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PACS 67.85.-d – Ultracold gases, trapped gases
PACS 03.65.Vf – Phases: geometric; dynamic or topological
PACS 73.43.-f – Quantum Hall effects

Abstract – We describe a simple scheme by which “optical flux lattices” can be implemented in
ultracold atomic gases using two-photon dressed states. This scheme can be applied, for example,
to the ground-state hyperfine levels of commonly used atomic species. The resulting flux lattices
simulate a magnetic field with high mean flux density, and have low-energy bands analogous to
the lowest Landau level. We show that in practical cases the atomic motion significantly deviates
from the adiabatic following of one dressed state, and that this can lead to significant interactions
even for fermions occupying a single band. Our scheme allows experiments on cold atomic gases
to explore strong correlation phenomena related to the fractional quantum Hall effect, both for
fermions and bosons.

Copyright c© EPLA, 2011

There has long been an endeavour in the field of
ultracold atomic gases to achieve an experimental regime
in which strong correlation phenomena associated with the
fractional quantum Hall (FQH) effect can appear [1–3].
Central to this goal is the formation of Landau levels:
the highly degenerate energy levels of a two-dimensional
charged particle in a uniform magnetic field. Owing to
this degeneracy, particles occupying a single Landau level
are susceptible to interparticle interactions. These can give
rise to strongly correlated FQH states when the particle
density is comparable to the density of magnetic flux
quanta nφ. Existing experimental studies of FQH states
in semiconductors involve fermions (electrons). However
it is expected that related strong-correlation phenomena
can arise also for bosonic species of cold atoms [3].
The formation of Landau levels for neutral atoms

requires the creation of an effective magnetic field. To
date, this has been achieved in experiments on ultracold
atoms either by using rotation [2,3], or by using optical
dressing to generate effective gauge fields [4]. However, in
both cases the magnetic flux densities nφ achieved so far
are too low to bring a large atom cloud into the fractional
quantum Hall regime. Theoretical proposals for methods
to generate effective magnetic fields for atoms on deep
optical lattices hold promise to achieve high flux densities,
on the order of the inverse optical wavelength squared
nφ ∼ 1/λ2 (for reviews of these proposals see, e.g. [5,6]).
At these flux densities, interaction energy scales would be

sufficiently large to allow experimental studies even in the
FQH regime.
A recent theoretical proposal has shown that effective

magnetic fields with high flux density nφ ∼ 1/λ2 can also
be generated for optically dressed states without the use
of deep optical lattices. In this so-called “optical flux
lattice” scheme [7] a periodic effective magnetic field
with non-zero average is generated by arranging that the
spatial dependence of the Rabi coupling and a state-
dependent potential are in register with each other. The
implementation proposed in ref. [7] involves a single-
photon coupling, suitable for ytterbium or alkaline earth
atoms, and requires locking the positions of standing waves
of a laser at the coupling frequency with those of a laser
at an “antimagic” frequency.
In this paper, we show how optical flux lattices can be

generated by using two-photon dressed states. Our scheme
also requires two laser frequencies, but it is more robust
than that of [7]: the Rabi coupling and state-dependent
potential are automatically in register. Importantly,
our scheme can be applied to commonly used atomic
species, including alkali atoms in hyperfine levels of any
angular momentum F . We describe the bandstructures
for representative cases F = 1/2 and F = 1. We show that
there appear low-energy bands that are analogous to the
lowest Landau level: of narrow width in energy and with
non-zero Chern number [8]. Owing to the narrow energy
width, particles occupying these bands are susceptible to
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interactions and to the formation of strongly correlated
FQH states. We show that, even for fermions interacting
with contact interactions, there remain significant inter-
particle interactions within this low-energy band. Thus,
our scheme will allow experiments on cold atomic gases to
explore strong correlation phenomena related to the frac-
tional quantum Hall effect for both fermions and bosons.
In the first part of this paper we consider an atomic

species with a ground level g of angular momentum Jg =
1/2. Examples of atoms in this category that have already
been laser-cooled are 171Yb or 199Hg (level 6 1S0) [9,10].
The atoms are irradiated by laser waves of frequency ωL
that connect g to an excited state e also with angular
momentum Je = 1/2. For ytterbium and mercury atoms,
we can choose e to be the first excited level 6 3P0 entering
in the so-called “optical clock” transition. The very long
lifetime of e (∼10 s for Yb [11] and ∼1 s for Hg [12]) guar-
antees that heating due to random spontaneous emissions
of photons is negligible on the time scale of an experi-
ment. Another possible choice could be 6Li atoms, but we
estimated in this case a photon scattering rate that is too
large to maintain the gas at the required low temperature.
We assume that the atomic motion is restricted to the
xy-plane and described by the Hamiltonian

