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Summary. — We give in this lecture an introduction to the physics of two-
dimensional (2d) Bose gases. We first discuss the properties of uniform, infinite
2d Bose fluids at non-zero temperature T . We explain why thermal fluctuations
are strong enough to destroy the fully ordered state associated with Bose-Einstein
condensation, but are not strong enough to suppress superfluidity in an interact-
ing system at low T . We present the basics of the Berezinskii-Kosterlitz-Thouless
theory, which provides the general framework for understanding 2d superfluidity.
We then turn to experimentally relevant finite-size systems, in which the presence
of residual “quasi–long-range” order at low temperatures leads to an interesting in-
terplay between superfluidity and condensation. Finally we summarize the recent
progress in theoretical understanding and experimental investigation of ultracold
atomic gases confined to a quasi-2d geometry.
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1. – Introduction

The properties of phase transitions and the types of order present in the low-tempera-
ture states of matter are fundamentally dependent on the dimensionality of physical
systems [1]. Generally, highly ordered states are more robust in higher dimensions, while
thermal and quantum fluctuations, which favor disordered states, play a more important
role in lower dimensions.

The case of a two-dimensional (2d) Bose fluid is particularly fascinating because of
its “marginal” behavior. In an infinite uniform 2d fluid thermal fluctuations at any non-
zero temperature are strong enough to destroy the fully ordered state associated with
Bose-Einstein condensation, but are not strong enough to suppress superfluidity in an
interacting system at low, but non-zero temperatures. Further, the presence of residual
“quasi–long-range” order at low temperatures leads to an interesting interplay between
superfluidity and condensation in all experimentally relevant finite-size systems.

This behavior is characteristic of a wide range of physical systems which share some
generic properties such as dimensionality, form of interactions, and Hamiltonian sym-
metries. These include liquid-helium films [2], spin-polarized hydrogen [3], Coulomb
gases [4], ultracold atomic gases [5, 6], exciton [7, 8] and polariton [9, 10] systems. More-
over, the Berezinskii-Kosterlitz-Thouless theory which provides the general framework
for understanding 2d superfluidity is also applicable to a range of physical phenomena
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in discrete systems, such as ordering of spins on a 2d lattice [11] and melting of 2d
crystals [12,13].

In this paper we give an introduction to the physics of 2d Bose fluids from an atomic
physics perspective. Our goal is to summarize the recent progress in theoretical under-
standing and experimental investigation of ultracold atomic gases confined to 2d geom-
etry, and we also hope to provide a useful introduction to these systems for researchers
working on related topics in other fields of physics.

1.1. Absence of true long-range order in 2d . – The most familiar phase transitions
in three spatial dimensions (3d), such as freezing of water, ferromagnetic ordering in
spin systems, or Bose-Einstein condensation (BEC), are all associated with emergence
of true long-range order (LRO) below some non-zero critical temperature. Such order is
embedded in a spatially uniform order parameter, e.g. magnetization in a ferromagnet
or the macroscopic wave function ψ describing a BEC. Further, in all the above cases
emergence of true LRO corresponds to spontaneous breaking of some continuous sym-
metry of the Hamiltonian. In case of crystallization (freezing), translational symmetry is
spontaneously broken. For Heisenberg spins on a (fixed) lattice, the Hamiltonian has a
continuous spin rotational symmetry which is spontaneously broken in the ferromagnetic
state. In case of BEC, the phase of ψ is arbitrarily spontaneously chosen at the transition.
As we will discuss in more detail later, under certain conditions this makes a Bose gas for-
mally equivalent to a system of two-component spins on a lattice, the so-called XY model.

Already in 1934 Peierls pointed out that the possibility for a physical system to
exhibit true LRO can crucially depend on its dimensionality [14, 15]. Peierls considered
a 2d crystal at finite temperature T , and studied the effects of thermal vibrations of
atoms around their equilibrium positions in the lattice (i.e. phonons). He found that
the uncertainty in the relative position of two atoms diverges with the distance between
their equilibrium positions:

(1)
〈
(u(r) − u(0))2

〉
∝ T ln

( r

a

)

for r = |r| $ a, where u(r) is the atom displacement from its equilibrium position r, a is
the lattice spacing, and 〈. . .〉 denotes a thermal average. In contrast, the corresponding
result in 3d is finite, and small compared to a if T is below the melting temperature.
The result in eq. (1) is in direct contradiction with the starting hypothesis of long-range
crystalline order, since it implies that, based on the positions of atoms in one part of the
system, we cannot predict with any certainty the positions of atoms at large distances.

