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I. EXPERIMENTAL SEQUENCE

A. Trap geometry

Our experiments start with a thermal gas of ∼ 105
23Na atoms in a crossed dipole trap, at a temperature
around T ≈ 4µK. We set the normalized magnetiza-
tion of the cloud mz between 0 and 1 using the same
procedure as in [1], and perform evaporative cooling
by decreasing the power of the optical dipole trap. We
found that the magnetization varies during the evapora-
tion ramp, typically by 10−15 % (see Section II B below).
Once the desired final trap depth is reached, we hold the
atoms in the trap for 4 seconds to ensure thermaliza-
tion. We apply a constant bias magnetic field B during
the evaporation. For the data sets with B = 0.1 G and
B = 0.5 G (resp. B = 5.6 G), the bias field is along the
x (resp. x + y + z) direction (see Fig. 1).

B. Stern-Gerlach Imaging

We detect the atoms using absorption imaging after a
period of expansion in a magnetic field gradient to spa-
tially separate the Zeeman components (Stern-Gerlach –
SG – imaging). We use in this work a slightly different
SG sequence than in [1, 2]. A quadrupole magnetic field
(created by the pair of coils used to operate the magneto-
optical trap) together with a strong bias magnetic field
parallel to the y axis produces a magnetic force along
y. We pulse this magnetic force after the trap has been
switched off. We trigger a ∼ 1 ms-long pulse by discharg-
ing a large capacitor into the coils. A power diode and a
semiconductor switch limit the current pulse to one half

FIG. 1. Crossed dipole trap geometry.

period of the resulting L-C oscillation. After a time of
flight of 3 ms, we repump the atoms to the F = 2 hyper-
fine manifold and take an absorption image using light
resonant on the F = 2→ F ′ = 3 transition.

The magnification of the imaging system is calibrated
directly by imaging the Kapitza-Dirac diffraction pat-
tern from a pulsed optical lattice with known wavelength,
and indirectly by comparison to an orthogonal imaging
system calibrated against gravity. Both methods agree
within their uncertainty, on the order of 1 %.

C. Trap Calibrations

Evaporative cooling in optical traps is performed by
lowering the optical power of the trap laser, which re-
duces the trap depth but also the trap frequencies [3].
In our experiments, they change from around 2 kHz for
the highest power to a few hundred Hz for the lowest.
We calibrate the trap frequencies using two methods, (i)
center-of-mass oscillations, and (ii) parametric excitation
(see Fig. 2). For method (i), we use a gas of atoms po-
larized in the mF = +1 Zeeman sublevel (mz ≈ 1). We
slowly ramp up a magnetic field gradient that displaces
the cloud center to a new equilibrium position, and then
switch off the gradient to induce oscillations at the trap
frequencies. For method (ii), we modulate the dipole
trap optical power to induce parametric heating. When
interactions can be neglected, resonant excitation is ob-
tained when the modulation frequency coincides with the
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FIG. 2. Evolution of trap frequencies in an evaporation tra-
jectory. Filled symbols indicate frequencies measured with
parametric heating, open symbols indicate frequencies mea-
sured with dipole oscillations.
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FIG. 3. a: Potential V of a crossed optical dipole trap (CDT) formed by two Gaussian traps of waist w and trap depth V0. b:
Classical isopotential contours V (r) = E for energies E < V0 (blue solid line) and V0 < E < 2V0 (red solid line). c: Density
of state ρ(e) (red solid line) and maximum radius of classical trajectory (dashed line). The blue solid line shows the density
of states of the harmonic potential closest to the CDT potential V (r). The grayed area correspond to classical trajectories
bounded within the crossing region. The vertical solid line shows the energy cutoff due gravity for vertical trajectories, slightly
lower than the energy V0 where the atoms escape from the crossing region.

second harmonic of one of the trap frequencies.
Method (i) is best suited for trap frequencies below

approximately 1 kHz, and method (ii) above. In our
experiment, we cannot switch off the magnetic field gra-
dient faster than approximately a millisecond, which is
long compared to the typical oscillation period for the
highest trap depths. Consequently, the switch-off be-
comes almost adiabatic, and the induced oscillations of
the center-of-mass are hardly detectable. While the para-
metric heating method (ii) should in principle work at all
temperatures, once a condensate is formed the relation
between the measured resonant frequencies and the bare
trap frequencies is no longer straightforward. To avoid
complicated modelling involving finite temperature the-
ories of Bose-Einstein condensed gases [4], we restrict
method (ii) to normal gases above the critical temper-
ature, which corresponds typically to trap frequencies
& 1 kHz.

