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Superfluidity and relaxation dynamics of a laser-stirred two-dimensional Bose gas
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We investigate the superfluid behavior of a two-dimensional (2D) Bose gas of 87Rb atoms using classical field
dynamics. In the experiment by R. Desbuquois et al. [Nat. Phys. 8, 645 (2012)], a 2D quasicondensate in a
trap is stirred with a blue-detuned laser beam along a circular path around the trap center. Here, we study this
experiment from a theoretical perspective. The heating induced by stirring increases rapidly above a velocity vc,
which we define as the critical velocity. We identify the superfluid, the crossover, and the thermal regime by
a finite, a sharply decreasing, and a vanishing critical velocity, respectively. We demonstrate that the onset of
heating occurs due to the creation of vortex-antivortex pairs. A direct comparison of our numerical results to the
experimental ones shows a good agreement, if a systematic shift of the critical phase-space density is included.
We relate this shift to the absence of thermal equilibrium between the condensate and the thermal wings, which
were used in the experiment to extract the temperature. We expand on this observation by studying the full
relaxation dynamics between the condensate and the thermal cloud.

DOI: 10.1103/PhysRevA.95.043631

I. INTRODUCTION

Frictionless flow is one of the defining features of superflu-
idity [1]. For an obstacle moving at velocity v in a superfluid,
the frictionless nature of the superfluid near the obstacle breaks
down when v exceeds a certain critical velocity vc. According
to Landau’s criterion this critical velocity is estimated as
vc = mink[ε(k)/h̄k], where ε(k) is the excitation spectrum,
h̄ is the Planck constant, and k is the wave vector, with k = |k|
(see Refs. [1–3]). An object moving at a velocity above vc

dissipates energy via the creation of elementary excitations, for
example, vortices or phonons. Superfluidity was first observed
in liquid helium 4 and helium 3. Since then, superfluidity has
been studied in quantum gas systems of bosons [4–8], fermions
[9–11], and Bose-Fermi mixtures [12].

The phenomenon of superfluidity is closely related to the
Bose-Einstein condensation of interacting gases. Interestingly,
a uniform two-dimensional (2D) system cannot undergo the
Bose-Einstein condensation transition because the formation
of long-range order is precluded by thermal fluctuations
[13,14]. However, it forms a superfluid with quasi-long-range
order via the Berenzinskii-Kosterlitz-Thouless (BKT) mech-
anism [15]. The quasi-long-range order of this state refers to
the algebraic decay of the single-particle correlation function.
The algebraic exponent of this correlation function increases
smoothly with the temperature. At the critical temperature, the
superfluid density of the system undergoes a universal jump
of 4/λ2, where λ is the de Broglie wavelength. Experiments
on 2D bosonic systems, such as a liquid helium film [16], and
trapped Bose gases [17–21], have shown indications of the
BKT transition. Furthermore, a trapped 2D system can form a
Bose-Einstein condensate due to the modified density of states
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[22,23] and leads to an interesting interplay of the two phase
transitions [24].

Quasi-long-range order in 2D bosonic systems can
be detected via interference and time-of-flight techniques
[17–21,25–27]. However, as a direct method, superfluidity of
ultracold atomic gases was probed using a local perturbation,
in particular, via laser stirring. For example, superfluidity of
3D Bose-Einstein condensates was tested via laser stirring in
Refs. [4] and [11]. In the experiment [26], thermal relaxation
of a perturbed 2D quasicondensate is studied.

Reference [8] reports on the stirring of a trapped 2D Bose
gas of 87Rb atoms with a blue-detuned laser, moving in a
circular path around the trap center. The circular motion
ensures that the harmonically trapped 2D gas is probed at
a fixed phase-space density. By choosing different radii of
the circular motion, the superfluid transition was explored.
In this paper, we provide a quantitative understanding of the
experiment using a c-field simulation method. We demonstrate
that a blue-detuned laser of intensity comparable to the
mean-field energy causes dissipation due to the creation of
vortex-antivortex pairs. This is in contrast to laser stirring
with a red-detuned laser [11], where dissipation occurs via
phonons [28]. Furthermore, we study the relaxation dynamics
of the stirred gas following the stirring process, which shows a
slow energy transport between the condensate and the thermal
cloud. We identify the origin of this slow relaxation to be
vortex recombination and diffusion. We show that this effect
can explain quantitatively the shift of the measured critical
phase-space density in the experiment.