The Peierls result (1) is a simple example of the absence of spontaneous symmetry
breaking at non-zero T in 2d. The absence of LRO in low-dimensional systems was later
more generally and formally studied by Bogoliubov [16], Hohenberg [17], and Mermin
and Wagner [18]. The general statement is that LRO is impossible in the thermodynamic
limit at any non-zero T in all 1d and 2d systems with short-ranged interactions and a
continuous Hamiltonian symmetry. This is now most commonly known as the Mermin-
Wagner theorem. In all such systems Hamiltonian symmetry is always restored by low-
energy long-wavelength thermal fluctuations, the so-called Goldstone modes. In the case
of an interacting Bose gas Goldstone modes are phonons, while in the case of the XY
model on a lattice they are spin-waves. As a direct consequence of the functional form of
the density of states in low dimensionality, such modes always have a diverging infrared
contribution and destroy LRO. It is however important to stress that the absence of true
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LRO does not preclude the possibility of any phase transitions in 2d systems, just the
symmetry-breaking ones. As we will see later, a phase transition associated with the
apparition of a topological order does take place in a uniform 2d gas.

1.2. Outline of the paper . – In sect. 2 we will explicitly see that Bose-Einstein con-
densation is impossible in both the ideal and a repulsively interacting infinite uniform
2d Bose gas. The absence of true LRO in these systems is seen in the fact that the
first-order correlation function

(2) g1(r) ≡
〈
Ψ̂†(r)Ψ̂(0)

〉
,

where Ψ̂(r) is the annihilation operator for a particle at position r, always tends to zero
for r → ∞. Note that these two statements are equivalent under the Penrose-Onsager
definition of the condensate density [19]:

(3) n0 ≡ lim
r→∞

g1(r).

However, the weak logarithmic divergence in eq. (1) suggests that the destruction
of LRO is only marginal in 2d. The consequence of this weak divergence is that an
interacting Bose gas at low T exhibits “quasi–long-range order”, corresponding to g1(r)
which decays only algebraically with distance.

This low-T state is also superfluid, and the phase transition between the superfluid
and the high-T normal state is described by the Berezinskii-Kosterlitz-Thouless (BKT)
theory [20,21], which we discuss in sect. 3. Further, the slow decay of g1(r) at low T has
important consequences for condensation and symmetry breaking in the experimentally
relevant finite-size systems. We address this issue in sects. 4 and 5, first for a finite
box potential, and then for the experimentally most pertinent case of a harmonically
trapped gas.

In sects. 6 and 7 we introduce the experimental methods of atomic physics used in
the current studies of 2d Bose gases. In sect. 6 we give an overview of experimental
systems in which (quasi-)2d Bose gases have been realized, and in sect. 7 we discuss
the experimental probes of coherence in these systems. We conclude by outlining some
research directions which are likely to be of interest in the near future in sect. 8.

2. – The infinite uniform 2d Bose gas at low temperature

In this section we discuss thermal fluctuations and the absence of Bose-Einstein con-
densation in an infinite uniform 2d gas. In subsect. 2.1 we consider the ideal gas, in which
no phase transition occurs. In this case the first order correlation function g1(r) gradu-
ally changes from a gaussian function in the high-temperature, non-degenerate regime,
to an exponentially decaying function in the degenerate regime.

In the repulsively interacting 2d Bose gas the BKT phase transition to a superfluid
state occurs at a non-zero critical temperature, but the conclusion that BEC transition
does not occur remains true. We first introduce the description of interactions in an
atomic 2d gas in subsect. 2.2. In subsect. 2.3 we qualitatively discuss why interactions
lead to a strong suppression of density fluctuations in a degenerate gas, so that the low-
energy long-wavelength excitations (phonons) in this system are almost purely phase
fluctuations. The Bogoliubov analysis presented in subsect. 2.4 provides a more quan-
titative justification for this conclusion and also indicates why we expect an interacting
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2d gas to be superfluid at very low T . As we show in subsect. 2.5, the long-wavelength
phonons still lead to a vanishing g1(r) at r → ∞. Therefore, in accordance with the
Mermin-Wagner theorem, these “soft” Goldstone modes still destroy the long-range or-
der and restore the Hamiltonian symmetry. However, the decay of g1 at large distances
is only algebraic with r at very low T . This low temperature, superfluid state is said to
exhibit “quasi–long-range order”. The BKT phase transition from the superfluid state
with algebraic correlations to the normal state with exponentially decaying correlations
is discussed in the following sect. 3.