II. EVAPORATION DYNAMICS

A. Trap Depth

In this Section, we discuss how we extract a trap
depth for a crossed dipole trap geometry involving two
Gaussian beams, as sketched in Fig. 1. For simplic-
ity we consider here two identical, mutually incoher-
ent beams. The dipole potential for a single beam is

[5] V (x) ≈ −V0e−2(x
2
1+x

2
2)/w

2

/[1 + (x3/zR)2], with V0
the single-beam trap depth, proportional to laser power,
with w the beam waist and with zR = πw2/λL the
Rayleigh length. For the geometry we consider, we have
x1 = X,x2 = Y and x3 = Z for the vertical beam 1
and x1 = Y, x2 = Z and and x3 = X for the horizon-
tal beam 2 (see Fig. 3a). For atoms with energies much
lower than V0, this leads to an approximately harmonic

trap with frequencies ω{X,Y,Z} = {1,
√

2, 1}
√

4V0/mw2.
In general, we distinguish two different energetic regimes
based on the shape of the isopotential curves V (r) = E
(Fig. 3b). For atoms with low energies E < V0, the clas-
sical trajectories are bounded within the crossing region
of size ∼ w × w. Atoms with energies V0 < E < 2V0, on
the other hand, experience classical trajectories extend-
ing far in the arms of the CDT, over distances ∼ Rmax

many times greater than the size of the trapped gas in
the crossing region (typically � w for cold clouds with
kBT � V0). The high-energy atoms populating the arms
of the CDT thus form a very dilute cloud, not necessarily
in equilibrium with the majority of atoms in the crossing
regions. From this simple picture, the trap depth relevant
for evaporative cooling is on the order of V0, the energy
where the isopotential maximum radius and the density
of states ρ(E) (calculated semiclassically) both increase
dramatically (see Fig. 3c). Including gravity, classical
trajectories with energies ∼ V0 −mgw can escape along
Z, as indicated by the vertical line in Fig. 3c.

It is difficult to make more precise statements about
the value of V0, since it depends on evaporation dynam-
ics, and on the ergodicity of classical trajectories. We
did not carry a detailed kinetic calculation of evapora-
tive cooling in the CDT potential V (r) (as done in [6]
for a truncated harmonic trap), a task that goes well be-
yond the scope of this work. We assume here that we
can take V0 as the relevant trap depth determining the
evaporative cooling dynamics. This has no impact on our
experimental results, as V0 is merely used as a label for
each point on a given evaporation trajectory.

B. Discussion on the conservation of magnetization

A typical evaporation trajectory is shown in Fig. 4.
The behavior of the total atom number and tempera-
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FIG. 4. Evaporation trajectory showing atom number, mag-
netization and temperature versus trap depth. The solid line
shows a numerical interpolation which we use to extract the
critical values for each quantity from the critical trap depth
(see Section IV).

ture are expected, but one can also notice a variation of
the magnetization mz with trap depth. This behavior
seems at first glance incompatible with the announced
conservation law of mz. However, the argument that
microscopic binary collisions driving the system to ther-
mal equilibrium conserve mz disregards the dynamics of
evaporative cooling. Once a condensate forms in one of
the Zeeman components, evaporation tends to eliminate
preferentially atoms in the other Zeeman states.

