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We study the coherent and dissipative aspects of a driven spin-1 Bose-Einstein condensate (BEC)
when the Zeeman energy is modulated around a static bias value. Resonances appear when the bias
energy matches an integer number of modulation quanta. They constitute the atomic counterpart of
Shapiro resonances observed in microwave-driven superconducting Josephson junctions. The popu-
lation dynamics near each resonance corresponds to slow and non-linear secular oscillations on top
of a rapid “micromotion”. At long times and in a narrow window of modulation frequencies around
each resonance, we observe a relaxation to asymptotic states that are unstable without drive. These
stationary states correspond to phase-locked solutions of the Josephson equations generalized to
include dissipation, and are analogous to the stationary states of driven superconducting junctions.
We find that dissipation is essential to understand this long-time behavior, and we propose a phe-
nomenological model to explain quantitatively the experimental results. Finally, we demonstrate
hysteresis in the asymptotic state of the driven spinor BEC when sweeping the modulation frequency
across a Shapiro resonance.

I. INTRODUCTION

The Josephson effect is the hallmark of macroscopic
quantum phenomena in quantum fluids, from supercon-
ductors [1–4] to superfluid Helium [5–8], polariton sys-
tems [9–11] and ultracold atoms in double-well poten-
tials [12–17]. In all variants, the phase of a macroscopic
wavefunction is controlled by an external bias parame-
ter. In Superconducting Josephson Junctions (SCJJs),
a voltage bias determine the relative phase between the
two superconducting order parameter on each side of the
junction and the supercurrent is proportional to the sine
of this phase [1–3]. This leads to some remarkable be-
havior, as in the AC Josephson effect where a static volt-
age generates an oscillating current at the characteristic
Josephson frequency ω0. Conversely, in the “inverse AC
Josephson effect” [2–4] , an oscillating voltage near reso-
nant with ω0 can carry a DC current across the junction.

Multiple resonances occur when the drive frequency
ω fulfills kω = ω0 for integer k [2]. In SCJJs, these
resonances appear in the form of Shapiro spikes in the
voltage-current characteristics of a SCJJ junction driven
at constant bias voltage, or steps at constant bias cur-
rent [4]. Shapiro steps are at the core of Josephson volt-
age standards, which are essentially perfect frequency-
voltage converters enabled by macroscopic quantum ef-
fects [4]. Here, energy dissipation plays a crucial role [4].
Without dissipation, the system would not relax towards
the exact resonance characterized by a phase locking of
the macroscopic phase to the drive.

Ultracold atoms offer a new situation, the so-called
internal Josephson effect, where coherent dynamics can
occur between internal degrees of freedom [18, 19]. Here
we focus on the specific case of spin F = 1 atoms, with
mF the magnetic quantum number labeling the Zeeman
components. An applied magnetic field plays the role of
the external bias. The Josephson-like internal dynamics

is generated by coherent, spin-changing collisions of the
form 2× (mF = 0) ↔ (mF = +1) + (mF = −1) instead
of single-particle tunneling [20, 21]. Most experimental
studies of coherent spin-mixing dynamics were performed
with only a static bias and no modulation [21–28]. Re-
cent experiments explored the driven case, demonstrating
the suppression of evolution by frequent “kicks” in spin
space [29] and spin-nematic squeezing [30] near a para-
metric resonance [31]. Cold atoms variants of the Joseph-
son effect (external [12–17] or internal [21–28]) occur with
typical time scales on the order of milliseconds or longer,
enabling a time-resolved study of the dynamics which is
difficult to access in superconducting systems, where the
microscopic time scales are in the picosecond range.

In this article, we report on the observation of the
analogues of Shapiro resonances in a driven spin-1 BEC
of sodium atoms. We characterize the resonances in a
strongly non-linear regime, where the phase dynamics
is not solely controlled by the external static bias. We
study not only the coherent dynamics at short times but
also the relaxation at long times (tens of seconds, cor-
responding to thousands of oscillation periods). We find
that the driven BEC relaxes to asymptotic states that are
not stable without drive. In this sense, our system con-
stitutes a many-body version of the celebrated Kapitza
pendulum [32–34]. The stationary states correspond to
phase-locked solutions of the Josephson equation gener-
alized to include dissipation, analogous to the stationary
states of driven SCJJs [4].

The paper is organized as follows. In Section II, we
review the main features of our experiment and of the
theoretical description of spinor condensates. We high-
light the analogies and differences with Josephson physics
in superconducting junctions. We also discuss for later
reference spin-mixing oscillations without driving, high-
lighting both the coherent features in Section II C [22–28]
and the dissipative aspects [26] in Section II D. In Sec-
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tion III, we turn to the driven system and characterize
experimentally and theoretically the non-linear secular
dynamics in the vicinity of the resonance. Measuring
both the Zeeman population and the relative phase of the
atoms, we identify two regimes, an “oscillating regime”
where the atomic phase is phase-locked to the drive and
a “rotating regime” where the atomic phase runs inde-
pendently from the drive and wraps around a circle. We
study the relaxation of the driven spin-1 BEC at long
times in Section IV. In a narrow frequency window
around each Shapiro resonance, we observe relaxation to
a non-equilibrium steady-state that has no analog in the
undriven system. This allows us to discriminate between
two phenomenological descriptions of dissipation used in
the literature on Josephson-like models. While the two
dissipative models are barely distinguishable from each
other without driving, they differ spectacularly in the
strongly driven case. We finally demonstrate that the
system displays hysteresis near a Shapiro resonance in
Section V, and conclude in Section VI.

II. SPIN-MIXING OSCILLATIONS IN SPIN-1
CONDENSATES

A. Experimental setup

We prepare a quasi-pure condensate of spin-1 sodium
atoms in a crossed optical dipole trap with a condensed
fraction & 0.9. The condensate is initially polarized in
the mF = +1 state (except in Section V) and immersed
in a spatially uniform magnetic field B = Bu, where
u = B/B is taken as quantization axis. Here mF refers

to the eigenvalue of f̂ · u with f̂ the spin-1 angular
momentum operator. In this work, we mostly consider
quasi-static variations of B(t), slow compared to the in-
verse of the Larmor frequency ωL = µBB/(2~), with
µB the Bohr magneton. At the single particle level, the
atomic spin states then follow adiabatically the changes
of u(t): If interactions were negligible, an atom prepared
in the mF state at t = 0 would remain in that state at
all times. Our main observable are the relative popu-
lations nmF of the Zeeman sublevels mF = 0,±1. We
measure these populations using absorption imaging af-
ter a time-of-flight in a magnetic field gradient separating
the different Zeeman components (“Stern-Gerlach imag-
ing”). The experimental setup, preparation steps and
Stern-Gerlach imaging have been described in details in
previous publications [35, 36].

The longitudinal magnetization M|| = 〈F̂ ·u〉, with F̂
the total spin operator, is a conserved quantity in spinor
gases [19, 20, 22] (assuming that dipole-dipole interac-
tions [37] are negligible). In this work, we focus on the
case M|| = 0. Owing to the adiabaticity condition and
to the conservation of magnetization [19], the quadratic
Zeeman energy (QZE) is (see Appendix A 1 for more de-
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FIG. 1. Analogy between two physical systems exhibiting
macroscopic quantum coherence: superconducting Josephson
junctions (SCJJs–a) and spin-1 atomic Bose-Einstein conden-
sates (BECs–b). For SCJJs (respectively, BECs), tunneling
through the barrier (resp., spin-mixing interactions) generates
an electric current (resp., a spin current) controlled by the
relative phase across the barrier (resp., between the Zeeman
components of the spin-1 wavefunction). An external energy
bias E(t) controls the rate of change of the relative phase :
the electrostatic energy E(t) = 2eV (t) for SCJJs, with V the
voltage and 2e the charge of a Cooper pair, or the quadratic
Zeeman energy E(t) = 2q(t) of a pair of mF = ±1 atoms for
spin-1 BECs. If the energy bias is modulated around a static
value E0, a Shapiro resonance occurs when the modulation
frequency ω fulfill a resonance condition k0~ω = E0, with k0
a positive integer. c: Observation of several (k0 = 1 − 8)
Shapiro resonances in spin-1 atomic condensates after a re-
laxation time of 30 s. Here, n0 is the reduced population of
the mF = . state, and q0 is the static QZE.

tails):

ĤZeeman = −qN̂0, (1)

with q = αqB
2 and αq ≈ h× 277 Hz/G2.