2.1. The ideal 2d Bose gas. – The absence of Bose-Einstein condensation in the ideal
2d Bose gas can straightforwardly be seen by following the standard Einstein’s argument
which associates condensation with the saturation of the excited single-particle states at
some non-zero temperature.

In 2d, the density of states for spinless bosons mL2/(2π!2) is constant, where m is
the particle mass and L → ∞ is the linear size of the system. Assuming no condensation,
the total number of particles is then

(4) N =
mL2

2π!2

∫ ∞

0

dε
eβ(ε−µ) − 1

,

where β = 1/(kBT ), and µ ≤ 0 is the chemical potential. Equivalently, the phase-space
density D is given by

(5) D ≡ nλ2 =
∫ ∞

0

dx
1
Z ex − 1

= − ln(1 − Z),

where n = N/L2 is the 2d number density, λ = h/
√

2πmkBT is the thermal wavelength,
and Z = eβµ is the fugacity.

In 3d, the signature of BEC is that the analogous relationship between the phase
space density and fugacity has no solutions for Z when the phase space density is larger
than the critical value n3λ3 ≈ 2.612, where n3 is the 3d number density. Below the
condensation temperature, chemical potential is fixed at µ = 0 and the phase space
density of particles in the excited states is saturated at ≈ 2.612. However, we see that
in 2d a valid solution,

(6) eβµ = 1 − e−nλ2
,

always exists. In other words, for any non-infinite phase space density there exists a
negative value of µ which allows normalization of the thermal distribution of particles
in the excited states to the total number of particles in the system N . This shows that
BEC does not occur in the ideal infinite uniform 2d Bose gas.

We next look at the first-order correlation function g1(r), which we can write as the
Fourier transform of the momentum space distribution function nk:

(7) g1(r) =
1

(2π)2

∫ ∞

0
nk eik·r d2k, with nk =

1
eβ(εk−µ) − 1

, εk =
!2k2

2m
.

In the absence of condensation g1(r) always vanishes at r → ∞. However, it still shows
qualitatively different behavior at high and low temperature:
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– In a non-degenerate gas, eq. (6) gives Z ≈ nλ2 - 1. In this regime |µ| $ kBT and
all momentum states are weakly occupied:

(8) nk ≈ Z e−βεk ≈ nλ2 e−k2λ2/4π - 1 (∀k).

In this case g1(r) is Gaussian, showing only short-range correlations which decay
on the length scale λ/

√
π:

(9) g1(r) ≈ n e−πr2/λ2
.

– In a degenerate gas with nλ2 > 1, from eq. (6) we get Z ≈ 1 and β|µ| ≈ e−nλ2 - 1,
so that D = nλ2 ≈ ln(kBT/|µ|). In this regime the occupation of high-energy
states, with βεk $ 1, is still small and given by the Boltzmann factor

(10) nk ≈ e−βεk = e−k2λ2/4π - 1, for k2 $ 4π/λ2.

However, the low-energy states with βεk - 1 are strongly occupied:

(11) nk ≈ kBT

εk + |µ| =
4π
λ2

1
k2 + k2

c

$ 1, for k2 - 4π/λ2,

where kc =
√

2m|µ|/!. In this case g1(r) is bimodal. At short distances, up to
r ∼ λ, correlations are still Gaussian as in eq. (9). However, the Lorentzian form
in eq. (11) corresponds to approximately(1) exponential decay of g1(r) at larger
distances, r $ λ:

(12) g1(r) ≈ e−r/&, with ' = k−1
c ≈ λ enλ2/2/

√
4π.