This paper is organized as follows. In Sec. II we describe
the simulation method that we use. In Sec. III we determine
the critical velocity vc of the stirred gas, based on which we
identify the superfluid-to-thermal transition. In Sec. IV we dis-
cuss the dissipation via vortex pairs. In Sec. V we compare the
simulation results with the experiment. In Sec. VI we analyze
the relaxation of the stirred gas, and in Sec. VII we conclude.
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II. SIMULATION METHOD

We simulate the stirring dynamics of a weakly interacting
2D bosonic system using the c-field simulation method that
we used for a 3D system in Ref. [28]. We describe this
method in the following. We start with the Hamiltonian of
the unperturbed system,

Ĥ0 =
∫

dr
[
− ψ̂†(r)

h̄2

2m
∇2ψ̂(r) + V (r)ψ̂†(r)ψ̂(r)

+ g

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

]
. (1)

ψ̂ and ψ̂† are the bosonic annihilation and creation operators,
respectively. The 2D coupling parameter g is given by g =
g̃h̄2/m, where g̃ = √

8πas/ lz is the dimensionless interaction,
m is the atomic mass, as is the 3D s-wave scattering length,
and lz = √

h̄/(mωz) is the harmonic oscillator length of the
confining potential mω2

zz
2/2 in the z direction. ωz is the trap

frequency along the z direction. V (r) describes the external
potential, which is a harmonic trap, Vh(r) = mω2

r r
2/2. ωr is

the trap frequency in the radial direction and r = (x2 + y2)1/2

is the radial coordinate. We introduce a time-dependent term
to describe laser stirring,

Ĥs(t) =
∫

dr V (r,t)n̂(r), (2)

where V (r,t) is the time-dependent stirring potential and n̂(r)
is the density operator at the location r = (x,y). The stirring
potential is a Gaussian with width σ and strength V0,

V (r,t) = V0 exp

(
− [r − rs(t)]2

2σ 2

)
, (3)

which is centered at rs(t) = (xs(t),ys(t)). We move (xs,ys)
along a circular path as a function of time t .

We perform numerical simulations by mapping this system
on a lattice system, which also introduces a short-range cutoff;
see Appendix A. This short-range cutoff is of the order of
the healing length ξ = h̄/

√
2mgn, with n being the density.

We describe both the equations of motion and the initial
state within a c-number representation, which corresponds to
formally replacing the operators ψ̂ with complex numbers
ψ . Furthermore, we approximate the initial ensemble by a
classical ensemble, within a grand-canonical ensemble of
temperature T and chemical potential μ. We sample the initial
states via a classical Metropolis algorithm.

The simulation setup consists of a disk-shaped 2D circular
condensate of 87Rb atoms. This choice of the 2D circular
condensate is inspired by the experimental setup in Ref. [8].
In the simulations we consider N = 38 162−93 267 87Rb
atoms confined by the harmonic potential in both the radial
and the transverse directions. The trap frequencies are ωr =
2π × 25 Hz and ωz = 2π × 1.5 kHz. Here the scattering
length is as = 5.3 nm, which yields g̃ = √

8πas/ lz = 0.093.
The temperature of the trapped gas is in the range T =
63–85 nK. The simulation parameters that we use are in the
typical range of the experimental parameters in Ref. [8]. For
simulations of a quasi- and a pure-2D trap geometry we use
lattices of 180 × 180 × 5 and 200 × 200 sites, with the lattice
discretization length l = 0.5 μm, respectively. We choose l

such that it is smaller than, or comparable to, the healing
length ξ and the de Broglie wavelength λ =

√
2πh̄2/mkBT

(see Ref. [29]). The trapped gas is in the pure-2D regime if
kBT , μ < h̄ωz. When kBT and μ are comparable to h̄ωz, it is
in the quasi-2D regime.

After initializing the trapped system at temperature T , we
switch on the stirring potential described by Eq. (3). In the
experiment [8] the trapped gas is stirred with a blue-detuned
laser beam moving in a circular path around the trap center.
For the circular motion of stirring we choose (xs,ys) =
R(cos(ωmt), sin(ωmt)), where R and ωm are the stirring radius
and frequency, respectively. For the stirring potential we use
the strength V0 = kB × 80 nK and the width σ = 1 μm, in
accordance with the experiment. The stirring sequence is the
following: We linearly switch on the stirring potential over
5 ms, let it stir the system for 200 ms, and then switch it
off over 5 ms. This is again inspired by the experimental
choices. We repeat this for various stirring velocities v = Rωm

by changing both R and ωm. By choosing different radii R we
stir the different regimes of the trapped gas, the superfluid, the
thermal, and the crossover regime.