In the experiments described in the following, we ini-
tiate spin mixing dynamics by rotating the internal state
of the spin-polarized BEC. This spin rotation is the only
exception to the adiabaticity condition indicated above.
Experimentally, we apply a radiofrequency field resonant
at the Larmor frequency for a time tπ/2 ≈ 40µs, resulting
in a rotation by an angle of π/2 around an axis orthog-
onal to the quantization axis u. With the Zeeman state
mF = +1 as starting point, the internal state after rota-
tion is 1

2 (|mF = +1〉+ |mF = −1〉)+ 1√
2
|mF = 0〉, hence

an initial population n0,i = 1/2 and M|| = 0.
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B. Spin-1 Bose-Einstein condensates in the
single-mode regime

Our experiments are performed in the so-called single-
mode regime of spinor condensates [20, 38, 39]. This
regime is realized for tight traps, such that the lowest
energy states correspond to different spin states but the
same single-mode spatial orbital (see Appendix A 2). In
the single-mode limit and for M|| = 0, the mean-field
spin energy per atom is

Espin = −q(t)n0 + Usn0(1− n0)(1 + cos θ). (2)

The energy Espin depends only on the relative phase

θ = φ+1 + φ−1 − 2φ0, (3)

and on the reduced population n0. The rate of change
~θ̇ can be interpreted as a chemical potential difference
driving the “reaction” (mF = +1) + (mF = −1) ↔ 2 ×
(mF = 0), with a “chemical equilibrium” reached for θ =
0 or π. For a static QZE q0 > 0 and antiferromagnetic
interactions Us > 0, the classical Hamiltonian Hspin is
minimal for the so-called polar state with n0 = 1 that
minimizes separately the Zeeman and interaction terms
in Eq. (2).

The mean-field spin energy Espin can be interpreted as
a classical Hamiltonian for the two conjugate dynamical
variables n0 and φ. The equations of motion describing
a spin-1 BEC in the single mode limit [21],

~ṅ0 = 2Us n0(1− n0) sin θ , (4)

~θ̇ = −2q(t) + 2Us (1− 2n0) (1 + cos θ) (5)

then correspond to the Hamilton equations of motion,
~ṅ0/2 = −∂Espin/∂θ and ~θ̇/2 = ∂Espin/∂n0 [21].

Eqs. (4,5) contain the two main ingredients for Joseph-
son physics [18]. First, the “spin current” ṅ0 is gener-
ated by coherent spin-mixing interaction processes con-
trolled by the phase θ. This is analogous to the cele-
brated Josephson relation Is ∝ sin(∆φ) linking the su-
percurrent Is in a SCJJ to the sine of the relative phase
∆φ between the two superconductors on each side of the
junction. Second, the external bias q (analogous to the
voltage V across the junction) controls the rate of change

θ̇ of the relative phase according to Eq. (5), analogous to

the relation ~∆̇φ = 2eV with 2e the charge of a Cooper
pair.

The differences between Eqs. (4,5) and the “standard”
Josephson relations reflect some aspects of the physics of
atomic gases absent in SCJJs. First, atomic gases can be
viewed as closed systems, and Josephson-like phenomena
typically lead to population oscillations of large ampli-
tude (comparable to the total atom number), and not
to a steady current as for superconducting circuits con-
nected to charge reservoirs. This is reflected in the factor
n0(1− n0) in Eq. (4), which enforces n0 ∈ [0, 1]. Second,
interactions can alter the resonance and the dynamics of
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FIG. 2. a-b: Spin-mixing oscillations without driving in the
Zeeman regime q0 � Us. We show the evolution of the pop-
ulation n0 (a) and of the relative phase θ (b.). c: Relaxation
of n0 at long times. We have compared the dissipative model
1 [Eq. (11)] and 2 [Eqs. (12)] to the experimental data. We
take a condensed fraction fc < 1 into account using Eq. (13).
The best fits are shown for DM1 (dotted green line), with free
parameters τ1 = 0.18(2) s, fc,1 ≈ 0.85(2) and DM2 (dashed
purple line) with τ2 = 0.86(1) s, fc,2 ≈ 0.80(2). The fitted
damping times correspond to phenomenological damping pa-
rameters β1 ≈ 0.20(2) and β2 ≈ 1.30(15)× 10−3.

the phase, as described by the last term of Eq. (5). A sim-
ilar term plays a major role in double-well realizations of
Josephson physics with cold atoms [12–17].

C. Spin mixing oscillations in the running phase
regime and AC Josephson effect

In this paper, we focus on the situation where the static
bias q0/h ∼ 300 Hz is much larger than Us/h ∼ 30 Hz.
We discuss in this Section the static case without driv-
ing, where q = q0 is constant in time. In the regime
q0 � Us (called Zeeman regime in [23]), the QZE de-
termines the phase evolution up to small corrections,
θ(t) ≈ θ(0) − 2q0t/~. Eq. (4) then predicts harmonic
oscillations of n0 at the frequency ≈ 2q0/~, with a small
amplitude ∝ Us/q0 [21–25]. These oscillations constitute
the analogue for spinor gases of the AC-Josephson effect:
A constant DC bias induces a periodic AC current.

We use the method introduced in [36] to measure the
phase θ and to characterize completely the BEC dynam-
ics. We measure the variance of the transverse spin M⊥,

〈M2
⊥〉 = 2N2n0(1− n0)(1 + cos θ), (6)

from which cos θ can be determined. Here N is the total
atom number and 〈·〉 denotes a statistical average over
many realizations of the experiment (typically 10-20 in
our measurements). This measurement alone cannot de-
termine unambiguously the phase θ. We lift the ambigu-
ity by assuming that θ wraps monotonously around the
unit circle to obtain the curve shown in Fig. 2b.
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D. Dissipation and relaxation of spin mixing
oscillations

For long times, the spin mixing oscillations are damped
and the population n0 eventually relaxes to the expected
equilibrium value n0 ≈ 1 (see Fig. 2c). This relaxation,
first observed in [26], corresponds to a loss of energy of
the spinor BEC. Eqs. (4,5) describe an Hamiltonian dy-
namics where the energy is a constant of motion [21]. As
a result, a point or an orbit of the classical phase space
(n0, θ) cannot be attractive, and relaxation cannot occur
within the mean-field framework.

However, experimental systems are never perfectly iso-
lated, and their coupling to (many) other degrees of free-
dom playing the role of an energy reservoir enable energy
dissipation and thermalization. A plausible candidate to
fulfill this role in experiments with ultracold atoms are
uncondensed atoms, inevitably present at finite temper-
atures and forming a bath of collective excitations in-
teracting with themselves and with the condensate. We
expect that the interaction of the BEC with this bath
acts to restore thermodynamic equilibrium, (i.e. a BEC
with all atoms in mF = 0 for q0 > 0) with a small de-
crease of the condensed fraction fc. This is indeed what
we observe in Fig. 2c, with a typical relaxation time ∼ 1 s
that depends on q0 [26].

A first-principle theoretical description of this thermal-
ization dynamics would require to go beyond the Bogoli-
ubov [40–42] or classical field [43] descriptions that are
only applicable at short times. In this work, we study re-
laxation over several seconds, i.e. several hundred times
the intrinsic time scale ~/Us ∼ 30 ms set by interactions.
To the best of our knowledge, no general framework is
available to describe strongly out-of -equilibrium dynam-
ics for single-component gases, let alone spin-1 systems.
In order to describe the experimental observations and
gain some insight on the dynamics, we take in this work
a phenomenological approach where a non-conservative
term is added “by hand” to the Hamiltonian equations
of motions [13, 17, 26, 44].

