured optical depth scales linearly with the atomic density and
it is known that it is not the case for optically dense samples
[5].

The data points are then fitted with a rescaled EoS:

ndip = p1 f
(

p2 − V
p3

)
, (13)

where p1, p2 and p3 are three fitting parameters. The phase-
space densityDdip then simply reads

Ddip =
ndip

p1
. (14)

The same fitting parameter p1 is used to extract the phase-
space density D = n/p1 of the unperturbed gas. The results
of this procedure for different clouds are shown in Fig. 3 along
with their determined degree of degeneracy.

DENSITY CALIBRATION

Atom number calibration is a difficult task in our system
because of the important role of dipole-dipole interactions in
standard absorption imaging techniques [5] and the complex
atomic level structure of the Rb atom. In this work we use the
method inspired from Ref. [6]. Starting from a dilute cloud
trapped in the optical box potential and in the |F = 1,m = 0〉
state, we use a π/2 microwave pulse to create a coherent su-
perposition of this initial state with the |F = 2,m = 0〉 state.
We measure independently the populations N1 ≈ N/2 and
N2 ≈ N/2 in these two states for each experimental run, where
N is the total atom number in the region of interest. We ex-
tract from typical sets of a hundred measurements the variance
of the population difference Var(N2 − N1), which for a pure
projection measurement, equals to N and then allows one to
determine the atom number.

From this calibration we deduce that the cross-section for
our absorption imaging is decreased by a factor 1.8(0.2) with
respect to the two-level case with an infinitely narrow line:
σ0 = (7/15) × 3λ2/(2π), where λ is the resonant wavelength.
The factor 7/15 originates from the average of the Clebsch-
Gordan coefficients for π−polarized light resonant with the
|F = 2〉 to |F = 3〉 D2 transition, as used in our experiment.
This projection noise calibration is done with clouds with a
typical optical depth of 0.4. The measurements of the cloud’s
density for determining the Bogoliubov speed of sound were
done with a larger optical depth around 1. Using the results
from Ref. [5], we then add another correction of 15% to take
into account the decrease of the cross-section because of light-
induced dipole-dipole interactions for an optical depth of 1
compared to 0.4. In conclusion, we correct our bare mea-
surements of optical depth by η = 2.07(0.23). Note that this
correction is only used for the scaling of the vertical axis of
Fig. 3a of the main text, and that all the measurements re-
ported in the main text are independent of the correction factor
thanks to the direct determination of the degree of degeneracy
of the cloud described above.

SUMMARY OF THE MEASUREMENTS

We report in Table I the direct results from the measure-
ments and the determination of the quantities plotted in Fig. 3
of the main text. The determination of T/Tc and n2D is de-
scribed in the previous sections of this Supplemental Ma-
terial. From these two parameters and using the formula
Tc = 2πn2D~

2/[mkB ln(380/g̃)] we determine the temperature
T . From the fit of the time evolution of the density profile we
determine Γ and ω = πc/Ly and hence c/cB and Q = 2ω/Γ,
where cB =

√
gn2D/m. The data shown in Fig. 2(a-c) of the

main text corresponds to measurements I, N and H, respec-
tively.

# T/Tc n2D [µm−2] T [nK] c [mm/s] Γ [s−1] c/cB Q
A 0.43 67 132 2.27 15.3 0.95 24.8
B 0.94 28 118 1.23 38.6 0.80 5.4
C 1.29 21 124 0.89 60.1 0.66 2.6
D 0.37 27 45 1.46 8.90 0.96 27.2
E 0.44 65 127 2.36 11.6 1.00 33.3
F 0.44 22 43 1.19 12.4 0.88 16.0
G 0.77 15 51 0.92 14.0 0.82 11.1
H 1.38 11 66 0.81 32.7 0.85 4.2
I 0.21 53 50 2.20 5.50 1.04 64.5
J 0.56 50 125 1.79 25.3 0.87 11.9
K 0.56 69 175 2.08 31.0 0.85 11.4
L 1.13 43 217 1.51 94.7 0.79 2.7
M 0.95 52 225 1.47 39.6 0.70 6.3
N 0.95 52 225 1.53 31.0 0.72 11.1
O 0.69 63 195 1.94 19.3 0.84 17.0
P 0.55 71 176 1.98 44.1 0.81 7.6