After stirring we calculate the total energy E = 〈H0〉 using
the unperturbed Hamiltonian in Eq. (1), where we use ψ

instead of ψ̂ . From this energy we determine the equilibrium
temperature Teq of the stirred gas. We infer this temperature
by numerically inverting the temperature dependence of the
equilibrium state, Eeq = Eeq(T ). We elaborate on this in
Appendix A. From the temperature difference between the
stirred and the initial system, the heating 	Teq = Teq − T is
determined. We also calculate the local energy, as well as
the vortex and antivortex distribution. We define the local
energy as Ei = − J

2

∑
j (ψ∗

i ψj + ψ∗
j ψi) + U

2 n2
i + Vini , where

j refers to the nearest-neighbor sites. ψi , ni = |ψi |2, and
Vi are the complex-valued field, the density, and the trap
potential at site i, respectively. J and U are the Bose-Hubbard
parameters (see Appendix A). For the vortex distribution, we
calculate the phase winding around the lattice plaquette of
size l × l, using

∑
� δφ(x,y) = δxφ(x,y) + δyφ(x + l,y) +

δxφ(x + l,y + l) + δyφ(x,y + l), where the phase differences
between sites is taken to be δx/yφ(x,y) ∈ (−π,π ]. φ is the
phase field of ψ . We identify a vortex and an antivortex by
a phase winding of 2π and −2π , respectively. By counting
all vortices and antivortices we determine the total number of
vortices. We restrict this counting to the superfluid region of
the gas as we describe below.

III. SUPERFLUID RESPONSE

To study the superfluid behavior we stir a 2D quasi-
condensate with a repulsive Gaussian potential. We prepare
a trapped 2D quasicondensate of N = 93 267 87Rb atoms
at temperature T = 85 nK. We show the simulated density
profile of the trapped gas in Fig. 1(a). We stir the gas with a
circularly moving, repulsive stirring potential at stirring radius
R = 14.4 μm. As mentioned in Sec. II, we use the strength
V0 = kB × 80 nK and the width σ = 1 μm for the stirring
potential. This strength V0 is well above the local mean-field
energy μloc ≈ kB × 21 nK at the stirring location. After stirring
we determine the induced heating 	Teq = Teq − T from the
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FIG. 1. Determining the superfluid response and critical velocity. (a) Simulated density profile (circles) of the trapped 2D gas. We stir the
gas with a repulsive Gaussian potential (green Gaussian beam of width σ = 1 μm) on a circular path around the trap center at stirring radius
R. The phase-space density D of the gas decreases with increasing R. The prediction for the BKT transition in a uniform gas [31] yields
the critical phase-space density Dc = 8.3, which corresponds to the cloud density nBKT = 19.8/μm2 at T = 85 nK. Using the local density
approximation, the border of the superfluid region is expected to be at rBKT = 16.8 μm. (b) Simulated heating 	Teq (circles) as a function of the
stirring velocity v = Rωm, at R = 14.4 μm. 	Teq is determined from the equilibrium temperature Teq of the stirred gas. We determine a critical
velocity vc of 0.58 ± 0.02 mm/s using the fitting function in Eq. (4). Dashed vertical line, vc; solid green line, fitted curve. The Bogoliubov
estimate of the phonon velocity at R is vB = 1.4 mm/s. (c) Critical velocities vc (circles) determined at various radii R. The y-axis error bars
show the standard deviation. The x-axis error bars denote the size of the stirring potential (1/

√
e of diameter 2σ ).

equilibrium temperature Teq of the stirred gas (see Sec. II for
details). By varying the stirring frequency ωm we determine
	Teq as a function of the stirring velocity v = Rωm. We show
	Teq determined for various velocities v in Fig. 1(b). The
induced heating is almost negligible at low v, its onset occurs
at a velocity vc, and for v > vc it increases rapidly. We quantify
the onset of heating using a fitting function,

(	T )fit = A max
[
0,

(
v2 − v2

c

)] + B, (4)

which is discussed in Ref. [30], with the free parameters A,
B, and vc. For the simulated heating shown in Fig. 1(b), this
function gives a critical velocity of vc = 0.58 ± 0.02 mm/s.
We compare this critical velocity to the Bogoliubov estimate
of the phonon velocity vB = 1.4 mm/s at the stirrer location.
The Bogoliubov velocity is determined by vB = h̄

√
g̃n/m.

The observed critical velocity is vc ≈ 0.4vB. This is notably
different from the case of an attractive stirring potential, where
vc ≈ vB [28]. We explain this reduction in vc for a repulsive
stirring potential in Sec. IV.

By choosing different radii R we explore the various
regimes of the trapped gas. We use the same strength V0 and
the same width σ as above. For each R, we first determine the
induced heating 	Teq as a function of v and then, by using the
fitting function given in Eq. (4), we determine vc. We show vc

determined at various radii R in Fig. 1(c). The stirring radii
are in the range R = 10–20 μm. For R = 10–16 μm, there
is no significant change in vc. As R reaches the crossover
regime, vc is reduced sharply, and for R above the crossover
regime, vc is zero. According to the BKT prediction in a
uniform system [31] with g̃ = 0.093 combined with the local
density approximation, the crossover regime should occur at
rBKT = 16.8 μm. This prediction is in good agreement with
the crossover regime identified by the simulated vc. Thus,
we clearly identify the superfluid, the crossover, and the
thermal regimes by the finite, the sharply decreasing, and
the zero critical velocities vc, respectively. We note that in
the crossover region the decrease in vc is as sharp as the
size of the stirrer allows. Furthermore, we note that the
observed almost-constant vc for R < rBKT could be due to

the accelerated circular motion and the large strength of the
stirring potential [28].