Ĥ =
p2

2M
1̂ + V̂ (r), (1)

where M is the atomic mass and p its momentum. The
matrix V̂ acts in the Hilbert space describing the internal
atomic dynamics. For an off-resonant excitation, we can
assume that the population of e is negligible at all times, so
that V̂ is a 2× 2 matrix acting on the g± manifold [13]. Its
coefficients depend on the local value of the laser electric
field, which we characterize by the Rabi frequencies κm,
m= 0,±1, where m� is the angular momentum along z
gained by the atom when it absorbs a photon.
In order to increase our control on the spatial variations

of V̂ , we suppose that a magnetic field parallel to the z-axis
lifts the degeneracy between the states g±. The resulting
splitting δ is supposed to be much larger than the κm’s.
Hence for a monochromatic laser excitation at frequency
ωL, the off-diagonal matrix elements V+− and V−+ are
negligible compared to the diagonal ones. However we
also assume that another laser field at frequency ωL+ δ,
propagating along the z-axis with σ− polarization (i.e.
m=−1 with the notation above), is shone on the atoms.
The association of this field with the π component (m= 0)
of the light at ωL provides the desired resonant Raman
coupling between |g±〉 (fig. 1(a)). Using standard angular
momentum algebra we find in the {|g+〉, |g−〉} basis:

V̂ =
�κ2tot
3Δ
1̂+

�

3Δ

(

|κ−|2− |κ+|2 Eκ0
Eκ∗0 |κ+|2− |κ−|2

)

. (2)

Here κ2tot =
∑

m |κm|2, Δ= ωL−ωA, where ωA is
the atomic resonance frequency, and we assume
|Δ| ≫ |δ|, |κm|. The quantity E characterizes the field

g
−

g+

Je = 1/2

ωL + δ

σ
−

pol.

ωL

ωL
ωL

θ

θ

θ
(a () b)

Fig. 1: (Colour on-line) (a) A ground level with angular
momentum Jg = 1/2 is coupled to an excited level also with
angular momentum Je = 1/2 by laser beams at frequency ωL
and ωL+ δ. The Zeeman splitting between the two ground
states g± is δ. (b) Three linearly polarized beams at frequency
ωL with equal intensity and with wave vectors at an angle
of 2π/3 propagate in the xy-plane. The beams are linearly
polarized at an angle θ to the z-axis. The fourth, circularly
polarized beam at frequency ωL+ δ propagates along the
z-axis.

of the additional laser at ωL+ δ. This beam is assumed
to be a plane wave propagating along z, so that E is a
uniform, adjustable coupling. The ac Stark shift due to
this additional laser is incorporated in the definition of δ.
We consider the laser configuration represented in

fig. 1(b). The laser field at frequency ωL is formed by
the superposition of three plane travelling waves of
equal intensity with wave vectors ki in the xy-plane.
We focus on a situation of triangular symmetry, in
which the three beams make an angle of 2π/3 with
each other, k1 =−k/2 (

√
3, 1, 0), k2 = k/2 (

√
3,−1, 0) and

k3 = k(0, 1, 0). Each beam is linearly polarized at an angle
θ to the z-axis, which leads to

κ= κ
3
∑

i=1

eiki·r[cos θ ẑ+sin θ (ẑ× k̂i)], (3)

where κ is the Rabi frequency of a single beam. In the
following we denote V = �κ2/(3Δ) the energy associated
with the atom-light interaction and ǫ=E/κ the relative
amplitude of the ωL+ δ field with respect to the ωL field.
The recoil energy ER = �

2k2/2M sets the characteristic
energy scale of the problem.
The coupling V̂ is written in eq. (2) as the sum of

the scalar part �κ2tot/(3Δ) 1̂ and a zero-trace component
that can be cast in the form Ŵ = σ̂ ·B/2, where the
σ̂i are the Pauli matrices (i= x, y, z). For E �= 0 and
sin 2θ �= 0, the coupling B is everywhere non-zero. Sup-
pose that the atom is prepared in the local eigenstate
|χ(r)〉 of Ŵ , with a maximal angular momentum projec-
tion along n=−B/|B|. Suppose also that it moves suffi-
ciently slowly to follow adiabatically this eigenstate,
which is valid when V ≫ER. This leads to the Berry’s-
phase–related gauge potential i�〈χ|∇χ〉, representing a
non-zero effective magnetic flux density [14]. For most
optical lattice configurations, the periodic variation of
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the atom-laser coupling leads to a zero net flux of the
effective field through a unit cell of the lattice. Indeed
the periodicity of the eigenstate |χ〉 entails that the line
integral of 〈χ|∇χ〉 on the edges of the unit cell vanishes.
However this reasoning may fail if the vector potential
has singularities inside the cell: this is the so-called flux
lattice scheme [7].
The singularities of 〈χ|∇χ〉 occur at places where the

g+–g− coupling (∝ κ0, see eq. (2)) vanishes. Here, the
zeroes of κ0 are located on a honeycomb lattice, with
a distance of 2λ/(3

√
3) between nearest neighbours,

where λ= 2π/k [15]. The unit cell of this hexagonal
lattice has an area Acell = 2λ

2/(3
√
3), and contains two

inequivalent sites that correspond to vortices and anti-
vortices of (nx, ny), respectively. We will introduce
later a gauge transformation that allows one to use the
same unit cell for the periodic coupling V̂ . At the location
of the (anti)vortices of (nx, ny), the modulus of Bz ∝
|κ+|2− |κ−|2 is maximal and its sign alternates, leading
to nz =±1. Because the sign of nz differs for vortices and
antivortices, each of these regions wraps the Bloch sphere
in the same sense providing the desired rectification of
the magnetic flux. The net result is that n wraps the
Bloch sphere once within the unit cell, corresponding to
Nφ = 1 flux quantum. This net flux Nφ = 1 is a robust
feature of the optical coupling, not relying on fine-tuning
of parameters or on the control of the relative phase of
the laser beams. Reversal of the magnetic flux (Nφ =−1)
can be achieved by changing the sign of the detuning Δ,
or replacing the σ− laser at frequency ωL+ δ by a σ+
laser at frequency ωL− δ.
Our laser configuration is reminiscent of the scheme

studied in [16]. However in that work only the three
beams at frequency ωL and propagating in the xy-plane
were considered. The off-diagonal coupling in V̂ is in this
case V+− ∝ κ+κ∗0+κ0κ∗−, and one can check the desired
rectification of the magnetic flux at the zeroes of V+− does
not occur. Therefore, although the Berry’s-phase–related
magnetic field found in [16] is locally non-zero, the flux
per unit cell vanishes.
In the adiabatic limit, valid for V ≫ER [6], the atoms

are strongly confined to the sites where �κ2tot/(3Δ)−
|B|/2 is minimum. Depending on the sign of Δ and
the values of θ and E, these sites coincide either with
the vertices of the hexagons of the honeycomb lattice
introduced above, or with the centre of these hexagons,
forming thus a triangular lattice. Both of these tight-
binding limits are situations in which the number of flux
quanta per hexagonal (respectively, triangular) plaquette
is integer (respectively, half-integer), i.e. time-reversal
symmetry is preserved1.
In particular in this adiabatic limit the various energy

bands cannot have a non-zero Chern number [8]. However,
an important aspect of the physics of optical flux lattices
is that they do not rely on the adiabatic limit, and can

1In both cases, the unit cell of the lattice contains Nφ = 1 flux
quantum.