The phenomenological models that we consider in this
article generalize the spin mixing Eqs. (4,5) as follows,

ṅ0 = −2

~
∂Hspin

∂θ
+ ṅ0|diss , (7)

θ̇ =
2

~
∂Hspin

∂n0
+ θ̇

∣∣∣
diss

. (8)

The first dissipative model (DM) that we consider was
originally proposed in Ref. [26],

DM 1 : ṅ0|diss = 0, θ̇0

∣∣∣
diss

= β1ṅ0. (9)

Liu et al. correctly argue that the dissipative term in
Eq. (9) is the only term linear in n0, θ, ṅ0 or θ̇ that can
explain their measurements [26]. Anticipating on the re-
sults in the driven case that will be presented later, we
have found that the dissipative model 1 can describe well

our experiments without driving, but fails to predict the
observed steady state in the strongly driven case. This
motivated us to explore other dissipative models, not nec-
essarily linear in n0, θ or their derivatives. We propose
in this article the alternative

DM 2 : ṅ0|diss = −β2n0(1− n0)θ̇, θ̇0

∣∣∣
diss

= 0. (10)

The dimensionless phenomenological constants β1, β2

are real numbers, which are chosen positive to ensure that
the energy Hspin always decreases (see Appendix B 1). In
the context of cold atoms, formally similar dissipative
terms have been proposed previously [13, 17, 44], mainly
in analogy with terms describing Ohmic dissipation in
SCJJs. The DM1 corresponds to a resistor connected in
series with the junction, and the DM2 to a resistor in
parallel with the junction (“resistively shunted junction
model”).

Both dissipative models share the same qualitative be-
havior: they induce a decrease of the total energy (see
Appendix B 1), or equivalently an increase of n0 when
q0 > 0, while conserving the fixed points of the dynam-
ics. For long times (see Appendix B 2), the solution of
the DM1 is well approximated by

DM 1 : n0 ≈ 1− τ1
t
, (11)

with τ1 = ~q0/(β1U
2
s ), while the DM2 predicts (Ap-

pendix B 2)

DM 2 : n0 =
n0,i

n0,i + (1− n0,i )e−t/τ2
. (12)

with τ2 = 2~/(β2q0). Here · denotes a coarse-grained
average over a time long compared to a period of the
spin-mixing oscillation ∼ ~/(2q0), but short compared to
the relaxation times τ1/2.

We have compared the predictions of the two models
to the experimental results shown in Fig. 2c. For this
comparison, we account for a small but non-zero thermal
fraction. The measured population in mF = 0 can be
written

n0 = fcn0,c + n′0, (13)

with n0,c = N0,c/Nc (resp. n′0) the fraction of condensed
(resp. uncondensed) atoms in mF = 0. Here NmF ,c
denotes the population of condensed atoms in the mF

state, Nc =
∑
mF

NmF ,c the number of condensed atoms,

fc = Nc/N the condensed fraction and N the total atom
number. We assume for simplicity that thermal atoms
are distributed equally among all Zeeman sublevels, so
that n′0 = (1− fc)/3.

We use Eq. (13) in combination with the dissipative
models 1 or 2 for n0,c to fit the experimental data in
Fig. 2c, using fc and the relaxation times τ1/2 as free
parameters. We find comparable best-fit parameters for
both models : fc ≈ 0.85(2), τ1 ≈ 0.18(2) s for DM1, fc ≈
0.80(2), τ2 ≈ 0.86(10) s for DM2. The corresponding
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phenomenological damping parameters are β1 ≈ 0.20(2)
and β2 ≈ 1.30(15)×10−3. The two dissipative models fit
well our measurements in Fig. 2c, with a small difference
more pronounced at long times, but not statistically sig-
nificant. We conclude that discriminating between the
two models is difficult in the undriven case. We will see
later in the article that this is no longer the case in the
driven case, where the differences are spectacular at long
times.

III. NON-LINEAR SHAPIRO RESONANCES

A. Observation of Shapiro resonances

We now turn to the core of this article where a mod-
ulation of the QZE q(t) drives the spinor dynamics. We
use a sinusoidal modulation of the QZE around a bias
value q0 according to

q(t) = q0 + ∆q sin(ωt+ ϕmod)Θ(t), (14)

with Θ(t) the Heaviside step function (see Section III C
below). Experimentally, the x component Bx of the
magnetic field is static, and the y component By =
∆B cos[(ωt + ϕmod)/2 + π/4]Θ(t) is modulated in a si-
nusoidal fashion. From Eq. (1), the QZE is given by
Eq. (14), with q0 = αq(B

2
x+∆B2/2) and ∆q = αq∆B

2/2.
In a perturbative picture, spin-mixing resonances oc-

cur when a pair of atoms in mF = 0 can be resonantly
transferred to a pair mF = ±1 by absorbing an integer
number k of modulation quanta, i.e. when k~ω = 2q0

with k ∈ N. We define the detuning by

~δ = 2q0 − k0~ω, (15)

with k0 the closest integer to 2q0/(~ω).
The left column of Fig. 3 shows how the population n0

evolves in time for several values of the modulation fre-
quency ω close to the first resonance with k0 = 1, such
that δ � q0. The dynamics of n0 can be described as
a fast (frequency ' 2q0/~), small amplitude micromo-
tion, visible in the inset of Fig. 3a1, on top of a slow,
large amplitude oscillation. The period of the slow os-
cillation is a hundred milliseconds or more, much longer
than the intrinsic timescales set by the QZE or the spin-
dependent interactions. This slow dynamics is the result
of the coherent build-up over hundreds of periods of the
micromotion. The slow “Shapiro oscillations” observed
near resonance can be viewed as the counterpart for a
closed system of the DC current observed near conven-
tional Shapiro resonances in modulated SCJJs.

Fig. 4 shows the generic behavior observed for longer
times, where we observe (i) a damping of the contrast of
the oscillations on a time scale of several hundred ms, and
(ii) a drift of the baseline value of n0 towards the equi-
librium value without driving, n0 = 1. We attribute the
damping (i) mainly to fluctuations of the experimental
parameters, leading to shot-to-shot fluctuations of the
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FIG. 3. Observation of secular oscillations near the first
Shapiro resonance k0 = 1. We show the relative population n0

(a-c1) and phase φ (a-c2) versus time. For the main panels,
the observation times are integer multiples of the modulation
period. The curves therefore represent a stroboscopic observa-
tion of the dynamics, free of the additional micromotion. The
two insets in a1 (with a smaller time sampling) show the mi-
cromotion around the main secular oscillation. The curves in
a1-2,b1-2 correspond to the oscillating regime of the pendu-
lum model, while c1-2 corresponds to the clockwise-rotating
regime. For all curves, the static bias is q0/h = 276 Hz,
the modulation amplitude ∆q/h = 43.6 Hz (κ ' 0.08), and
Us/h ≈ 30 Hz. The detuning is δ = 2π×−5.7 Hz (a1-2,b1-2)
and 18 Hz (c1-2). For curves b1-2, we varied the initial phase
(see text) to be in the harmonic regime: θ(0) = −0.5(2) rad
for a1-2,c1-2 and 1.45(2) rad for b1-2. The lines show the
numerical solutions of the dissipative model 2 [Eq. (10)] with
β2 = 1.3 · 10−3. The calculated curves are further averaged
to account for experimental fluctuations (see text). The last
panel d shows a phase-space portrait of the trajectories in
the (φ, φ̇) plane, with φ̇ calculated from Eq.(17). The dashed
blue, solid purple and dashed-dotted green line correspond to
a1-2, b1-2 and c1-2, respectively. The shaded area covers
the phase-space area explored in the oscillating regime of the
pendulum model.
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period and amplitude of the oscillations and therefore
to their dephasing after averaging over several realiza-
tions of the experiment. We believe the main contri-
bution comes from small (∆N/N ∼ 8 %) fluctuations of
the atom number. These fluctuations induce fluctuations
∆Us/Us ∼ 6 % of the N−dependent interaction strength
Us [see Appendix A 3 for a calibration of the dependence
Us(N)]. We obtain the theoretical curves of Fig. 3 and
Fig. 4 by solving numerically Eqs.(4,5) with the dissipa-
tive term (10) for different Us, and averaging over a Gaus-
sian distribution of Us with mean and variance deduced
from the measured atom number. For short times, this
procedure accounts for the observed damping of the os-
cillations, which occurs on times short enough to neglect
the effect of dissipation.