IV. DISSIPATION MECHANISM

The observed critical velocities are in the range vc =
0.3–0.5vB. To understand what leads to this reduction in
the critical velocity with regard to the phonon velocity, we
investigate the time evolution of the phase field φ(r,t) of a
single realization of the thermal ensemble. We obtain this
phase field from the complex field ψ(r) via the phase-density
representation ψ = √

n exp(iφ). In Fig. 2 we show the phase
evolution of a trapped 2D quasicondensate stirred at R =
12 μm. We use the velocity v ≈ 0.8vB, which is above the steep
onset of dissipation related to the breakdown of superfluidity.
The phase evolution of the unperturbed gas shows rather weak
phase gradients. As stirring is switched on, the phase field
around the stirring potential starts to fluctuate. These fluctua-
tions develop into strong phase gradients, which result in the
creation of vortex-antivortex pairs. This can be confirmed by
calculating the phase winding around each plaquette of our
numerical grid, as described in Sec. II. We show the calculated
phase winding in Fig. 2, where vortices and antivortices are
shown as circles and triangles, respectively. This indeed shows
the creation of vortex-antivortex pairs during stirring. We
recall that the stirring strength V0 = kB × 80 nK is much
larger than the mean-field energy μloc ≈ kB × 30 nK at the
stirring location, which results in a strong reduction in the
density at the stirrer location. This density reduction serves as a
nucleation site for the creation of vortex pairs. We note that this
mechanism of vortex-pair-induced dissipation is suppressed
for an attractive stirring potential, as shown in Ref. [28].
This scenario of dissipation induced by vortex pair creation
is consistent with a recent experiment [32].

V. COMPARISON TO EXPERIMENT

We now compare the results of our simulation with the
experiment [8]. We first show the comparison between the
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FIG. 2. Dissipation due to vortex-antivortex pairs. The phase evolution of a single realization of the trapped gas stirred with a repulsive
Gaussian potential along a circular path at the times t = 5, 25, 50, 100, and 150 ms. The stirring potential (large green circle of diameter 2σ )
moves counterclockwise in a circle at R = 12 μm and velocity v > vc. This creates strong phase gradients, which result in the creation of
vortex-antivortex pairs. We identify a vortex (red circle) and an antivortex (blue triangle) by a phase winding of 2π and −2π around the lattice
plaquette, respectively. The white line indicates the superfluid-thermal boundary circle, based on rBKT. In the thermal region (white region
outside of rBKT) the phase fluctuates strongly. The white color intensity is chosen according to the cloud density. The field of view in each
figure is of size 35 × 35 μm.

experiment and the simulation for the heating as a function of
v. In the superfluid regime, we stir the quasicondensate at the
radius R = 14.4 μm. The simulated density profile is shown in
the inset in Fig. 3(a). After stirring we let the stirred gas relax
for 100 ms of relaxation time and then determine the induced
heating from the temperature of the wings of the cloud. We fit
these wings to the Hartree-Fock prediction,

n(r) = −mkBT

2πh̄2 ln

[
1 − exp

(
μ0 − Vh(r) − 2gn(r)

kBT

)]
, (5)

with the fitting parameters T and μ0. This method is adopted
according to experiment, in which the temperature of the
stirred gas is determined in the same way, following a re-
laxation of 100 ms as well. We denote this heating determined
from the wing temperature Tw by 	Tw = Tw − T , with T

being the initial temperature. We show the simulated 	Tw

and their comparison with the experimental ones for various
velocities v in Fig. 3(a). The measured and simulated heating
are found to be in good agreement if we base the comparison on
	Tw. We also compare the measured 	Tw with the simulated
	Teq determined from the equilibrium temperature Teq of the
stirred gas. We show 	Teq as open circles in Fig. 3(a). They
show agreement at low and intermediate velocities v, whereas

they differ at high v. This noticeable difference at high v is due
to the absence of global thermal equilibrium of the stirred gas.
As explained in Sec. VI, the stirred gas relaxes by transporting
the excess energy between the superfluid in the central part and
the thermal cloud in the periphery, which is a slow process.
The absence of global thermal equilibrium leads to a lower
wing temperature than the equilibrium temperature.