In spite of this variation, the conservation of magne-
tization is still relevant to determine the state of kinetic
equilibrium reached by the system. The evaporative cool-
ing dynamics is very slow compared to the microscopic
thermalization time on which the gas returns to thermal
equilibrium. The thermalization time can be estimated
from the classical collision time 1/(nσvth) (here, n is the
spatial density of the thermal component, σ the s−wave
scattering cross section, vth =

√
kBT/πm the thermal

velocity and m the mass of a sodium atom). For typical
parameters in our experiment, one finds a thermaliza-
tion time on the order of a ms while typical evaporation
times range are around 1 s. As a result, the quantum
gases studied in this work can be considered to follow
the slowly changing magnetization, with the relevant ki-
netic equilibrium state at each time determined by a
magnetization-conserving Hamiltonian. We note that the
same conclusion follows naturally from a classical model
of evaporative cooling [7], where the evaporation rate
scales as τ−1ev ∼ nσvthe−η, with η = V0/kBT the evapora-
tion parameter. Since η ∼ 8 in typical experiments, the
separation of scales between the microscopic thermaliza-
tion time and the evaporation time always holds.
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FIG. 5. Calibration of absorption imaging. a: Determina-
tion of α0. Filled and empty symbols stands for the measured
Thomas-Fermi sizes along the two trapping axis X and Y. The
solid lines represent the calculated ones. b: Normalized Zee-
man populations versus rotation time, starting from a cloud
initially polarized in mF = +1. Filled red symbols stands for
mF = +1, filled black symbols for mF = 0 and empty blue
symbols for mF = −1. c: The uncorrected atom number
displays an oscillation at the Rabi frequency. d: Apart from
shot-to-shot variations, the post-calibrated atom number re-
mains constant during the Rabi oscillation.

III. IMAGE ANALYSIS

A. Model and calibration of the scattering
cross-sections

For a two-level atom, the atomic column density ñ =∫
n(r)dz integrated along the probe line of sight z can

be obtained from

ñ = − 1

σ0

(
log

(
I1
I2

)
+
I1 − I2
Isat

)
, (1)

where σ0 is the resonant absorption cross-section, Isat the
saturation intensity, and I1 and I2 refer to the intensity
profiles with and without atoms, respectively.

The multilevel structure of real atoms makes the anal-
ysis of light scattering in experiments more complicated
than Eq. (1) suggests. The number of scattered photons
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per atoms will depend not only on the initial internal
state, but also on the repumping and probe light po-
larizations, on the detailed dynamics of the repumping
pulse, etc. Computing an effective cross-section for a
real experiment would require a detailed modeling of the
sequence, presumably very sensitive to errors due to im-
perfect characterization of the polarizations and spatial
modes of the lasers.

Here we use an heuristic extension of the two-level
atom model. We assume the column density ñmF

for
the Zeeman component mF can be written as

ñmF
= −αmF

σ0

(
log

(
I1
I2

)
+
I1 − I2
Isat

)
, (2)

with αmF
a coefficient to be determined. We calibrate

the saturation intensity Isat as in [8]. In this work, we
typically use probe intensities ∼ 0.1 Isat so that the sec-
ond term in Eq. (2) is a small correction to the column
density. We determine the coefficients αmF

in two steps.
First, we obtain the α0 coefficient based on measurements
of the BEC size vs atom number. To do this, we pre-
pare equilibrium, spin-polarized condensates in mF = 0
by distilling out mF = ±1 atoms with a magnetic field
gradient. We obtain the sizes of the condensate after a
time of flight using a Thomas-Fermi fit, and compare our
measurements to Gross-Pitaevskii calculations [4]. The
calculated sizes, which increase with N for repulsive in-
teractions, are found by solving numerically the three-
dimensional Gross-Pitaevskii equation and performing
the aforementioned Thomas-Fermi fit to the simulated
data. We obtain the value of α0 by matching the mea-
sured and expected sizes.

In a second step (Fig. 5 b-c), we determine the ratios
α+1/α0 and α−1/α0 by driving Rabi oscillations between
the Zeeman states using a resonant radiofrequency [2].
We adjust the ratios α0/α+1 and α−1/α+1 and the Rabi
Frequency Ω to fit the relative population (n+1,0,−1).
Fig. 5 c shows that the total atom number oscillates at
the Rabi frequency before correction, and is almost con-
stant (with some residual fluctuations) after correction.