In the remaining of this Section, we first focus on the
initial oscillations shown in Fig. 3, neglecting the role of
dissipation, and postpone the discussion of relaxation at
long times (ii) to Sec. IV.

B. Secular equations for near-resonant driving

For our experimental situation with q0 � Us and for a
modulation frequency close to the k0 Shapiro resonance
(|δ| � q0), we derive in Appendix C 1 effective equations
of motion for the slowly evolving components by averag-
ing over the fast micromotion. These secular equations
of motion read

~ṅ0 = 2κUsn0(1− n0) sinφ, (16)

~φ̇ = −~δ + 2Us(1− 2n0)(1 + κ cosφ). (17)

Here, n0 is the time average of n0 over one period 2π/ω,
and κ = Jk0(2∆q/ω) is a renormalization factor, with
Jk the kth-order Bessel function of the first kind. Our
modulation scheme is limited to ∆q < q0. Together with
the secular approximation, this implies that 0 < κ < 1.
Finally, the secular phase φ is related to the time-average
θ of the phase,

φ = θ + k0(ωt+ ϕmod + π/2). (18)

The secular equations Eqs. (16,17) have a structure
similar to the original spin-mixing Eqs. (4,5) with the re-
placements q → −~δ/2 and eiθ → κeiφ. Accordingly,
Eqs. (16,17) derive from the classical energy of the secu-
lar motion,

Esec = −~δ
2
n0 + Usn0(1− n0)(1 + κ cosφ), (19)

using the same Hamilton equations as in the undriven
case.

The different dynamical regimes are best understood
in the limit of small driving, κ � 1. We show in Ap-
pendix C 2 that the secular equations Eqs. (16,17) reduce
for κ → 0 to the ones describing the motion a rigid
pendulum of natural frequency Ω =

√
2κUs/~, with φ

the angle of the pendulum. The pendulum admits two
dynamical regimes, either oscillations around the stable
equilibrium point φ = 0, or full-swing rotations with φ
running from 0 to 2π. At the transition between the
two regimes, the period of the oscillations diverges and
the amplitude of the velocity (or, equivalently, of n0)
oscillations is divided by two. The same qualitative con-
clusions hold outside of the weak driving limit, although
the position of the separatrix between the two regime is
slightly shifted. From Eq. (18), we note that the regime
of small oscillations (φ ≈ 0) corresponds to an atomic
phase θ ≈ −k0(ωt + ϕmod + π/2) locked to the drive.
Conversely, the regime of full-swing rotations (φ ≈ −δt)
corresponds to a free-running atomic phase θ ≈ −2q0t/~,
barely affected by the drive.

C. Measurement of the secular phase φ

The two dynamical regimes are best distinguished in
the evolution of the phase φ, since the population n0

oscillates in both cases. We measure the secular phase
using a variant of the method of Section II C which allows
us to lift the phase ambiguity. We measure cos θ as before
but for two different times tp = p× 2π/ω and tp +T/4 =
(p + 1/4) × 2π/ω with p ∈ N and T = 2π/ω the period
of the modulation. Assuming φ(tp) ≈ φ(tp + T/4) (in
accordance with the secular approximation), we obtain,
after converting θ to φ using the definition of the latter
in Eq. (18), a simultaneous measurement of sinφ(tp) and
cosφ(tp) at stroboscopic times tp.

Obtaining confidence intervals on the measurement
of φ is far from obvious. The statistical spread of
sinφ(tp) and cosφ(tp) determined by our method in-
creases in time. This can be quantified by computing
S = 〈cosφ〉2 + 〈sinφ〉2. This quantity is equal to 1 if
φ is perfectly determined and vanishes for φ completely
random in the limit of infinitely large samples. Experi-
mentally we find that S decreases with a characteristic
time scale ∼ 200 ms. We believe the main reason for this
decay is the fluctuations of Us coming from atom number
fluctuations. We have computed numerically the proba-
bility distribution P(φ) of φ that derives from our ex-
pected distribution of Us. Due to the non-linearities of
the spin-mixing equation, P(φ) broadens rapidly and be-
comes asymmetric. A Gaussian approximation of P(φ)
is essentially useless except for very short times (below a
few tens of ms). We did not pursue a sophisticated sta-
tistical analysis accounting for the peculiarities of P(φ).
Instead we use the quantity S introduced above to esti-
mate when the measurement of the phase becomes unreli-
able. We restrict the phase measurements to t ≤ 200 ms,
roughly the interval where S takes values above 1/2.

In an ideal experiment strictly described by Eq. (14),
the modulation would be turned on instantaneously at
t = 0. The initial phase θ(0) = 0 would then be deter-
mined by the preparation of the initial state. In prac-
tice, a small delay of ∆t = 100µs is present between
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FIG. 4. a: Damping of Shapiro oscillations. The solid blue
curve is calculated from the dissipative model 2 (DM2) and
averaged over the fluctuations of Us caused by atom num-
ber fluctuations (see text). The shaded area corresponds to
the standard deviation of the distribution of n0 induced by
these initial fluctuations. The static bias is q0/h = 276 Hz,
the detuning δ = 2π × −18 Hz, and the modulation ampli-
tude ∆q/h = 218 Hz (κ ' 0.36). The interaction strength is
Us/h ≈ 32 Hz for t = 0 and decays to ≈ 20 Hz for t = 40 s
due to atom losses during the hold time in the optical trap.
b: Long-times relaxation of the secular population n0 to a
steady state. We attribute the small drift of the steady-state
population to the decay of Us.

the preparation and the beginning of the modulation,
and the modulation settles to the form in Eq. (14) af-
ter 1 − 2 ms, due to the transient response of the coils
used to generate the modulation By. During this short
transient (� ~/Us), the populations barely evolve but
the phase changes because of the QZE. Both effects can
be taken into account in an initial phase shift θ(∆t) =

−(2/~)× [q0∆t+
∫ +∞

0
[q̃(t)− q(t)]dt], with q̃ the instan-

taneous QZE actually experienced by the atoms and q(t)
the ideal profile. The extra phase shift corresponds to an
initial phase θ(0) ≈ −0.5 rad for the data in Fig. 3a1-2.
We can also insert on purpose a variable delay between
the preparation step and the start of the modulation to
tune the initial phase. We used this technique to change
the initial phase for the data in Fig. 3b1-2, which are oth-
erwise obtained for identical conditions as in Fig. 3a1-2.

We plot in Fig. 3 (right column) the results for φ for
the first resonance k0 = 1. For small detuning, the phase
oscillates around φ = 0, i.e. the dynamics of the BEC
phase is phase-locked with the drive (panels a1-2,b1-2.).
The excursion of the phase away from φ = 0 depends
on the detuning and the initial phase, that we can tune
(panels b1-2) to have φ(t = 0) ' 0. For a given ini-
tial phase, when δ exceeds a critical value corresponding
to the transition betweeen the two dynamical regimes,
phase locking no longer occurs and the BEC phase runs
freely from 0 to 2π, corresponding to the “rotating pen-
dulum”case (panels c1-2).

D. Period and amplitude of the secular oscillations

We extract the amplitude and period of the secu-
lar oscillations by fitting a periodic function n0(t) =

−20 0 20
δ[Hz]
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FIG. 5. Period (a) and amplitude (b) of the secular oscilla-
tions versus detuning δ for the same parameters as in Fig. 3.
The solid blue lines show the numerical solutions of Eqs. (4,5),
and the dotted black lines the analytical solution of the pen-
dulum model.