The results shown in Fig. 3(a) indicate that the onset of
heating occurs at a velocity vc, and for v > vc heating increases
rapidly. Both in experiment and in simulation vc is determined
using the fitting function in Eq. (4). In Fig. 3(b) we show the
comparison between the experiment and the simulation for
stirring the thermal region of the trapped gas of N = 38 162
atoms. The simulated density profile of the gas is given in the
inset in Fig. 3(b). Both the measured and the simulated heating
	Tw are in good agreement. The simulated 	Teq determined
from the equilibrium temperature of the system are below the
measured 	Tw at high v. As we explain in Sec. VI, this is again
due to the absence of global thermal equilibrium. As the stirred
thermal cloud has more excess energy than the condensate, the
wing temperature is higher than the equilibrium temperature.
The results shown in Fig. 3(b) indicate that heating occurs at
all velocities v, which results in a zero vc.
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FIG. 3. Comparison of simulation and experimental results. (a) We stir the quasicondensate region at R = 14.4 μm (inset); (b) we stir
the thermal region at R = 16.6 μm (inset). We compare the measured heating 	Tw (filled circles) with the simulated 	Tw (diamonds) and
	Teq (open circles) at varying stirring velocities v. 	Tw and 	Teq are determined from the wing temperature Tw and equilibrium temperature
Teq, respectively. The y-axis error bars show the standard deviation. The x-axis error bars indicate the spread of velocities along the size of
the stirring potential. (c) We compare the measured vc,w (filled circles) with the simulated vc,w (diamonds) and vc,eq (open circles) across the
superfluid-thermal transition. According to the BKT prediction in a uniform gas [31] this transition occurs at (μloc/kBT )c ≈ 0.13. The thermal
state by this prediction is indicated by the gray-shaded area. The x-axis error bars denote the region of μloc/kBT , which is probed by the stirring
potential due to its size. The y-axis error bars show the standard deviation. Experimental data are from Ref. [8].

Next, we show in Fig. 3(c) the comparison between
experiment and simulation for critical velocities vc that are
determined by stirring the superfluid, the crossover, and the
thermal regime. In the experiment [8] vc is measured for
different configurations of the total number of atoms N , the
temperatures T , and the stirring radii R. We compare the
measured vc with the simulated vc determined by stirring
the 2D gas in Sec. III. We show both the measured and the
simulated vc as a function of the dimensionless parameter
μloc(r)/kBT . The parameter μloc/kBT characterizes the de-
gree of degeneracy of the cloud and is the relevant parameter in
the sense that the thermodynamic properties of the gas depend
only on the ratio μ/kBT [31,33,34]. We refer to vc determined
from the wing temperature Tw and from the equilibrium
temperature Teq as vc,w and vc,eq, respectively. Both the
measured and the simulated vc,w show a good agreement. The
measured vc,w and the simulated vc,eq agree in the superfluid
and thermal regimes, while they differ in the crossover regime.
For the measured and simulated vc,w, the crossover regime
occurs at μloc/kBT ≈ 0.24 and 0.22, respectively. However,
for the simulated vc,eq, it occurs at μloc/kBT ≈ 0.11. The
theoretical prediction for the BKT transition in a uniform
gas [31] with g̃ = 0.093 occurs at (μ/kBT )c ≈ 0.13. This
prediction is comparable to the simulated crossover regime
identified by vc,eq, whereas its comparison with the crossover
regimes identified by the measured and simulated vc,w shows
a shift. This shift was observed in Ref. [8] but could not
be explained. We conclude that the experiments in Ref. [8]
can be reproduced quantitatively if the wing temperature is
used, rather than Teq. This suggests that the system has not
relaxed to thermal equilibrium after the waiting time of 100

ms. We confirm and elaborate on this point and the underlying
mechanism in the following sections.

VI. RELAXATION DYNAMICS

We now investigate the relaxation of the system, following
the stirring process in the superfluid regime. This includes a
discussion of the influence of the confinement of the system in
the z direction. For strong confinement, the system approaches
a purely 2D limit, while it is quasi-2D for intermediate
confinement.

A. Energy-flow dynamics

We first analyze the energy-flow dynamics of a stirred
trapped gas in the purely 2D limit and then compare this
dynamics with a quasi-2D gas. For a pure-2D trapped gas, we
consider a gas of N = 64 079 87Rb atoms which is strongly
confined in the transverse direction by the harmonic potential.
The temperature T = 85 nK is lower than the transverse trap
energy h̄ωz/kB = 144 nK, so that the gas is in the ground
state in this direction. As the width of the condensate in the
z direction is smaller than the lattice discretization length l,
we simulate this system using a single xy layer of lattice only
(see Sec. II). We stir the gas at R = 12 μm for 200 ms at a
velocity v > vc. After that we switch off the stirring potential
and let the gas relax. We calculate the local energy Ei of
the stirred gas and its final equilibrated local energy E