We can also estimate the partial phase space densities corresponding to the Gaus-
sian and the Lorentzian parts of the momentum distribution, and see that most
particles accumulate in the Lorentzian part corresponding to low momentum states:

DG ≈ λ2

(2π)2

∫ ∞

√
4π/λ2

nk d2k ≈ 1/e - D,(13)

DL ≈ λ2

(2π)2

∫ √
4π/λ2

0
nk d2k ≈ D.(14)

We thus see that even though there is no phase transition in this system, the first-order
correlation function gradually changes from a Gaussian with short-range correlations
in the non-degenerate regime, to an exponential in the degenerate regime. Further,
for nλ2 > 1, the correlation length ' ∝ enλ2/2 grows exponentially. Therefore, while
g1(r) formally vanishes at r → ∞ at any non-zero T , the length scale over which it

(1) More precisely the Fourier transform of the 2d Lorentzian distribution 1/(k2 +k2
c ) is defined

for r "= 0 and is proportional to the Bessel function of imaginary argument K0(kcr), whose
asymptotic behaviour is e−kcr/

√
r.
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decays is exponentially large in the deeply degenerate ideal Bose gas. This has important
consequences for the finite-sized experimental systems, since for any arbitrarily large fixed
system size L there exists a low enough non-zero temperature T for which ' >L , and
correlations span the entire system. This issue will be addressed in sects. 4 and 5.

2.2. Interactions in a 2d Bose gas at low T . – The interaction between two atoms
at positions ri and rj in a 3d Bose gas at low temperature is well characterized by the
contact potential(2)

(15) V (ri − rj) =
4π!2

m
as δ

(3d)(ri − rj),

where as is the 3d s-wave scattering length, and mechanical stability requires repulsive
interactions as > 0. In 2d the two-body scattering problem is in general more complicated
and the scattering amplitude is energy-dependent [25]. We will address this issue in
more detail in subsect. 6.2. However, in all experimentally relevant situations so far, the
analysis of interactions is simplified by the fact that while the gas is kinematically 2d,
the interactions can be described by 3d scattering. The condition for this simplification
is that the thickness of the sample '0 is much larger than the 3d scattering length as. In
all current atomic experiments the ratio '0/as is larger than 30. In this case we can to
a very good approximation write the interaction energy as

(16) Eint =
g

2

∫
n2(r) d2r,

where g is the energy-independent interaction strength and n(r) is the local density.
Note that here and in the following we treat the density n(r)—and later the phase
θ(r)—as a classical function. This will notably simplify the mathematical aspects of our
approach, while capturing all important physical consequences related for example to
quasi–long-range order and to the normal-superfluid transition.

In 3d, the interaction strength g(3d) = (4π!2/m)as explicitly depends on the scatter-
ing length. However, we see on dimensional grounds that in 2d we can write

(17) g =
!2

m
g̃,

so that g̃ is a dimensionless coupling constant. The 2d healing length, which gives the
characteristic length scale corresponding to the interaction energy, is then given by

(18) ξ = !/
√

mgn = 1/
√

g̃n .

We can anticipate on dimensional grounds that g̃ ∼ as/'0, corresponding to n = n3'0.
Specifically, if a gas is harmonically confined to 2d, say in the x-y plane, we will see in
subsect. 6.2 that the expression for g̃ is

(19) g̃ =
√

8π
as

az
,

(2) Strictly speaking, the delta-function in 3d must be regularized by using for example the
pseudo-potential [22]. The extension of the notion of zero-range potential to the 2d case is
discussed in [23] (see also [24] for a discussion in terms of many-body T -matrix).
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where in this case '0 = az is the oscillator length along the kinematically frozen direc-
tion z.

We can qualitatively define the strongly interacting limit by the value of g̃ for which
the interaction energy of N particles, Eint, reaches the kinetic energy EK of N non-
interacting particles equally distributed over the lowest N single-particle states. In this
limit, we expect the many-body ground state to be strongly correlated. We can estimate
the interaction energy with a mean-field approximation by setting n(r) = n in eq. (16),
which corresponds to neglecting density fluctuations:

(20) Eint =
!2

2m
g̃Nn.

Using the 2d density of states, mL2/(2π!2), the energy of the N -th excited single-particle
state is EN = (2π!2/m)n, and so

(21) EK =
1
2
NEN =

π!2

m
Nn.

The strongly interacting limit then corresponds to

(22) Eint = EK ⇒ g̃ = 2π.

For comparison, the value of g̃ in the current experiments on atomic 2d Bose gases varies
between ∼ 10−1 [26, 27] and ∼ 10−2 [28], while in the more strongly interacting 4He
films [2] it is estimated to be of order 1 [29].