be applied in regimes of intermediate coupling V ∼ER.
Indeed the optical flux lattices described here, and those
of [7], lead to bands with non-zero Chern number in
the weak-coupling limit V �ER. In this regime, a tight-
binding model is inappropriate; departures from this (with
next-nearest-neighbour tunnelling and beyond) allow the
atoms to perform loops that enclose flux that breaks time-
reversal symmetry. That the optical flux lattice scheme
applies beyond the tight-binding limit clearly distinguishes
this approach from previous proposals for lattice-based
gauge fields, which imprint Peierls phases on the tunneling
matrix elements for atoms moving in deep optical lattices.
(For a review see [6].)
We have calculated the band structures for arbitrary
V/ER by numerical diagonalization of the Hamiltonian
(1). To do so, it is helpful to expose the full translational
symmetry of the system. The matrix V̂ is invariant
under translations by the vectors λ/

√
3 (±1,

√
3, 0),

corresponding to a “naive” unit cell of area 2λ2/
√
3. One

can reduce the size of the unit cell by taking advantage of
a unitary transformation by Û ≡ exp(−ik3 · r σ̂z/2). This
state-dependent gauge transformation gives a transformed
Hamiltonian

Ĥ ′ = Û†ĤÛ =
(p̂− σ̂z�k3/2)2

2M
+ V̂ ′, (4)

where V̂ ′ = Û†V̂ Û is of the same form as V̂ , but with
κ0 replaced by κ

′
0 = e

−ik3·rκ0. The advantage is that the
coupling V̂ ′ involves only the momentum transfersK1,2 ≡
k1,2−k3. Using the momentum transfers to define the
reciprocal lattice vectors leads to the largest possible Bril-
louin zone, and smallest real space unit cell, which coin-
cides with the unit cell of the scalar potential described
above, with area Acell = 2λ

2/(3
√
3). From the Bloch states

obtained by exact diagonalization we determine the Chern
number of each band using standard techniques [17].
For the special case ǫ= θ= 0, the atoms only experience

the scalar potential ∝ |κ0|2. For Δ> 0, this situation was
investigated in detail in [15], in connection with graphene
physics (see also [18]). As explained above, |κ0|2 has
minima at the sites of a honeycomb lattice. For V �ER
one therefore expects the atoms in both g± states to have
the low-energy bands of the honeycomb lattice with two
Dirac points in the Brillouin zone. One difference with
respect to graphene is that, due to the state-dependent
gauge transformation Û , the momenta of the two spin
states are offset by ±k3/2. This has the effect that there
are three special points in the Brillouin zone: a Dirac point
for g+, a Dirac point for g−, and a (coincident) Dirac point
for both g±. The bands are shown in fig. 2 with dotted lines
for a cut through the Brillouin zone that passes through
these three points.
Perturbations to this decoupled limit cause the Dirac

points to split, with consequences that depend on the
symmetries that are broken and the relative sizes of
the perturbations [19]. For small non-zero θ, the terms
|κ+|2− |κ−|2 ∝ θ2 in (2) break the sublattice symmetry of
the honeycomb lattice for both g±. Gaps then open in the

66004-p3
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Fig. 2: (Colour on-line) Left-hand panel: band structure for
F = 1/2 for V = 1.8ER along a path k= k(K2− 2K1)−k3/2
through the Brillouin zone. For ǫ= θ= 0 (dotted blue line),
the decoupled m=±1/2 states each have two Dirac points,
indicated by circles. For weak coupling ǫ= θ= 0.1 (dashed
green line) the Dirac points split in a manner that breaks time-
reversal symmetry, giving the lower two bands a net Chern
number of 1. For intermediate coupling ǫ= 0.4, θ= 0.3 (solid
black line) the lowest energy band has Chern number 1. Right-
hand panel: the density of states for V = 1.8ER, ǫ= 0.4 and
θ= 0.3.