eq
i as

described in Sec. II. We show the evolution of the excess energy
	Ẽi = [Ei(t) − E

eq
i ]/nmax for various relaxation times trelax

in Fig. 4(a). nmax is the maximum density of the system. The
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FIG. 4. Relaxation dynamics. Energy flow of the stirred trapped gas for the relaxation times trelax = 0.1, 0.5, 1.5, and 2.5 s. The gas was stirred
with a repulsive Gaussian potential at R = 12 μm (dashed green circle). We show the evolution of the excess energy 	Ẽi = [Ei(t) − E

eq
i ]/nmax

(a) for the pure-2D gas and (b) for the quasi-2D gas. Ei is the local energy of the stirred gas at time t and E
eq
i is its final equilibrium local energy.

nmax is the maximum density of the system. The small top panels in (a) and (b) are the 1D cut through the trap center. The superfluid-thermal
boundary is indicated by the white circle. 	Ẽi in the far wings of the cloud is negative, as E

eq
i is larger than Ei . The field of view is 90 × 90 μm.

evolution of 	Ẽi after trelax = 0.1 s shows that most of the
stirring-induced energy resides within the superfluid region.
The system then relaxes by transporting this excess energy to
the thermal cloud. This process occurs slowly and the system
achieves fully equilibration only after about a 2.5 s relaxation
time, remarkably.

We now study this energy-flow dynamics for the case of a
quasi-2D gas. We consider the quasicondensate that we use in
Sec. III. The initial temperature of the gas and the harmonic
potential in the transverse direction are equal to and half those
in the pure-2D case, respectively. The resulting system is a
quasi-2D gas. We simulate this system using five xy layers of
lattice in the z direction. We stir the gas using the same stirring
parameters as for the pure-2D case. We show the evolution
of the excess energy 	Ẽi of the stirred gas for various trelax

in Fig. 4(b). In this case, Ei , E
eq
i , and nmax are the column

(i.e., integrated along the z axis) quantities. The evolution of
	Ẽi after trelax = 0.1 s is similar to the pure-2D gas. Again, the
system relaxes by transporting the excess energy to the thermal
cloud. The equilibration process is slightly slower than for the
pure-2D gas but again of the same order of 2.5 s. We note that
the measured relaxation times in Ref. [26] are indeed of the
order of the relaxation times that we find here.

In the experiment [8] the waiting time after stirring and
before measurement is 0.1 s, which is shorter than the

relaxation times that we observe here. This indicates that in
the experiment thermal equilibrium between the superfluid and
the thermal cloud is not fully established, which influences the
measured heating. It leads to, respectively, lower and higher
measured heating for stirring the superfluid and thermal parts
of the cloud.

B. Vortex dynamics

To understand what causes this slow relaxation of the
system, we now examine the evolution of the density and
vortices of the system. We calculate the local density as
ni = |ψi |2 and vortices as described in Sec. II. We show
the density and vortex evolution of a single realization of the
stirred pure- and quasi-2D gas after various relaxation times
trelax in Fig. 5. For both systems, the density relaxation is hard
to recognize, whereas the vortex evolution clearly exhibits
decay of vortices. Thus, the system relaxes via decay of the
induced vortices. Vortices can decay via both annihilation of
a vortex with an antivortex and drifting-out to the thermal
region of the cloud. For the pure-2D gas the number of vortices
after trelax = 0.1 s is larger than the quasi-2D gas. References
[7,36] reported that vortex annihilation in a pure-2D system
is strongly suppressed compared to that in a quasi-2D system
because the vortex lines are impermeable to tilting [37] and
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FIG. 5. Relaxation of the density and vortices. We show the evolution of the density and vortices of a single realization of the stirred
gas for trelax = 0.1, 0.5, 1.5, and 2.5 s. (a) Pure-2D gas; (b) quasi-2D gas. For the quasi-2D gas we show the column density and the vortex
distribution of the central (z = 0) xy plane. The maximum density nmax is 71/μm2 for the pure-2D gas and the maximum column density nmax

is 95/μm2 for the quasi-2D gas. We show vortices (red circles) and antivortices (blue triangles) in the superfluid region at the detection radius
Rdet = 14.5 μm (white circle), which is below rBKT [35]. The field of view is 40 × 40 μm.

bending [38]. So, the suppression of vortex annihilation could
be a reason for the long-lived vortices for the pure-2D gas.