The fact that result (22) is independent of the density of the gas n is a natural conse-
quence of the fact that g̃ is dimensionless. This is in contrast to the 3d case, where the
relative importance of interactions is characterized by the dimensionless parameter n3a3

s.

2.3. Suppression of density fluctuations and the low-energy Hamiltonian. – At strictly
T = 0, a weakly interacting 2d Bose gas is condensed and described by a constant macro-
scopic wave function (a uniform order parameter) ψ =

√
neiθ, where n and θ are classical

fields. At any finite T , both the amplitude and the phase of ψ show thermal fluctuations.
However, repulsive interactions will always lead to a reduction of density fluctuations in a
low-temperature gas. The interaction energy is (g/2)

∫
n2(r) d2r = (g/2)L2〈n2(r)〉, and

so keeping the average density n = 〈n(r)〉 fixed, we see that minimizing the interaction
energy is equivalent to minimizing the density fluctuations:

(23) (∆n)2 = 〈n2(r)〉 − n2 = (g2(0) − 1)n2,

where g2(r) = 〈n(r)n(0)〉/n2 is the normalized second-order (density-density) correla-
tion function(3). In the ideal Bose gas g2(0) = 2, while if the density fluctuations are
completely suppressed g2(0) = 1.

(3) Note that following the conventions in the literature on different topics we normalize g2 so
that it is dimensionless, while g1 has units of density.
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We can estimate the minimum cost of density fluctuations by equating it with the
increase in interaction energy from adding a single particle to the system:

(24)
∂Eint

∂N
= gn =

!2

m
g̃n,

where we have set g2(0) = 1, which is consistent with the density fluctuations being
significantly suppressed. Comparing this with the thermal energy kBT , we get

(25)
gn

kBT
=

g̃

2π
D.

This strongly suggests that at sufficiently low temperature, given by D $ 2π/g̃, any
density fluctuations must be very strongly suppressed. Numerical calculations [29] show
that they can be significantly suppressed already for D $ 1, with the exact extent of the
suppression depending on the strength of interactions g̃.

In the limit of strong suppression of density fluctuations, the interaction energy be-
comes just an additive constant ((1/2)gn2L2) in the Hamiltonian, and the kinetic energy
arises only from the variations of θ, the phase of ψ. The system is then often described
by an effective low-energy Hamiltonian:

(26) Hθ =
!2

2m
ns

∫
(∇θ)2 d2r,

where one heuristically replaces the total density n with the (uniform) superfluid density
ns ≤ n. This is physically motivated because one expects only the superfluid component
to exhibit phase stiffness and to flow under an imposed variation of θ, with local velocity
of the superfluid given by vs = (!/m)∇θ. Also note that at T = 0 superfluid density is
equal to the total density, and at very low T they are similar. In essence, renormalizing n
to the lower ns is an effective way of absorbing all the short distance physics, including any
residual density fluctuations, and Hθ provides a good description of long-range physics,
at distances r $ ξ,λ.

The effective low-energy Hamiltonian Hθ is the continuous version of the Hamiltonian
of the XY model of spins on a lattice. It can be used to derive the correct long-range
algebraic decay of g1(r) in the low-T superfluid state (see subsect. 2.5). However, it is
important to stress some caveats:

1) Even though at low temperature ns ≈ n, Hθ fundamentally cannot be the correct
microscopic Hamiltonian. We can see this on very general grounds since the proper
Hamiltonian is by definition a temperature-independent entity, while Hθ depends on the
temperature through ns. More accurately Hθ represents the increase of the free energy
of the gas if one imposes the superfluid current (!/m)∇θ, for instance by setting the gas
in slow rotation (see the appendix in [6] for more details).

2) If and only if the density fluctuations are completely absent can the 2d Bose gas be
formally mapped onto the XY model. This condition is essentially fulfilled for D $ 2π/g̃,
but it is not satisfied at the BKT critical point. As discussed in sect. 3, BKT transition
occurs at a critical phase space density Dc = ln(380/g̃), which for the experimentally
relevant values of g̃ corresponds to Dc ∼ 6–10. At that point density fluctuations are sig-
nificantly suppressed, but cannot be completely neglected. This is one of the key reasons
that makes the proper microscopic theory of the BKT transition in the Bose gas difficult.
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In summary, Hθ can be used as an effective quantum Hamiltonian for the derivation
of some key features of long-range physics at low temperature, where ns ∼ n. However
Hθ alone is not sufficient for the proper derivation of the BKT transition.