TABLE I. Summary of all the measurements reported in the main
paper.
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FIG. 4. Speed of sound and damping. (a) Speed of sound (not normalized to Bogoliubov speed of sound). The color code gives the temperature
for each point. The variation of c from 0.8 to 2.5 mm/s is mainly due to the change of density of the cloud. (b) Measured speed of sound
normalized to the Bogoliubov speed of sound cB with the same color code as in (a) (c) Quality factor Q = ω/Γ of the first mode determined
for the experimental points with the same color code as in (a).

COMPLEMENTARY RESULTS

The degree of degeneracy of the gas is scanned by vary-
ing both the sample’s temperature and density. The bare re-
sults for the measured c, without dividing by cB, are shown in
Fig. 4a. The temperature of the sample can be extracted from
the measurement of the degree of degeneracy of the cloud and
of its density, as D ∝ n2D/T . The resulting temperatures are
shown by the color of the points in Fig. 4.

The density is varied by a factor 7 and the temperature by
a factor 4. Figs. 4b and 4c display the same results as in the
main text but showing the temperature for each data point.
The collapsing of all the points of Fig. 4 on a single curve in
Fig. 4b is expected for the propagation of sound in the hydro-
dynamic regime in weakly-interacting 2D Bose gases, due to
their scale-invariant behavior.

LANDAU DAMPING

Landau damping mechanism describes the decay of
phonons due to interaction with thermal excitations. Landau
damping rate Γ for two-dimensional systems has been com-
puted in Refs. [7, 8]. The damping of a given sound mode can
be characterized by a dimensionless quality factor Q = ω/Γ,
where ω/2π is the mode frequency. This quality factor is in-
dependent of the mode and only depends in 2D on the dimen-
sionless ratio T/Tc. Its explicit expression, which is plotted in
Fig. 3b of the main text is

1/Q(τ) =
g̃

16πτ
×∫ ∞

0
dx

(
2

√
1 + x2

+
1

1 + x2

)3/2

(
√

1 + x2−1) Csch2[x/(2τ)],

(15)

where Csch = 1/ sinh and

τ =
2π

g̃ ln(380/g̃)
T
Tc
. (16)

In the regime T/Tc � g̃/(2π) relevant in our experiments, the
integral can be approximated by its asymptotic expression for
τ � 1, leading to the simplified expression

Q '
2
π

ln(380/g̃)
Tc

T
.

In the opposite regime of very low temperatures
T/Tc � g̃/(2π), we find the asymptotic behavior

Q '
2
√

3π3
g̃ ln(380/g̃)2

(Tc

T

)2

.

We remind that for bosonic superfluids in 3D, including liq-
uid 4He, the Landau damping rate scales as T 4 in the low-
temperature regime, i.e. Q ∝ 1/T 4 [9].

INFLUENCE OF THE EXCITATION

We checked that our measurements of speed of sound are
independent of the details of the excitation protocol. We show
in Fig. 5a the influence of the amplitude of the excitation dip
(where the density is about 2/3 of the total density in the main
text) and observe no important variation of the speed of sound
even for an almost full depletion in the dip region. We re-
port in Fig. 5b the influence of the size of the excitation region
(25% of the box length in the main text) and also observe no
strong influence of this parameter.
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FIG. 5. Normalized speed of sound for a gas in the degenerate regime
(T/Tc ≈ 0.25) for different excitation protocols. (a) Influence of
depth of the excitation dip. The data in the main text were taken for
a dip depth of 0.16 a.u.. The value of 1 corresponds to an almost
fully depleted dip. (b) Influence of the size of the excitation region.
For the data presented in the main text, we used an excitation size of
25%.
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