spectrum at the locations of the Dirac points. For ǫ= 0
the lower two bands separate from the upper two bands
in such a way that both pairs of bands are topologically
trivial, that is each pair has net Chern number of zero.
When both ǫ and θ are non-zero, the optical dressing leads
to a net flux through the unit cell, indicating time-reversal
symmetry breaking. Indeed, we find that for ǫ, θ �= 0 the
bands can acquire non-zero Chern numbers. Specifically, in
the perturbative limit (ǫ, θ≪ 1) the Dirac points split in
such a way that the lower two bands have a net Chern
number of 1 provided θ2/ǫ is sufficiently small. When
θ2/ǫ exceeds a certain value (≃ 0.19 for V = 1.8ER) there
is a transition to the topologically trivial case described
above. Beyond the perturbative limit, as the couplings ǫ
and θ increase, the splitting between the lower two bands
increases and the lowest energy band evolves into a narrow
band with Chern number 1. An example is shown by the
solid lines and density of states in fig. 2, for which the
lowest band has a width ΔE ≃ 0.1ER. The optical dressing
(2) affords a great deal of freedom to tune parameters to
reduce the ratio of the bandwidth of the lowest band to the
gap to the next band. For example, for V = 2ER, θ= π/4,
ǫ= 1.3, the lowest band has a width of only ΔE ≃ 0.01ER
and is separated from the next band by about 0.4ER (see
fig. 3).
It is important to emphasize that the formation of this

narrow low-energy band is not simply due to compression
into a tight-binding band2. Rather it is closely related

2For a tight-binding band in the limit of vanishing tunnel coupling
when the Wannier states become exponentially localized, the Chern
number of the band must be zero [20], or a set of bands with net
Chern number zero must become degenerate.

3 3.5 4 4.5 5 5.5
E/E

R

D
o
S

 (
ar

b
.)

x 1/10

Fig. 3: Density of states for F = 1/2 for V = 2ER, θ= π/4,
ǫ= 1.3. The lowest band has Chern number 1, a width of about
0.01ER, and is well separated in energy from the next band.
The density of states for the lowest band has been rescaled by
1/10.

to the formation of Landau levels in a uniform magnetic
field. A continuum Landau level is highly degenerate, with
degeneracy equal to the number of flux quanta piercing the
plane. Thus, for the flux density here, of one flux quantum
per unit cell, a Landau level would have one state per unit
cell: that is one band within the Brillouin zone. The lowest
band of figs. 2 and 3, with its narrow width and Chern
number of 1, is the optical flux lattice equivalent of the
lowest Landau level.
The above scheme can be generalized to atoms of the

alkali-metal family, whose ground state nS1/2 is split into
two hyperfine levels I ± 1/2, where I is the nuclear spin.
The laser excitation is tuned in this case around the
resonance lines D1 (coupling to nP1/2 with detuning Δ1)
and D2 (coupling to nP3/2 with detuning Δ2). Let us
focus here on the lowest hyperfine level F = I − 1/2. For
the configuration of fig. 1 the atom-laser coupling can be
written

V̂ =
�κ2tot
Δ̄
1̂ + F̂ ·B, (5)

where Δ̄−1 = (1/3)Δ−11 +(2/3)Δ
−1
2 , F̂ is the angular

momentum operator in the ground state manifold in units
of �, and

Bx+ iBy = ξ Eκ0, Bz = ξ (|κ−|2− |κ+|2), (6)

with ξ = (Δ−12 −Δ−11 )�/[3(F +1)]. Under the unitary
transformation Û ≡ exp(−ik3 · rF̂z) the Hamiltonian
takes a similar form to (4), now with σ̂z/2 replaced by
F̂z, and again with a coupling V̂

′ in which κ0 is replaced
by κ′0 = e

−ik3·rκ0 giving the unit cell of the honeycomb
lattice as before. Adiabatic motion of the atom still
leads to a dressed state with angular momentum along
the vector n that wraps the Bloch sphere once in the
unit cell. However, now the Berry phase acquired is
larger by a factor of 2F [14]. Therefore, the unit cell
contains Nφ = 2F flux quanta. This increase of Nφ leads
to an important new feature: a continuum Landau level
now corresponds to Nφ = 2F states per unit cell. Thus,
the analogue of the lowest Landau level is a set of 2F
low-energy bands with a net Chern number of 1. Spatial
variations in the scalar potential and flux density will
cause these bands to split and to acquire non-zero widths.
We shall illustrate the physics for F > 1/2 by describing

the properties for bosonic atoms with F = 1. This is a very

66004-p4
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Fig. 4: Density of states for F = 1. (a) V = 8ER, ǫ= 0.8, θ= 0.2,
γ1 = 0, γ2 =−0.15ER. The two lowest bands have Chern
numbers of −1 and 2. Taken together, these are analogous to
the lowest Landau level (LLL). (b) V = 2ER, ǫ= 3, θ= 0.5,
γ1 = 10ER, γ2 =−10ER. The system behaves as a two-level
system formed from m= 0,−1. The lowest-energy band is
analogous to the LLL.