∑3
j=0 aj cos(jt/T + φ0) to the data. We restrict the fit

to the first two periods, with the harmonics amplitude
aj ∈ R and the initial phase φ0 as free parameters. Fig. 5
shows the period T and amplitude for the first resonance
k0 = 1 versus detuning. The results agree well with a
numerical solution of Eqs. (4,5) (i.e., without taking dis-
sipation into account), and with the pendulum model.
Close to resonance, the measured amplitude is systemat-
ically lower than the theoretical prediction. This can be
qualitatively explained by the presence of uncondensed
atoms that do not participate in the coherent secular dy-
namics.

IV. LONG-TIME RELAXATION AND
STEADY-STATE

A. Observation of a Non-Equilibrium Steady State

We now focus on the state reached for long (tens of sec-
onds) evolution times after relaxation has taken place.
We find that after the damping of the slow, large am-
plitude Shapiro oscillations, the population n̄0 reaches a
steady state that persists for tens of seconds [45]. Fig. 6
shows a typical measurement for strong driving (κ =
0.38) near the first resonance k0 = 1, where we monitor
how the steady state value changes as a function of detun-
ing δ. We find that the system relaxes to n0 ≈ 1, except
in a range of negative detunings close to the resonance
where the population n0 takes values between ≈ 0.5 and
1. The steady state reached in this strongly driven sit-
uation does not correspond to the thermodynamic equi-
librium point in the absence of modulation (the ground
state of Hspin with n0 = 1), nor to the minimum of the
secular energy given in Eq. (19) (n0 = 1 for δ > 0, n0 = 0
for δ < 0). This contrasts strongly with the undriven
case where the thermodynamic equilibrium state n0 ≈ 1
is always observed at long times.

In the experiments shown in Fig. 1c, we show that the
same behavior is observed for higher resonances up to
k0 = 8 (limited by the maximal magnetic field we can
produce). We set ω = 2π × 100 Hz and scan q0 and ∆q
simultaneously keeping ∆q/q0 (and therefore κ) approx-
imately constants. After a wait time of 30 s, we observe
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FIG. 6. a: Measured population n0 as a function of de-
tuning δ after a relaxation time of 10 s. The experiment is
performed near the first resonance k0 = 1 (ω ≈ 2q0/~) and
with n0,i = 0.5. The static bias is q0/h ≈ 277 Hz, the modu-
lation amplitude is ∆q/h ≈ 227 Hz (κ ' 0.4), and the inter-
action strength is Us/h ≈ 26Hz. b: Numerical solutions of
the dissipative models 1 (Eq. 9, brown squares) and 2 (Eq. 10,
black empty diamonds). In both panels, the horizontal blue
(respectively oblique green) line correspond to the stationary
state S1 (resp., S+). The solid (resp. dotted) segments corre-
spond to the stability (resp. instability) region according to
DM 2 (see Section IV B).

that the system relaxes for all k0 to the same station-
ary state as for the first resonance. In the following, we
therefore concentrate on the case k0 = 1 as in the previ-
ous Section.

We use the same dissipative models introduced in Sec-
tion II D to explain the experimental observations. We
show in Fig. 6b the result of a direct numerical solution
(without making a secular approximation) of Eqs. (7,8)
for the dissipative models 1 or 2. We observe that the
DM 1 fails to reproduce the measured steady-state pop-
ulations, while the DM 2 predicts a long-time behavior
consistent with the experimental results. This contrasts
with the undriven case, where both models lead to very
similar predictions. In the following, we specialize to the
DM 2 and explore its consequences for the long-times
steady-state.

B. Fixed points and their stability

We look for (possibly metastable) secular solutions of
dissipative model 2 where the population n0 is stationary.
We derive generalized secular equations as in Section III
starting from Eqs (7,8,10) defining the DM 2. Observing

from Eq. (18) that θ̇ ≈ −ω + φ̇, we find

~ṅ0 = n0(1− n0)
(

2κUs sinφ+ β2~ω − β2~φ̇
)
. (20)

a

−π π
φ[rad]

0

1

n
0

S+
S−
S1

S0

b

δ
−δ+ −δ− 0 δ− δ+

S1 s su
S0 u
S+ s u
S− u

FIG. 7. Fixed points of the dissipative spin-mixing model
2. a: Phase space portrait of the stationary solutions of
Eqs. (16,17). The two limit cycles are labeled S0 (n0 = 0, solid
orange line) and S1 (n0 = 1, solid blue line) and the two fixed
points S+ (green dot) and S− (red diamond). The black lines
show typical trajectories in the oscillating (dashed line) or
rotating (dash-dotted lines) regimes. The shaded area covers
the oscillating regime. The plot is shown for δ = −2π×10 Hz,
Us = h × 25 Hz, κ ' 0.38 (δ− ' 2π × 32 Hz) and a damping
coefficient β2 → 0+. b: Table summarizing for β2 → 0+ the
ranges of detuning where each stationary solution is stable
(’s’) or unstable (’u’). The boundaries δ± are defined after
Eq. (21).

The phase dynamics is still determined by Eq. (17). From
Eq. (20), we identify four possible states for which ṅ0 = 0.

The first two states correspond n0 = 0, 1. In these
two limiting cases, the relative phase θ (and thus φ) is
physically irrelevant and can take any value. These two
solutions labeled S0, S1 in the following, correspond to
“limit cycles” in the language of dynamical systems. The
other two stationary states, labeled S±, correspond to
fixed points of the dissipative equations of motion where
ṅ0 = φ̇ = 0. They correspond to the secular phases
φ+ = ε, φ− = π − ε, where the angle ε obeys sin ε =
−β2~ω/(2κUs). The populations at the fixed points are

n0,± =
1

2

(
1− δ

δ±

)
, (21)

with ~δ± = 2Us(1±κ cos ε). Fig. 7a shows the location of
the stationary solutions in a secular phase-space portrait
(n0, φ). One of the two limit cycles correspond to the
minima of the secular energy Esec depending on the sign
of δ. The fixed point S+ is always the maximum of Esec,
while S− is a saddle point.

Dissipation must be present but not too strong to
ensure the existence of a fixed point of the dynam-
ics. Indeed, the fixed points S± disappear when β2 ≥
2κUs/(~ω) (sin ε ≤ −1). If β2 is too large or κ too small,
the drive cannot provide enough energy to overcome the
dissipation and create a metastable state (see discussion
below). This is consistent with other experiments we per-
formed with a weaker driving strength κ ∼ 0.08, where
we found that the relaxation to the fixed point was less
robust than the one shown in Fig. 6.

For strong driving (large modulation amplitude ∆q ∼
q0) as in the experiments shown in Fig. 6, we find φ+ ≈
0.04 corresponding to the limit ε ∝ β2 → 0+. In this
situation, the positions of the fixed points are well ap-
proximated by setting cos ε ≈ 1 and ~δ± = 2Us(1 ± κ).
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The positions of the fixed points are therefore indepen-
dent of the precise value of β2 to first order in the small
parameter ε.

We study the dynamical stability of the stationary so-
lutions in App. E for a phenomenological damping coeffi-
cient β2 → 0+. We summarize the results in Fig. 7b. The
drive destabilizes S1 in a small region of positive detun-
ings around the resonance, while S0 is always unstable
because of the dissipation. The fixed point S+ is stable
only for δ < 0, while S− is always unstable.

At first glance one may expect that energy dissipation
induce relaxation to an energy minimum. In fact, the
work delivered by the drive compensates for the dissi-
pated energy, thereby stabilizing the system in a highly
excited state (App. C 3). At the fixed point S±, the
atomic phase locks to the drive with a small phase lag
such that the power absorbed from the drive exactly com-
pensates the power loss due to dissipation. This phase-
locking enabled by dissipation is reminiscent of the dissi-
pative phenomenon leading to Shapiro steps in SCJJS [4].