IV. EXTRACTING Tc

A. Bimodal fits

We model the measured column densities using the
standard parametrization, i.e. by the sum of a Bose-
Einstein distribution describing the thermal component
and a Thomas-Fermi profile describing the condensate
[9]. We fit the three Zeeman components simultane-
ously, with a few assumptions to reduce the number of
fitting parameters. We assume in particular a fugacity
z = 1, equal temperatures for all three thermal clouds,
and equal condensate sizes in accordance with the single-
mode approximation. From the fit parameters, one can
obtain in principle the temperature, the total population
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FIG. 6. Extraction of the temperature by fitting thermal den-
sity profiles to images with a varying mask sizes. a: Typical
single shot image with a mask of radius 30µm. b: Integrated
density profile from image a. c: Size of the fitted Bose distri-
butions versus mask size. The final thermal size is obtained
by an average over the “plateau” delimited by the vertical
blue lines. For mask sizes larger than ≥ 70 µm, the fit fails
because imaging noise overtakes the atomic signal. For mask
sizes below 40 µm, condensed atoms still contribute to the
masked image.

and the condensate fraction of each component. How-
ever, the parametrization is heuristic and prone to sys-
tematic errors. The bimodal fit is sensitive to image
noise when the condensate fraction is below 5 %. Addi-
tionnally, systematic deviations from the Thomas-Fermi
profile due to the tight confinement become problem-
atic when the condensate fraction is higher than approxi-
mately 50 % [1]. For this reason, we only use the bimodal
fits to obtain the total populations of each component
and the geometric center of each cloud, and use other
methods which we believe more reliable to determine the
temperature and the critical point.

B. Determination of the temperature from the
thermal tails of the atomic distribution

We extract the temperature from the wings of the ther-
mal components. The basic assumption is that the wings
of the time-of-flight distribution are determined by the
wings of the in-trap momentum distribution, which is
well approximated by an ideal Bose-Einstein distribution
for large enough momenta. To determine the range of
momenta where this description applies, we apply circu-
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FIG. 7. Optical density as a function of evaporation time,
showing the increase of optical density at the BEC transition
happens only in the center of the momentum distribution.
The inset shows the correspondence between plot symbols and
integration regions. The black line shows the Bose-Einstein
transition extracted from a fit to the data, and the gray area
the 66 % confidence interval.

lar masks at the center of each cloud, as shown in Fig. 6 a,
and fit the outer atomic distribution with a Bose-Einstein

distribution ∝ g2
[
e−r

2/R2
th

]
, where gn(x) =

∑∞
k=1 x

k/kn

is a Bose-Einstein function. The fitted size varies when
the size of the mask increases, and eventually reaches
a plateau (Fig. 6 c). We identify this plateau with the
dilute wings of the cloud, well reproduced by an ideal
Bose-Einstein distribution. We extract the temperature
from kBT = mR2

plateau/t
2, with t the time of flight and

where Rplateau is the average of Rth for five mask sizes
between 50 µm and 60 µm.

C. Determination of the threshold for
Bose-Einstein condensation from the peak density

The critical point is detected by a sudden change in
the peak value of the optical density ODmF

= σ0ñmF
of

each Zeeman component mF . We choose a square inte-
gration zone of side 3 × 3 pixels near the center of each
component to evaluate the peak optical density. The
evolution of OD+1 as a function of evaporation time is
shown in Fig. 7, and shows an abrupt change at a partic-
ular trap depth which we identify as critical point. We
extract the critical trap depth from a piece-wise linear fit
to the data near the critical point. Finally, we use the
critical trap depth determined to evaluate the atom num-
ber, temperature, magnetization and trap frequency (see
Fig. 4) at the critical point. Typical statistical uncertain-
ties on the temperature and atom number determined in
this way are evaluated to ±10 % and ±7 %, respectively
(1/e confidence intervals). Additionally, we estimate a
possible systematic error around 10 % on the calibration
of the atom numbers. This has only a small effect on the
calculated critical temperature Tc,id ∝ ωN1/3 for single-

component ideal gases used as a reference scale in the
paper (errors on ω are negligible).