To make a quantitative comparison of the vortex relaxation
between the two systems, we count the total number of vortices
within the superfluid region of the cloud at a detection radius
Rdet = 14.5 μm and average it over 200 realizations. We show
the averaged vortex number Nv as a function of time t for
both systems in Fig. 6. As stirring is switched on at time
ton, Nv starts to increase approximately linearly. It reaches
its maximum Nmax at toff . After the stirring is switched off,
it decays approximately exponentially. For both systems the
natures of vortex growth and decay are the same, but the rates

0

100

200

ton toff 0.5 1 1.5

N
v

time (s)

pure-2D

quasi-2D

biexponential fit

FIG. 6. Vortex relaxation. We show the vortex number Nv as a
function of time t for the pure- and quasi-2D gas. We fit the vortex
decay with the biexponential function in Eq. (6) and determine the
decay times τd1 and τd2 (see text). Fitted curves are represented by
the dashed lines.

at which they grow and decay are different. For the pure-2D
gas the growth and decay rates are higher and lower than those
for the quasi-2D gas, respectively. The enhanced growth and
the suppressed decay rate for the pure-2D gas could be due
to the suppression of vortex annihilation, as mentioned above,
and a slow vortex drift. We quantify the vortex decay rate using
the function,

f (t) = N1e
−t/τd1 + N2e

−t/τd2 + N0, (6)

with the free parameters N1, N2, N0, τd1 , and τd2 . From the
fit, we determine τd1 , τd2 ≈ 0.13, 0.87 and 0.05, 0.87 s for
pure- and quasi-2D gas, respectively. These decay times are
similar to those determined from the mean excess energy in
Appendix B 1. The fast decay τd1 and the slow decay τd2

are essentially connected to the vortex annihilation and drift
lifetime, respectively. For the pure-2D gas τd1 and τd2 are larger
than and equal to those for the quasi-2D gas, respectively.

We list in Table I Nmax and the extracted τd1 and τd2 at
varying detection radii Rdet for both systems. τd1 and τd2

increase weakly as Rdet is increased. However, the following

TABLE I. Nmax and the extracted τd1 and τd2 for different detection
radii Rdet.

Pure-2D Quasi-2D

Rdet (μm) Nmax τd1 (s) τd2 (s) Nmax τd1 (s) τd2 (s)

14.0 172 0.129 0.809 127 0.050 0.806
14.5 196 0.135 0.866 151 0.055 0.869
15.0 224 0.142 0.920 182 0.059 0.933
15.5 251 0.147 0.959 214 0.066 0.989
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conclusions are essentially independent of the choice of Rdet.
Overall, Nmax and τd1 are larger for pure-2D gas than those
for quasi-2D gas, respectively, while τd2 are similar for both
systems. We compare the simulated τd1 and τd2 of quasi-2D
gas to the waiting time of 0.1 s in the experiment [8]. This
time is twice as long as the fast decay τd1 , whereas it is
shorter than the slow decay τd2 . This suggests that most vortex
recombination processes have occurred at the time of the
measurement. However, the vortex drift to the thermal cloud
has not occurred, and the system is in a metastable state,
not in the equilibrated state. This is the mechanism that is
responsible for the difference between the wing temperature
and the equilibrium temperature.

We note that in Ref. [39] an estimate of the time of a vortex
line drifting to the thermal cloud was given. While this estimate
was for a 3D system, we find that the analytical estimate
in Ref. [39] gives a time scale that is consistent with our
simulation. We also note that the vortex lifetime is suppressed
at high temperatures [40–42].

VII. CONCLUSIONS

We have studied the superfluid-to-thermal transition of
a trapped 2D Bose gas of 87Rb atoms by stirring it with
a repulsive stirring potential in a circular path around the
trap center. The superfluid transition was probed by choosing
different radii of the circular motion. We have identified
the superfluid, the crossover, and the thermal regime by the
finite, the sharply decreasing, and the zero critical velocity,
respectively. The superfluid region of the gas yields critical
velocities that are in the range vc = 0.3–0.5vB, where vB is
the phonon velocity. We have demonstrated that the onset of
dissipation is due to the creation of vortex-antivortex pairs.
The comparison of the simulation with the experiment shows
a good agreement if the temperature measurement of the
experiment is imitated in the simulation, i.e., by extracting
the wing temperature. However, we confirm the systematic
shift that was observed in experiments if thermal equilibrium
is assumed. We have demonstrated that the absence of thermal
equilibrium after the waiting time that was used in experiments
is due to a remarkably slow relaxation mechanism: The energy
transport across the superfluid-to-thermal interface occurs only
on time scales of seconds. This slow transport mechanism is
due to the slow drift of vortices out of the superfluid into
the thermal wings of the system. We emphasize that this
mechanism is relevant for many ongoing experiments in the
field of ultracold atoms and their temperature measurements.
Furthermore, this effect of suppressed transport across critical
interfaces is in itself intriguing and could be studied in a future
cold-atom experiment with clarity.
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APPENDIX A: SIMULATED HEATING

In this section we show how we determine the equilibrium
temperature Teq of a stirred gas using the c-field method
described in Sec. II. We discretize the continuum Hamiltonian
in Eq. (1) by the Bose-Hubbard Hamiltonian [43] on a 2D
square lattice,

H0 = −J
∑
〈ij〉

(ψ∗
i ψj + ψ∗

j ψi) + U

2

∑
i

n2
i +

∑
i

Vini .