C. Interpretation of experimental results

We can now interpret the experimental findings of
Fig. 6. The position of the stable fixed point S+ in the
limit β2 → 0 is shown in Fig. 6, and explains well the
observed steady-state populations for δ ∈ [−δ+, 0]. Out-
side this window, the system relaxes to the equilibrium
state S1. We interpret the observed “trapping” in the
state S+ as follows. A system prepared with n0,i ≈ 0.5
tends to relax to the ground state S1 of Hspin, as ob-
served for |δ| > δ+ where there is no fixed point. For

δ ∈ [−δ+, 0], the derivative of the phase φ̇ diminishes in
absolute value as n0 increases because of the dissipation,
and it progressively vanishes. At this point, that corre-
sponds to S+, ṅ0 also vanishes and the system remains
trapped in this state. On the contrary, for δ ∈ [0, δ+],

S+ corresponds to n0,+ ≤ 1/2 and |φ̇| increases as n0

increases. The trajectory tends to move the system away
from S+. As a result dissipation acts in this case as in
the undriven case, and the system eventually reaches S1

after a sufficient relaxation time.
The scenario described above explains all observations

but one. In Fig. 1c, for very small but negative δ near
the first resonance, the system relaxes to n0 ' 0.16. This
observation is consistent with thermalization in the sec-
ular Hamiltonian where the lowest energy state is n0 ≈ 0
when δ ≤ 0 (a non-zero thermal fraction or an incomplete
thermalization could explain the deviation from n0 = 0).

V. HYSTERETIC BEHAVIOR

According to the stability diagram of Fig. 7b, there is
no stationary solution that would be stable for all detun-
ings δ. Furthermore, there are two stable solutions S+

and S1 in the interval [−δ−, 0]. In such a situation, one

0.4
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h̄δ/Us

0.4

0.6

0.8

1.0

n
0

b

FIG. 8. Observation of hysteresis in the relative popula-
tion n0 after a detuning ramp. We prepare a spinor BEC
with n0,i ' 1, and scan the detuning by changing q0 for fixed
ω = 2π × 277 Hz and ∆q/h = 227 Hz. In a (respectively,
b), the ramp decreases (resp., increases) from δi ≈ 2.0Us/~
(resp., δi ≈ −3.3Us/~). The horizontal blue (resp., oblique
green) line correspond to S1 (resp., S+). The solid (resp., dot-
ted) segments correspond to the stability (resp., instability)
regions.

can expect hysteretic behaviour, that we searched for us-
ing a slighly different procedure than in the rest of the
article.

We prepared a BEC in the state mF = 0, such that
n0,i ∼ 1 (up to thermal atoms in mF = ±1). We apply
the modulation as before but slowly ramp the static bias
q0 over a ramp time of 3 s, and then hold the driven
system at the final q0 value for 7 s. This amounts to
a slow ramp of the detuning δ decreasing (respectively,
increasing) from δi to δf in Fig. 8a (resp., Fig. 8b). For
decreasing ramps with δi > δ+, the system remains in S1

in the domain δ > −δ− where S1 is stable. Continuing
the ramp further, S1 becomes unstable and we find that
the system relaxes to S+ as in the previous experiments.
Conversely, for an increasing ramp starting from δi <
−δ+, the system follows S+ while it is stable, i.e. for
δf ∈ [−δ+, 0] and S1 otherwise. We therefore observe an
hysteresis cycle spanning the interval δ ∈ [−δ−, 0] where
both S1 and S+ are stable.

VI. CONCLUSION

In conclusion, we have observed the analogue for a
driven spin-1 BEC of the Shapiro resonances characteris-
tic of the AC Josephson effect in SCJJs. The population
dynamics near each resonance corresponds to a slow and
non-linear secular oscillation on top of a rapid micromo-
tion. We have found that the driven spin-1 BEC relaxes
at long times to asymptotic states phase-locked to the
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drive and that are not stable without it. We proposed
a phenomenological model of dissipation that describes
quantitatively the relaxation process and its outcome.
The dynamics in the driven case allows us to discriminate
between different phenomenological models, in contrast
to the situation without driving where different models
lead to very similar behavior.

The microscopic origin of the dissipation remains to
be investigated. While dissipation probably comes from
interaction between condensed and uncondensed atoms,
a quantitative description of their interactions and of the
resulting thermalization process is lacking. The proce-
dure we used in this paper led to a set of dissipative equa-
tions which are essentially generalized Gross-Pitaevskii
equations. While we have found excellent agreement be-
tween the experimental results and the predictions of
these equations, the procedure is purely phenomenologi-
cal and whether these generalized Gross-Pitaevskii equa-
tions can be derived from first principles or not remains
an open question. A detailed study could also be use-
ful to understand other types of driven quantum gases
where an optical lattice potential [46] or the interaction
strength [47] are modulated.

Another interesting question is related to the occurence
of deterministic chaos in a driven spin-1 BEC [48]. With-
out driving, chaotic behavior can be ruled out for spin-
1 BECs on the basis of the Poincaré-Bendixson theo-
rem [49]: The theorem excludes chaotic solutions for a
two-dimensional parameter space (n0, θ). However, chaos
can appear in higher spin F ≥ 2 systems, as studied
in [50], or in driven systems [48], where time plays the
role of a third variable. When the secular approxima-
tion holds, the system is effectively two-dimensional. One
thus expects to find chaos in situations where the secular
approximation breaks down. Using the non-dissipative
spin-mixing equations and adapting the methods of [48]
to our system, we have found numerically that chaos can
be present in the vicinity of Shapiro resonances for strong
modulation and small bias, ∆q ∼ q0 ∼ Us. For almost all
experiments reported in this paper, where q0 � Us, we
did not find any evidence of chaotic behaviour. The only
exception is the curve in Fig. 1c., where q0 ' h× 100 Hz
is only three times larger than Us. The deviation from
the fixed point near δ = 0 for the first resonance could
be connected to the onset of chaotic behavior, which is
an interesting direction to explore in future work.

Finally, an interesting application of the driving could
be to control dynamically the strength of spin mixing
interactions. Spin-mixing interactions work as paramet-
ric amplifiers in quantum optics. Such parametric am-
plifiers are phase-sensitive, and are also known to gen-
erate squeezing (see [30, 51, 52] for the spinor case)
which enable interferometric measurements below the
standard quantum limit [53–55]. A promising direction
for the development of interferometers operating at the
Heisenberg-limit are the so-called SU(1, 1) interferome-
ters [54], which can be viewed as Mach-Zehnder interfer-
ometers where the beam splitters are replaced by para-

metric amplifiers. As shown in Appendix D, the quan-
tum version of the secular single-mode Hamiltonian [20]
is renormalized by driving as in the mean-field frame-
work. This implies that spin-mixing collisions can be
enabled by moving close to a Shapiro resonance for a
controllable duration, and then disabled by detuning the
system away from resonance. Such dynamical control
over the spin-mixing process could improve the perfor-
mances of SU(1, 1) interferometers [54].
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Appendix A: Theoretical description of spin-1
condensates

1. Zeeman energy and adiabatic following

We consider a gas of spin-1 atoms in a magnetic field
B = B(t)u(t) with time-dependent amplitude B and
orientation u. We take the instantaneous direction u(t)
of B as quantization axis. The label mF = 0,±1 then
corresponds to the instantaneous Zeeman state |mF 〉u,

i.e. the eigenstate of f̂ ·u with eigenvalue mF , with f̂x,y,z
the spin-1 matrices. The atomic spins precess around
u at the characteristic Larmor frequency ωL = µBB/2.
The atom internal state follows adiabatically changes of
B and u slow compared to the inverse Larmor frequency
ω−1
L provided that the adiabatic condition ω̇L � ω2

L,
where the dot denotes a time derivative, is fulfilled at
all times. In our experiment, this condition can also be
written ωBy � ωL|B|. In most of this work, the Larmor
frequency is around ωL ∼ 2π×0.7 MHz. Since By ≤ |B|,
the sufficient condition ω/ωL ∼ 10−3 is always fulfilled.

The adiabatic Zeeman energy in a frame aligned with

the instantaneous magnetic field is ĥ′Z = p(t)f̂z +

q(t)
[
f̂2
z − 1

]
, with p(t) = −µBB(t)/2 and q(t) = αqB

2.