We have verified that the sudden increase of the opti-
cal density is observed only in the center of the distribu-
tion. Choosing other off-centered regions is compatible
with the behavior of a slowly cooling thermal gas (see
Figure 7).

V. THEORETICAL MODELS OF SPINOR
GASES AT FINITE TEMPERATURES

A. Ideal spin 1 gas

We first calculate the BEC critical temperature of a
spin 1 Bose gas with fixed magnetization Mz and atom
number N [10–12]. The gas is trapped in a harmonic
potential with frequencies ωi (i = x, y, z). The Gibbs
free energy is written as

G = Hsp −
∑

mF=0,±1
µmF

NmF
, (3)

with Hsp the sum of the kinetic and potential energies,
NmF

the population of Zeeman state mF , and q the
quadratic Zeeman energy. The chemical potentials for
each Zeeman component are given by µ±1 = µ ± λ and
µ0 = µ + q, where the Lagrange multipliers µ and λ en-
sure conservation of N and Mz on average.

Following the usual method [4], we write the Zee-
man population NmF

= Nc,mF
+ N ′mF

as the sum of
the population of the trap ground state Nc,mF

and of
all excited state N ′mF

. Here and in the following, the
prime subscript denotes quantities related to non con-
densed atoms. We calculate N ′mF

from the semi-classical

formula [13], N ′mF
= (kBT/~ω)

3
g3
(
eβµmF

)
, with ω =

(
∏
i=x,y,z ωi)

1/3. For a given T , mz and q, we find nu-
merically the chemical potential µ and λ by solving the
set of equations

∑
mF

NmF
= N and N+1 −N−1 = Mz.

The BEC transition takes place in the Zeeman compo-
nent mF when µmF

= 0. As the temperature is lowered,
the Zeeman components condense sequentially. Ideal gas
theory predicts critical temperatures shown as dashed
lines in Fig. 8. For q > 0, there are two regimes depending
on the magnetization. For low mz, the mF = 0 compo-
nent condenses first at a critical temperature Tc1, and the
mF = +1 component condenses second at a lower crit-
ical temperature Tc2 ≤ Tc1. For high mz, the sequence
is reversed. We remark that the mF = −1 component
never condenses, except in the limiting case q = 0 where
it condenses simultaneously with mF = 0. The condi-
tions on the chemical potentials for each condensation
temperature are summarized in Table I.



6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

mz

T
c
/
T
c
,i
d

(a) (b)

q = 8.9 kHz q = 69Hz

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ideal gas

Hartree-Fock

mz

FIG. 8. a. Critical temperatures for q/h = 8.9 kHz for N = 5 · 104, ω = 2π × 1200 s−1. The red and blue lines show Tc1 and
Tc2, respectively. The solid lines are calculated using the Hartree-Fock model and the dashed lines using ideal gas theory. The
and q/h = 69 Hz b. Close-up view of the region near m∗
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prediction of a so-called “semi-ideal” model intermediate between the ideal gas and the complete Hartree-Fock treatment.

Condensation order mF = +1 first mF = 0 first

Tc1 µ+1 = 0 µ+1 = λ− q

µ0 = q − λ µ0 = 0

µ−1 = 0 µ−1 = −λ− q

Tc2 µ+1 = 0 µ+1 = 0

µ0 = 0 µ0 = 0

µ−1 = −2q µ−1 = −2q

TABLE I. Summary of the conditions of condensation in the
ideal case. Here Tc1/2 denotes the first/second critical temper-
ature, µmF is the effective chemical potential for the Zeeman
component mF , λ is a Lagrange multiplier enforcing a given
magnetization and q is the quadratic Zeeman energy. Note
that λ > 0 when mz > 0.