(A1)

ψi and ni = |ψi |2 are the complex-valued field and the density
at site i, respectively. 〈ij 〉 indicates nearest-neighbor bonds.
For a lattice discretization length l, the Bose-Hubbard parame-
ters are related to the continuum parameters via J = h̄2/(2ml2)
and U = gl−2. The 2D coupling parameter g is given by g =
g̃h̄2/m, where g̃ = √

8πas/ lz is the dimensionless interaction,
m is the atomic mass, as is the 3D s-wave scattering length,
and lz = √

h̄/(mωz) is the harmonic oscillator length of the
confining potential mω2

zz
2/2 in the z direction. ωz is the trap

frequency in the z direction. The harmonic trapping potential is
Vi = mω2

r r
2/2. ωr is the trap frequency in the radial direction

and r = (x2 + y2)1/2 is the radial coordinate.
We first initialize the system in a thermal state at tempera-

ture T via classical Monte Carlo and then calculate its energy
E = 〈H0〉 using the Hamiltonian in Eq. (A1). By varying the
temperature of the system T while keeping the total number of
atoms N fixed, we calculate the energy E as a function of T .
In Fig. 7 we show the temperature dependence of the energy E

for the pure- and quasi-2D gases that are described in Sec. VI.
To determine the heating, we first stir the gas with the

repulsive stirring potential as described in Sec. II and then, after
stirring, calculate its energy E using Eq. (A1). We numerically
invert this energy E to the equilibrium temperature Teq using
the temperature dependence shown in Fig. 7. Finally, from
the temperature difference between the stirred and the initial
systems, the heating 	Teq = Teq − T is determined.
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FIG. 8. (a) Evolution of the mean excess energy 	Emean for the
pure- and quasi-2D gas stirred at velocity v ≈ 0.8vB. We fit the energy
decay with the biexponential function in Eq. (6) to determine the
decay times τd1 and τd2 (see text). Fitted curves are represented by
the dashed lines. We show 	Emean normalized by its maximum mean
energy Emax, corresponding to v ≈ 0.8vB and 0.6vB for the pure- and
quasi-2D gas in (b) and (c), respectively.

APPENDIX B: RELAXATION DYNAMICS

In this section we elaborate on the relaxation dynamics of
the stirred trapped gas that we discuss in Sec. VI. We discuss
first the energy flow dynamics in Appendix B 1 and then the
vortex dynamics in Appendix B 2.

1. Energy-flow dynamics

Here we elaborate on the energy flow dynamics for the
pure- and quasi-2D trapped systems. We stir both systems
with the stirring potential at velocity v ≈ 0.8vB. After stirring
we calculate the excess energy 	Ẽi = [Ei(t) − E

eq
i ]/nmax as

described in Sec. VI, and by averaging this energy over the
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FIG. 9. Averaged vortex number Nv normalized by its maximum
vortex number Nmax for different stirring radii R and strengths V0, for
(a) the pure-2D and (b) the quasi-2D gas.

superfluid region of the gas, we calculate the mean energy
	Emean. We show the evolution of 	Emean for both systems
in Fig. 8(a). 	Emean decays approximately exponentially as
the excess energy 	Ẽi within the superfluid region outflows
to the thermal cloud. We quantify the energy decay time
using the fitting function in Eq. (6). From the fit, we determine
the decay times τd1 , τd2 ≈ 0.13, 0.98 and 0.08, 1.02 s for the
pure- and quasi-2D gas, respectively. These decay times are
similar to those that we determine from the vortex decay in
Sec. VI B. In addition to the stirring at v ≈ 0.8vB, we show
	Emean corresponding to stirring at v ≈ 0.6vB for the pure-
and quasi-2D gas in Figs. 8(b) and 8(c), respectively.

2. Vortex relaxation

Next, we turn to the vortex relaxation of the stirred gas. We
stir the pure- and quasi-2D gases using different stirring radii
R and stirrer strengths V0. We calculate the total number of
vortices within the superfluid region of the cloud, as described
in Sec. VI B, and average it over 128 realizations. We show the
averaged vortex number Nv normalized by its maximum vortex
number Nmax as a function of time t for the pure- and quasi-2D
gas in Figs. 9(a) and 9(b), respectively. For the pure-2D gas
the relaxation of vortices is slower than that for the quasi-2D
gas, as shown in Sec. VI B.
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