2.4. Bogoliubov analysis. – By performing Bogoliubov analysis near T = 0 we can
see more explicitly why the density fluctuations are suppressed at sufficiently low T , but
the phase fluctuations are not, and also why it is natural to expect the low-temperature
state to be superfluid.

The basic idea is that we start with the assumption that the T = 0 state of a weakly
interacting gas is described by the uniform order parameter ψ =

√
n eiθ, find the excita-

tion spectrum, and then consider the effects of the thermal occupation of the excitation
modes. This approach may not seem justified in 2d, because in the end we find that
thermal fluctuations destroy the order parameter, and thus invalidate our starting as-
sumption. However we can qualitatively argue that it still works well as long as we have
a well-defined local order parameter, which is true if the order parameter is destroyed
only at very large distances by the long-wavelength phase fluctuations. The applicability
of the Bogoliubov approach to 2d quasi-condensates was formally justified in [30,31].

Assuming contact interactions, the classical field Hamiltonian is given by

(27) H =
!2

2m

∫
(∇ψ∗(r))(∇ψ(r)) d2r +

g

2

∫
(ψ∗(r))2(ψ(r))2 d2r.

The dynamics of ψ(r, t) are governed by the Gross-Pitaevskii equation [32,33]:

(28)
(
− !2

2m
∇2 + g|ψ|2

)
ψ = i!∂ψ

∂t
,

which we can derive from eq. (27) by treating ψ and ψ∗ as canonical variables.
We now define the local phase θ(r, t) from ψ(r, t) = |ψ(r, t)| eiθ(r,t). Assuming that

the density fluctuations are small, we write |ψ(r, t)|2 = n (1 + 2η(r, t)), with η - 1 and∫
η d2r = 0. Within this approximation we get, up to the additive constant gn2L2/2,

(29) H =
!2

2m
n

∫
(∇θ(r))2 d2r +

∫ [
!2

2m
n (∇η(r))2 + 2gn2(η(r))2

]
d2r,

and a set of coupled linear equations for the time evolution of θ(r, t) and η(r, t):

∂θ

∂t
=

!
2m

∇2η − gn

! (1 + 2η),(30)

∂η

∂t
= − !

2m
∇2θ.(31)

It is now convenient to Fourier expand the phase and the density fields:

(32) θ(r, t) =
∑

k

ck(t) eik·r, η(r, t) =
∑

k

dk(t) eik·r,

where k = 2π(jx, jy)/L, with jx, jy integers, is a discrete variable since we consider for
the moment a sample of finite size L2. We will let L → ∞ at the end of the calculation.
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The functions θ and η are real, which implies c∗k = c−k and d∗k = d−k. In addition the
conservation of particle number

∫
η d2r = 0 leads to d0 = 0. This yields the Hamiltonian

(33) H = nL2
∑

k

[
!2k2

2m
|ck|2 +

(
!2k2

2m
+ 2gn

)
|dk|2

]
,

and the coupled equations of motion (for k 2= 0):

ċk = −
(

!k2

2m
+

2gn

!

)
dk,(34)

ḋk =
!k2

2m
ck.(35)

For k = 0 the equation of motion deduced from eq. (30), ċ0 = −gn/!, simply gives the
time evolution of the global phase of the gas.

In this formulation ck and dk are conjugate dimensionless quadratic degrees of freedom
corresponding to the phase and the density fluctuations, respectively. At each k we have
a harmonic-oscillator–like Hamiltonian, and from the equations of motion we can read
off the eigenfrequencies

(36) ωk =

√
!k2

2m

(
!k2

2m
+

2gn

!

)
,

which is the well-known Bogoliubov result. At low k, the eigenmodes are phonons with
ωk = ck, where c =

√
gn/m. At high k we have free particle modes with ωk = !k2/(2m)+

gn/!. The crossover between the two regimes is at k ∼ 1/ξ =
√

g̃n.
From this analysis, and specifically the results in eqs. (33) and (36), we can draw

several conclusions:
1) From the dispersion relation ωk we see that the excitation modes in this system

have a non-zero minimal speed c. From the Landau criterion, we thus expect it to be
superfluid with a critical velocity vc = c. This argument is identical to the 3d case, and
relies just on the existence of a (reasonably) well-defined local order parameter, rather
than true LRO. We note however that the Landau criterion is a necessary, but not a
sufficient condition for the existence of a superfluid state, because it does not address
the question of metastability of the superfluid flow (see e.g. [34]).