B. Hartree-Fock model

We now consider the effect of interactions, described
by the Hamiltonian [14]

Ĥint =
g

2

∫
d3r n̂2(r) +

gs
2

∫
d3r Ŝ

2
(r). (4)

Here n̂mF
(r) denotes the spatial density of the mF com-

ponent, n̂(r) =
∑
mF

n̂mF
(r) the total density, and Ŝ

the spin density. In the following we also note n′mF
(r)

the density of non-condensed atoms in state mF , and the
total non-condensed density n′(r) =

∑
mF

nmF
(r).

We make a series of approximations to simplify the
problem and compute the thermodynamic properties:

1. We treat the interactions in the Hartree-Fock ap-
proximation [15–17],

2. We neglect the spin-dependent interaction term
∝ gs in comparison with the spin-independent in-
teractions ∝ g,

3. We assume that a semi-classical approximation (for
the condensate and for the excited atoms) is valid.

We restrict ourselves to a regime where at most one Zee-
man component condenses. This component is identified
by the label c in the following.

Under these assumptions, the density profile of the
condensate is determined by

nc(r) =
1

g
max {µc − V (r)− g [n′(r) + n′c(r)] , 0 } , (5)

with a BEC index c corresponding to 0 or +1 depend-
ing on the particular case under consideration. The last
term describe interactions between condensed and non-
condensed atoms, with a strength 2g for atoms in the
same Zeeman component c as the condensate and g oth-
erwise. The density profiles of the thermal components
are determined by the set of non-linear equations,

n′mF
(r) =

1

λ3T
g3/2

{
eβ[µmF

−WmF
(r)]
}
. (6)

Here WmF
denotes a self-consistent mean-field potential

for non-condensed atoms in the Zeeman state mF ,

WmF
= g

[
(1 + δmF ,c)nc + n′ + n′mF

]
+ V. (7)

Eqs. (5,6) must be solved self-consistently for the thermo-
dynamic potentials parameters µ, η, imposing the con-
straints of total atom number and magnetization.

At first sight, it may seem straightforward to extend
the model discussed above to include more than one
condensed component and spin-dependent interactions
terms ∝ gs. However, antiferromagnetic interactions
tend to induce phase separation when mF = 0 and
mF = ±1 are simultaneously condensed [10, 18]. In the
experiment, this trend is penalized by the high energetic
cost of domain walls in a tight trap, stabilizing a con-
densate in a single spatial mode. This effect is due to
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the so-called “quantum pressure” term neglected in the
semi-classical approximation. To include it in a consis-
tent manner, one would need to solve the complete Gross-
Pitaevskii equation as well as Schrödinger-like equations
for the excited modes in a self-consistent manner. We
did not attempt to do such a calculation, which promises
to be numerically taxing in three dimensions.

C. Scaling properties of the Hartree-Fock model

The simplified Hartree-Fock model of Section V B
admits a scaling form. We introduce the criti-
cal temperature of a single component ideal gas,

kBTc,id = ~ω (N/ζ(3))
1/3

, and two associated spa-
tial scales, the thermal De Broglie wavelength λc,id =

(2π~2/mkBTc,id)1/2 and the thermal cloud radius Rc,id =

(kBTc,id/mω
2)1/2. We now introduce dimensionless vari-

ables denoted with a tilde symbol. Energies are scaled
by Tc,id, and densities by 1/λ3c,id.With these notations,
any thermodynamic state function can be rewritten as
universal functions of the scaled temperature T̃ , chemi-
cal potentials µ̃, η̃ and quadratic Zeeman energy q̃, and
of the dimensionless strength of interactions γ

γ =
g

λ3c,idkBTc,id
=

2a

λc,id
. (8)

This is a natural extension of the scaling behavior noted
for single-component Bose gases [13]. In three dimen-
sions, this behavior holds because of the semi-classical
approximation. Including the kinetic energy in the the-
ory would break the universality.

D. Example of results from the Hartree-Fock
model

As an example, the calculated critical temperature for
q/h = 8.9 kHz is shown in Fig. 8a for fixed atom num-
ber and trap frequencies. One observes a significant
shift downwards of the interacting model from the non-
interacting one, as expected for repulsive interactions
[15].