important case, as it applies for example to the hyperfine
ground states of 23Na, 39K, and 87Rb. In order to control
the respective role of the various Zeeman sublevels, we
also include in the Hamiltonian the additional Zeeman
coupling to an external magnetic field

Ŵγ = γ1F̂z + γ2(1− F̂ 2z ), (7)

where γ1 and γ2 correspond to the linear and quadratic
Zeeman effects, respectively. For simplicity we assume that
|Δ1| ≪ |Δ2| and we take into account only the coupling
between the ground state and the P1/2 excited state (D1
line). As above, we characterize the atom-laser coupling by
the angle θ and the two dimensionless parameters ǫ=E/κ
and V/ER, where V = �κ2/(3Δ1).
For a state-independent potential (ǫ= θ= γ1 = γ2 = 0)

and positive detuning Δ1, each of the three states |F =
1,m〉 with m= 0,±1 experiences a honeycomb lattice
potential and has two Dirac points. Now the offsets in
wave vector are such that there are three special k-points,
at each of which two Dirac points coincide. Again the Dirac
points are split by perturbations that break time-reversal
symmetry (ǫ, θ �= 0) and the lowest three bands can acquire
non-zero Chern number. Differences from F = 1/2 emerge
in the regime of intermediate coupling. In particular we
find a domain in parameter space where the two lowest-
energy bands are closely spaced, with narrow total width
and a net Chern number of 1 (see fig. 4(a)). This confirms
the expectation mentioned above that the set of the 2F = 2
lowest bands constitutes in this case the analogue to
the lowest Landau level. One can also make use of the
quadratic Zeeman splitting γ2 �= 0 to arrange situations
in which only two of the m-states contribute. This two-
level system is then of the same form as F = 1/2. In this
case, parameters can be chosen to form a single narrow
lowest-energy band with Chern number 1, which by itself
is analogous to the lowest Landau level. An example is
presented in fig. 4(b), showing similar features to F = 1/2
(fig. 2).

These narrow bands with non-zero Chern number are
excellent systems with which to explore strong-correlation
phenomena related to fractional quantum Hall physics [3],
both for fermions and bosons. Given the contact nature
of interactions in ultracold atomic gases, one might think
that the Pauli principle would prevent interparticle inter-
actions between fermions within a single band. Interac-
tions would indeed vanish if the atoms were to move adia-
batically, since then, at each point in space, only a single
dressed state would be relevant. However, non-adiabatic
effects lead to residual interactions between fermions. In
a semi-classical picture, one can imagine two atoms that
approach the same point in space from different directions.
Since the motion is non-adiabatic, when they reach that
point they can be in different internal states, so there is
some probability that they coincide and interact.
To understand quantitatively how non-adiabatic

motion of the fermions leads to interparticle interactions
within a single band, consider a system of spin-1/2 fermi-
ons (m=±1/2) with spin-independent contact potential
Vm,m′(r, r

′) = g2Dδ
2(r− r′). The mean interaction energy

for any Fock state is

〈ĤI〉 =
1

2
g2D

∫

∑

m,m′

[

ρm,mρm′,m′ − |ρm,m′ |2
]

d2r

=
1

4
g2D

∫

ρ2(r)
[

1−P 2(r)
]

d2r, (8)

where ρm,m′(r)≡ 〈c†m(r)cm′(r)〉 and c†m(r) creates a parti-
cle at r in spin state m. In eq. (8) we have introduced the
local total density ρ and local polarization P (in units of
�/2). In the adiabatic limit, the local polarization is every-
where maximal, P = 1, so the interaction energy vanishes.
However, for non-adiabatic motion the local polarization
is reduced and the interaction energy is non-zero.
We quantify the size of the interactions by considering a

filled band. Then ρm,m′(r) =
∑

k

[

φkm(r)
]∗
φkm′(r), where

φkm(r) is the space- and spin-dependent wave function of
the Bloch state k in this band. We define an interaction
parameter I ≡ 〈HI〉/E0 with E0 ≡ (1/4)g2D