Taking the conservation of magnetization into account,
the Zeeman energy experienced by a system of N atoms
is given up to a constant term by Eq. (1), with a QZE

proportional to N̂0 = â†0â0 =
∑
m,m′〈m|f̂2

z −1|m′〉â†mâm′
in second quantized notation. Here and in the following,
âm denotes the annihilation operator of a boson in the
Zeeman state m.
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2. Spin-dependent interactions

We focus here on the so-called single-mode regime ap-
propriate to describe our experimental system [20, 38,
39]. This regime corresponds to a spinor condensate con-
fined in a tight trap, such that the lowest energy states
correspond to atoms with different spin states in the same
single-mode spatial orbital φ(r). The Hamiltonian for a
gas of N condensed spin 1 bosons in the SMA can be
written

Ĥspin =
Us
2N

Ŝ2 − qN̂0. (A1)

Here Us is a spin-dependent interaction en-
ergy determined by the single-mode orbital,
Us = (4π~2Nas)/mNa ×

∫
dr |φ(r)|4, with as ≈ 0.13 nm

the spin-dependent scattering length [56] and mNa the
mass of a sodium atom.

At low temperatures and for weak interactions, almost
all atoms are expected to condense into the same single-
particle vector state ζ, a complex vector. The three com-
plex components ζm =

√
nme

iφm of the condensate wave-
function are determined by six real numbers. Accounting
for the normalization, for an irrelevant global phase, and
for the conservation of magnetization leaves only three
real variables, the relative population n0 and two rela-
tive phases θ and η = φ+1 − φ−1. The latter describes
the Larmor precession, and decouples from the other two
variables. The mean spin energy in the state ζ is given
by Eq. (2).

3. Calibration of Us

We calibrate the interaction strength Us using the well-
established behavior of spin-mixing oscillations without
driving. For a given total atom number N , we fit the
observed population oscillations with the numerical so-
lutions of Eqs. (4,5) treating Us as a free parameter, all
other parameters being kept constant. We shown the fit-
ted value of Us versus N in Fig. 9. The dependence on
atom number reflect the fact that our experiments are
in the crossover between the ideal gas (where Us is in-
dependent of N) and the Thomas-Fermi regime (where
Us ∝ N2/5). We use the heuristic function Us(N)/h =
a(1+(N/N0)b) to calibrate the dependence, with best fit
parameters a ' 20 Hz, b ' 3.5 and N0 ' 19 000. Small
fluctuations of N induce fluctuations of Us according to
δUs = ab(N/N0)bδN/〈N〉. In our experiment, we have
typically 〈N〉 ' 13 000 and δN ' 1 000, which corre-
spond to 〈Us〉/~ ' 25 Hz and δUs/~ ' 1.5 Hz.

5000 10000 15000 20000
Atom number
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U
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/
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FIG. 9. Interaction strength Us measured for different atom
number. The black solid line is an heuristic fit (see main
text). The QZE is static and equal to q0/h ≈ 0.7 Hz� Us

(Bx ≈ 50 mG).

Appendix B: Relaxation of spin oscillations without
driving

1. Calculation of the dissipated power

We compute the dissipated power from Pdiss =
dEspin

dt =
∂Espin

∂n0
ṅ0 +

∂Espin

∂θ θ̇, or equivalently from

Pdiss =
~
2

(
ṅ0 θ̇

∣∣∣
diss
− θ̇ ṅ0|diss

)
. (B1)

For the dissipative model 1 introduced in the text, the

dissipated power P(1)
diss = −~

2β1ṅ
2
0 is proportional to the

square of the “current” ṅ0. For the dissipative model

2, the dissipated power is P(2)
diss = −~

2β2n0(1 − n0)θ̇2.
In both case it is negative, which corresponds to energy
dissipation.

2. Long-time relaxation

The spin dynamics without driving consists of a “fast”
evolution of the population and of the relative phase
θ superimposed on a slowly-varying envelope. In the
limit q0 � Us, the envelope of n0 relaxes to n0 = 1
over times long compared to the period ∼ ~/(2q0) of
spin-mixing oscillations. Averaging in a time window
long compared to this period, we obtain effective equa-
tions for the envelope of n0 that can be solved analyti-
cally. For the dissipative model 1 with the initial con-
dition n0(0) = n0,i, we find that the envelope of n0

obeys the implicit equation, f(n0) = f(n0,i ) + t/τ1,
with f(x) = 2 ln[x/(1 − x)] + (2x − 1)/[x(x − 1)] and
τ1 = ~q0/(β1U

2
s ). For t � τ1, the solution is well ap-

proximated by Eq. (11). For the dissipative model 2, we
obtain Eq. (12) by direct integration.
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Appendix C: Secular dynamics

1. Derivation of the secular equations

In this Section, we derive the secular equations
Eqs. (16,17). Integrating formally Eq. (5), we rewrite
θ = α− 2p, where

p(t) =
1

~

∫ t

0

q(t′)dt′ = p− η

2
cos(ωt+ ϕmod). (C1)

Here p = q0t
~ + χ

2 and α verifies ~α̇ = 2Us(1 − 2n0)(1 +
cos θ). We introduced a modulation index η = 2∆q/(~ω)
and an initial phase χ = η cosϕmod.

We now assume that the driving frequency is close to a
parametric resonance, i.e. ω ∼ 2q0/(~k0) for some inte-
ger k0, and that q0 � Us. All physical variables feature
in general a large-amplitude secular motion occurring on
time scales much longer than the modulation period, plus
rapidly-varying terms oscillating at harmonics of 2q0/~
that describe the micromotion. In the regime q0 � Us,
the amplitude ∼ Us/q0 of the micromotion of n0 and α
is small. Taking the time average over one period of the

modulation, · = 1
T

∫ T
0
dt·, eliminates the micromotion in

Eqs. (4,5),

~ṅ0 ≈ 2Usn0(1− n0)sin θ, (C2)

~α̇ ≈ 2Us(1− 2n0)
(
1 + cos θ

)
. (C3)

We compute the time average of trigonometric func-
tions of θ using the Jacobi-Anger expansion, eia sin(θ) =∑+∞
k=−∞ Jk(a)eikθ, with Jk a Bessel function of the first

kind. Neglecting the micromotion of α, we can write

eiθ ≈ eiαe−2ip, with

e−2ip =

+∞∑
k=−∞

Jk(η)ei(−
2q0
~ +kω)t+ik(φmod+π/2)−iχ. (C4)

The term k = k0 in the expansion gives rise to a slowly
varying secular contribution, while all other terms aver-
age out over one period of the modulation. Neglecting
the non-resonant terms, we obtain e−2ip = κeiζ(t) , with
~δ = 2q0 − k0~ω, ζ(t) = k0(φmod + π/2) − χ − δt and
κ = Jk0(η). This finally leads to

eiθ ≈ κeiφ (C5)

where the secular phase φ = ζ + α is defined as

φ = −δt+ α+ k0(ϕmod + π/2)− χ. (C6)

Eqs. (16,17) follow from Eqs. (C2,C3,C5,C6).
From Eq.(C6), we can relate φ to the atomic phase,

θ = φ − k0(ωt + ϕmod + π/2) . This equality shows that
when φ is oscillating, θ also oscillates around the phase
of the drive −k0(ωt+ ϕmod + π/2), up to a constant.

2. Rigid Pendulum Model

In the weak driving regime, κ � 1, the κ cosφ
term in Eq. (17) is negligible. Moreover, the amplitude
of variation of n0 is small. To prove the last point,
we integrate Eqs. (16,17) and obtain the implicit equa-

tion
[
g(x)

]n0(t)

n0,i
= −κ

[
cosx

]φ(t)

φi
, with g(x) =

(
1 −

~δ
2Us

)
ln
(

x
1−x

)
+ 2 ln(1 − x) . This implies that the am-

plitude of variation of n0 are indeed small when κ � 1.
This allow us to linearise Eq. (16).
With the initial condition n0,i = 1/2, we obtain ~ṅ0 '
κUs

2 sinφ. Taking the time derivative of Eq. (17), we then
find that the phase obeys the pendulum equation

φ̈+ Ω2 sinφ = 0 , (C7)

with natural frequency Ω =
√

2κUs/~. The angular ve-

locity of the pendulum φ̇ is determined by φ̇ = −δ +
4Us(1/2− n0).