In the ideal gas model, the critical temperature curves
Tc,1 and Tc,2 are continuous and cross at a particular
point labeled as m∗z. In contrast, the Hartree-Fock model
shows a discontinuity of the second critical temperature
near m∗z. To understand this feature, we turn to a “semi-
ideal model”, which is simpler to discuss but preserves
the discontinuity (Fig. 8b). In the semi-ideal model [19],
one retains only terms proportional to gnc and neglects
terms proportional to gn′mF

in Eqs. (5,6). Uncondensed
atoms experience a mean-field potential which differs
from the harmonic trapping potential only within the
volume of the condensate, and depends on their inter-
nal state : either a W−shaped potential for atoms in
the same Zeeman state the condensate (similar to the

single-component case [19]) or a “flat-bottom” potential
for atoms in other Zeeman states [20, 21].

To explain the discontinuity of Tc,2, we consider the
temperature regime Tc,1 > T > Tc,2, and the case
mz < m∗z first. The condensate forms in mF = 0,
and the magnetization is entirely carried by the ther-
mal component (N ′+1 − N ′−1 = Mz). The condition for
second condensation is µ+1 = µ+λ = gnc(0), with nc(0)
the condensate density in the center of the trap. Since
µ0 = µ + q = gnc(0), this leads to the same condensa-
tion criterion λ = q as for an ideal gas. Lowering the
temperature leads to both a decrease of the total ther-
mal population N ′ = N ′0 + N ′+1 + N ′−1 and an increase
in the degree of polarization of the thermal component,
P ′z = (N ′+1−N ′−1)/N ′. Note that mean-field interactions
compared to the one of an ideal gas at the same tempera-
ture T and chemical potential λ < q. For “high” temper-
atures T . Tc,1, when the condensate population is small
(N ′ ∼ N), the conservation of magnetization amounts to
mz ≈ P ′z. The flattening of the mean-field potential for
uncondensed mF = ±1 atoms leads to a slight increase of
the atom number Nc,mF

at which these Zeeman compo-
nents can condense. Equivalently, the chemical potential
λ must adjust to a value < q in order to maintain a
given magnetization. This effect prevents condensation
in mF = +1 in a wide temperature range, until the con-
densate population becomes sufficiently large. In that
regime, the conservation law mz = P ′z ×N ′/N is fulfilled
if the decrease of N ′/N is compensated by an increase of
P ′z. This corresponds to an increase of λ which eventu-
ally reaches the critical value λ = q. As a consequence,
the formation of a condensate in the minority compo-
nent mF = +1 is delayed to low temperatures, when the
condensed fraction in mF = 0 is large enough.

In the other case mz & m∗z, the BEC first appears in
the mF = +1 component. The magnetization is now
shared between the condensate and the thermal compo-
nent, and mz = Nc/N +P ′z×N ′/N . As the temperature
decreases and the condensate population in mF = +1 in-
creases, the conservation of mz is ensured by decreasing
N ′+1 and increasing N ′0. As a result, the condensation
in mF = 0 is not merely shifted to lower values by the
mean-field potential. The shift depends on the conden-
sate population at Tc,2 and vanishes for mz = m∗z in the
semi-ideal model.

The explanation of the discontinuity in the more com-
plete Hartree-Fock theory is qualitatively the same in the
semi-ideal model.

E. Comparison with experimental data

In order to make a comparison of the Hartree-Fock
model with the experimental data, we need to account
for the variations of the parameters N,ω across all data.
These parameters naturally decrease while the evapora-
tion ramp proceeds to lower temperatures. As a result,
for a given evaporation trajectory N,ω are smaller at
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FIG. 9. Comparison between the experimental data and the Hartree Fock model for q/h = 8.9 kHz (a,b), q/h = 69 Hz (c,d),
and q/h = 2.8 Hz (e,f). For each column, the top panel shows the critical temperatures. The bottom panel shows the value of
the interaction parameter γ for each measured critical temperature (circles), as well as the interpolated curves γ(mz) used as
input for the Hartree-Fock calculation (dashed lines). In each panel, red, gray and dark blue colors correspond to mF = +1,
mF = 0 and mF = −1, respectively.

the second critical temperature than at the first. Ad-
ditionally, the magnetization varies as well as evapora-
tion proceeds (see Sec. II B). Instead of a couple of crit-
ical temperatures Tc1, Tc2 for given mz, N, ω, we have
in fact two sets of parameters (Tc1,mz1, N1, ω1) and
(Tc2,mz2, N2, ω2).