∫

ρ2 d2r the
mean energy for P = 0. We have computed the total
interaction energy for the lowest-energy band in fig. 2 for
each of the three cases3 of (ǫ, θ). For ǫ= θ= 0 the two spin
states are decoupled, so the lowest band is unpolarized
(P = 0) and I = 1. For weak coupling ǫ= θ= 0.1 we find
I = 0.95, showing a (small) suppression of interactions.
With increasing coupling, the interactions continue to
be suppressed. However, even for intermediate coupling
(ǫ= 0.4, θ= 0.3), where the lowest band has become
narrow, the interaction parameter is I = 0.42, showing
that the motion is still far from adiabatic. The ultra-
narrow band shown in fig. 3 has a small value for the
interaction parameter I = 0.046.

3Although in the first two cases there is an energy overlap with
the second band, one can still compute the interaction energy for
the Fock state in which the lowest-energy band is filled.
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Since the low-energy bands described above are anal-
ogous to the lowest Landau level, leading candidates for
strongly correlated phases include the Laughlin states, at
mean particle densities of ρ̄= (1/3)Nφ/Acell for fermions
and ρ̄= (1/2)Nφ/Acell for bosons, with Nφ = 2F ; or, if
the quadratic Zeeman effect is used to isolate an effec-
tive two-level system, with Nφ = 1. Strongly correlated
phases of this kind are energetically competitive when
the mean interaction energy is on the scale of the band-
width, which we denote ΔE ≡ α1ER, introducing a numer-
ical factor α1 that is small for the narrow bands described
above. For bosons, we take the typical scale for interac-
tions to be the interaction contribution to the chemical
potential for a condensate formed from the lowest energy
single particle state, Ei = g2D

∫

ρ2 d2r/
∫

ρd2r≡ α2g2Dρ̄,
with α2 a numerical factor that accounts for wave func-
tion localization close to the lattice sites. For the Laughlin
state, this gives Ei/ΔE = (3

√
3Nφ/8π

2)(α2/α1)g̃, where
g̃=Mg2D/�

2 is the dimensionless interaction strength
in 2D. Taking the parameters of fig. 4(a) (Nφ = 2, α1 ≃
0.05, α2 ≃ 3.3) this is Ei/ΔE ≃ 9g̃. With cold atomic gases
confined in a strong one-dimensional optical lattice along
the z-direction, values of g̃ can approach unity [21],
so that reaching the strongly correlated regime can be
realistically envisaged. For spin-1/2 fermions, the partial
suppression of s-wave interactions discussed above some-
what complicates the realization of the correlated regime.
However one can rely on Feshbach resonances to produce
a strongly interacting 2D Fermi gas [22], and thus also
in this case reach the point where 〈HI〉 ∼ΔE. Note that
in the case of 171Yb or 199Hg, one has to turn to opti-
cally induced Feshbach resonances [23,24], because the
spin of the ground state has a purely nuclear origin
hence “standard” magnetic Feshbach resonances do not
occur.
The appearance of fractional quantum Hall states is

predicted to lead to various consequences for the ground
state and excitation spectrum of the cold atomic gas, as
discussed in the literature [1–3]. Perhaps the most evident
feature is a plateau (or plateaus) in in situ images of the
density of a trapped gas, arising from the incompressibility
of the FQH states. For the Laughlin states, these plateaus
are expected at mean densities for which there is no
competing Mott insulator state.
In summary we have presented a simple scheme by

which optical flux lattices can be implemented using two-
photon dressed states. The method applies to commonly
studied atomic species, requires few lasers, and uses
only well-established techniques. Our studies show that
for practical parameters, the non-adiabatic character of
atomic motion can lead to significant interactions even
for fermions occupying a single band. This scheme should
allow experiments on cold atomic gases to explore strong

correlation phenomena in regimes of flux density previ-
ously unattainable.
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