3. Energy balance

In this Section, we compute the power delivered by
the drive in the framework of DM2. In particular, we
show that at the fixed points S±, it compensates for the
dissipated energy. For simplicity, we focus on the first
resonance k0 = 1 and assume κ� 1.
The time derivative of the total energy is

dEspin

dt
= Pdrive + P(2)

diss , (C8)

with Pdrive = −q̇n0 , and P(2)
diss = −~

2β2n0(1− n0)θ̇2. We
introduce ñ0, the component of n0 oscillating at ∼ ω.
The product q̇ñ0 does not vanish after taking the time-
average in the expression for Pdrive.

From Eq. (C4), the k = 0 component of sin θ oscillating

at ∼ ω is s̃in θ = − cos(ωt+ϕmod−φ). The amplitude of
other sideband near-resonant with the drive [term k = 2
in Eq. (C4)] is negligible in the limit κ� 1. Using ñ0 =
O(Us/q0)� 1 to simplify Eq. (4), we find

ñ0 = −2Us
~ω

n0(1− n0) sin(ωt+ ϕmod − φ) . (C9)

Using κ ' ∆q/(~ω) (true if κ � 1), the average power
delivered by the drive is finally

Pdrive = −ωκUsn0(1− n0) sinφ . (C10)

When there is no dissipation, this expression can be writ-
ten as Pdrive = −~ωṅ0/2. This result has a microscopic
interpretation if one treats the driving field as a quantized
electromagnetic field. One photon is absorbed to pro-
mote a pair of atoms in the mF = 0 state to a pair with
one atom in mF = +1 and another in mF = −1. The en-
ergy in the field is, up to a constant, Efield = N~ωn0/2 ,



13

and Pdrive correspond to the energy transferred back and
forth from the field to the atoms. Alternatively, one could
rewrite eq. (C8) as NEspin + Efield = cste.

With dissipation, the system relaxes to the fixed point
S+ or to S0. The second case is trivial, since the drive
and dissipated power both vanish and nothing happens.
Let us discuss the first case. At the fixed points S+,

the atomic phase is locked to the drive, i.e. θ̇ ≈ −ω and

P(2)

diss ≈ −~ω2

2 β2n0(1 − n0) . The energy balance can be
rewritten as

dEspin

dt

∣∣∣∣
S+

≈ −ωn0(1− n0)

[
κUs sinφ+ +

β2~ω
2

]
,

(C11)

The terms in brackets in the right hand side of Eq. (C11)
vanishes exactly, as the secular phase takes the value
sinφ+ = −β2~ω/(2κUs) at S+. At the fixed point,
the phase lag between the atomic phase and the drive
is therefore such that the power delivered by the drive
exactly compensates for the energy dissipation.

Appendix D: Quantum treatment of the modulated
SMA Hamiltonian

We start from the SMA Hamiltonian in Eq. (A1),
which we rewrite as

Ĥspin = −q(t)N̂0 +
Us
2N

(
V̂ + Ŵ + Ŵ †

)
.

We defined the operators V̂ = Ŝ2
z+2N̂0(N−N̂0) and Ŵ =

2(â†0)2â+1â−1. Applying the unitary transformation

Û1 = e−i
∫ t
0
q(t′)dt′

~ N̂0 = e−ipN̂0 , (D1)

the transformed Hamiltonian Ĥ ′ = Û1ĤÛ
†
1 + i~dÛ1

dt Û
†
1

reads

Ĥ1 =
Us
2N

[
V̂ + Û1

(
Ŵ + Ŵ †

)
Û†1

]
. (D2)

We introduce the Fock basis |N0,Mz〉 with N±1 = (N −
N0 ±Mz)/2. The operators Ŵ (respectively Ŵ †) only
couples states with Mz = M ′z and N0 = N ′0 + 2 (resp.

N0 = N ′0−2). As a result, the matrix elements of Û1Ŵ Û†1
in the Fock basis are the same as the ones of e−2ipŴ ,
implying the equality of both operators.

We now derive an effective Hamiltonian describing the
slow secular dynamics. We proceed as in Section C 1,
using the Jacobi-Anger expansion to rewrite the phase
factors and taking the time average over one period of
the modulation assuming small detuning δ. We obtain
an effective time-averaged Hamiltonian,

Ĥ1 =
Us
2N

V̂ +
κUs
2N

(
eiζ(t)Ŵ + e−iζ(t)Ŵ †

)
. (D3)

We finish the calculation with a second unitary trans-

formation Û2 = e−i
ζ(t)
2 N̂0 to obtain an effective time-

independent Hamiltonian

Ĥeff = −~δ
2
N̂0 +

Us
2N

V̂ +
κUs
2N

(
Ŵ + Ŵ †

)
. (D4)

With a mean-field ansatz for the many-body spin state,
we obtain from this effective Hamiltonian the same sec-
ular energy Esec [Eq. (19)] as in the classical treatment,
i.e. mean-field approximation and time averaging can be
done in any order.

Appendix E: Stability of the stationary solutions of
dissipative model 2.

1. Stability of the fixed points S±

To discuss the stability of the fixed points S±, we lin-
earise Eqs. (20,17) using n0 = n0,± + δn0,± and φ =
φ± + δφ±. We find

~
(
δṅ0,±
δφ̇±

)
= M±

(
δn0,±
δφ±

)
(E1)

M± =

(
0 ±2κUsn0,±(1− n0,±) cos ε

−2~δ± −2κUs
δ
δ±

sin ε

)
The solutions are stable if the eigenvalues of the matrices
M± have negative real parts. For simplicity, we consider
the situation | sin ε| = β2~ω/(2κUs) � 1. One can show
that the results below hold as long as β2~ω/(2κUs) < 1,
the same condition as for the existence of the fixed points.

In the limit ε � 1, the eigenvalues of M+ are ap-

proximately given by X+,1 ' β2~ω δ
2δ+

+ i
√

∆ , and

X+,2 = X∗+,1 , with ∆ = 8n0,+(1 − n0,+)κ(1 + κ)U2
s .

Therefore, S+ is stable for δ < 0, and unstable other-

wise. Turning to S−, the eigenvalues are X−,1 '
√

∆ and
X−,2 ' −X−,1 to leading order in β2, and S− is there-
fore always unstable. Note that our conclusions are es-
tablished for the experimentally relevant case 0 ≤ κ < 1.
The roles of S± would be reversed for κ < 0.

2. Stability of the limit cycles S0,1

We focus first on S1. We consider small deviations, i.e.
n0 = 1− ε and linearize Eqs. (20,17) to the lowest order
in ε,

−~ε̇ = 2κUs sinφε+ 2β2q0ε , (E2)

~φ̇ = −~δ − 2Us(1 + κ cosφ) . (E3)

We integrate Eq. (E2),

[
ln ε
]ε(t)
ε(0)

= −2κUs
~

∫ t

0

sinφ(t′)dt′ − 2β2q0t

~
.
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Making the change of variable t→ φ and using Eq. (E3),
we find

ε(t) = ε(0)e−4t/τ2
1 + a1 cosφ(0)

1 + a1 cosφ(t)
, (E4)

with a1 = 2κUs/[2Us + ~δ] and τ2 = 2~/(β2q0). As φ
is running, ε(t) diverges iif |a1| > 1. This defines the
instability region of S1 as δ ∈ [−2Us(1 + κ),−2Us(1 −
κ)]. Remarkably, this results is independent of the precise

value of β2 as long as it is strictly positive.

A similar calculation for S0 with ε = n0 yields

ε(t) = ε(0)e4t/τ2
1 + a0 cosφ(0)

1 + a0 cosφ(t)
, (E5)

with a0 = 2κUs/[2Us − ~δ]. Since β2 > 0, we find that
S0 is always unstable.
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