One possibility is to do a point-by-point comparison.
This results in a sparsely sampled curve that does not
reflect the full behavior of the critical temperatures. To
cure this, we have performed an interpolation of the ex-
perimental parameters to use as input in the calculation.
We used the scaling properties of the thermodynamic
functions discussed in Sec. V C. We perform a numeri-
cal interpolation of the experimentally determined val-
ues of γ calculated from Eq. (8), the measured Tc1 and
g = 4π~2a/mNa. The s-wave scattering length a is mea-
sured in [22] and mNa is the mass of a sodium atom.
We plot the final results in reduced units. The critical
temperature curves shown in the main article are repro-
duced in Fig. 9, together with the measured values of γ
and their interpolations.

F. Further corrections to the ideal gas critical
temperature

a. Finite-size effects : The ideal gas theory is com-
puted with the semi-classical formula, valid in the ther-
modynamic limit for trapped gases [13], e.g. when N →

∞ and ω → 0 keeping Nω3 constant. For finite N and ω,
corrections to the thermodynamic limit decrease the crit-
ical temperature by δTc/Tc,id ' −0.73N−1/3. This cor-
rection is between −1% (Nc = 105) and −4% (Nc = 104)
for our experimental parameters.

b. Trap anharmonicity : The CDT is only harmonic
near its minimum and has a finite trap depth. The most
energetic atoms are sensitive to the non-harmonic shape
of the CDT potential and also to the finite trap depth (see
Fig. 3). The evaporation parameter η = V0/kBT remains
large (η > 7) during the evaporation ramp, so that the
fraction of atoms affected by these effects is small.

The critical atom number and temperature are affected
by two separate effects. First, the finite trap depth in-
troduces an energy cutoff that reduces the critical atom
number and increases Tc (this effect is likely to be en-
hanced when gravity is taken into account). Second, the
anharmonic part of the CDT potential tend to increase
Nc and thus to reduce of Tc (Gaussian traps are “looser”
than pure harmonic traps near their edges). The second
effect becomes more important for high values of η.

We have estimated the two effects by evaluating nu-
merically the critical atom number in a CDT potential,
using

Nc =

∫ V0

0

ρ(ε)fBE(ε)dε, (9)

with fBE(ε) = (eβε − 1)−1 the critical Bose-Einstein dis-
tribution and ρ(ε) the density of states. We have taken
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a potential of the form given in Section II A, with beam
sizes 21µm and 25µm for the two arms of the CDT.
For an evaporation parameter 7 < η < 10 as in our ex-
periments, the effect of the anharmonicity is dominant,
and we evaluate a reduction of the critical temperature
around -3% for η = 8. We did not consider in this calcu-
lation atoms possibly trapped in the arm region, which
would slightly further the magnitude of the shift.

c. Combined effect of the finite-size and anharmonic-
ity corrections: To summarize this Section, the combi-
nation of finite-size effects and of the deviation of the
CDT potential from an harmonic one can lower the crit-
ical temperature of a non-interacting gas by ∼ −5 %

compared to the semi-classical prediction in a harmonic
trap. The finite-size effects are not easily incorporated
in the Hartree-Fock model. Trap anharmonicity effects
are difficult to evaluate rigorously due to the ambiguity
in the precise definition of the trap depth and of the role
of a small, high energy population in the arms of the
dipole trap. As a result, we did not include these ef-
fects in the comparison between theory and experiments.
However, the order-of-magnitude estimate presented here
show that they could well explain most of the residual
shift between the experimental data and the Hartree-
Fock model.
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