2) Both in the classical and in the quantum regime the harmonic oscillator at thermal
equilibrium obeys the virial theorem, 〈mω2x2〉 = 〈p2/m〉, where x and p are position
and momentum, respectively. Reading-off the coefficients in front of |ck|2 and |dk|2 in
eq. (33), we see that in our case this corresponds to

(37)
〈|dk|2〉
〈|ck|2〉

=
!2k2/2m

!2k2/2m + 2gn
.

We thus explicitly see that long-wavelength phonons involve only phase fluctuations,
since 〈|dk|2〉 - 〈|ck|2〉 for k → 0. On the other hand, the high-k free particles involve
both phase and density fluctuations in equal parts, since 〈|dk|2〉 = 〈|ck|2〉 for k → ∞.

3) We also explicitly see that density fluctuations are not “soft” Goldstone modes,
because their energy cost does not vanish in the k → 0 limit. The effect of interactions is



400 Z. HADZIBABIC and J. DALIBARD

to suppress (compared to the ideal gas) the density fluctuations at length scales > ξ. The
fluctuations on short length scales (< ξ, corresponding to k > 1/ξ) are not suppressed
by interactions, but those in any case do not have a diverging contribution.

4) On the other hand, the energy cost of phase fluctuations (phonons) vanishes for
k → 0. This conclusion would be the same in 3d, but the crucial difference is that in
2d the density of states at low k leads to a diverging effect of these fluctuations and the
destruction of true LRO, as shown in the next subsect. 2.5.

5) We can use this Bogoliubov analysis to provide an estimate of the relative den-
sity fluctuations ∆n2/n2 = 4〈η2〉. In principle the thermal equilibrium distribution of
the Bogoliubov modes is given by the Bose-Einstein distribution. For simplicity we ap-
proximate it in the following way; we suppose that the modes with frequency ωk lower
than kBT/! have an average energy kBT/2 (classical equipartition theorem) and that
the higher-energy modes have a negligible population. Therefore we take(4)

(38) nL2

(
!2k2

2m
+ 2gn

)
〈|dk|2〉 =

{
kBT/2, if !ωk < kBT,

0, if !ωk > kBT.

In addition we assume that kBT is notably higher than the interaction energy gn, which
is the case in most experiments realized with cold atoms so far. The cutoff !ωk = kBT
then lies in the free-particle part of the Bogoliubov spectrum, at the wave vector kT ≈√

mkBT/!. We can now estimate the relative density fluctuations

(39)
∆n2

n2
= 4

∑

k

〈|dk|2〉 ≈
L2

4π2

∫

k<kT

4
nL2

kBT/2
!2k2/2m + 2gn

d2k

and we find

(40)
∆n2

n2
≈ 2

nλ2
ln

(
kBT

2gn

)
.

For realistic values of the ratio kBT/gn (i.e. not exponentially large), we recover here
the previously announced result that density fluctuations are notably suppressed when
nλ2 $ 1.

Based on these arguments, with some more quantitative justification we arrive at the
same conclusions as before. First, for effectively describing the low-temperature state of
the gas, the most important part of the Hamiltonian in eq. (33) is the term corresponding
to the phase fluctuations. Second, if we keep only that term, we also have to keep in mind
that we are neglecting short-distance physics and effectively introducing a momentum
cutoff at kmax = 1/ξ. As before we can heuristically incorporate short-distance physics
by replacing n → ns to obtain

(41) H ≈ nsL
2

∑

k
k<ξ−1

!2k2

2m
|ck|2 =

!2

2m
ns

∫
(∇θ(r))2 d2r,

which coincides with the Hamiltonian Hθ given in eq. (26).

(4) We use here that ck and dk are complex amplitudes, and that the modes k and −k are
correlated, so that d−k = d∗

k .



TWO-DIMENSIONAL BOSE FLUIDS: AN ATOMIC PHYSICS PERSPECTIVE 401

2.5. Algebraic decay of correlations. – To derive the low-T behavior of the one-body
correlation function g1(r) = 〈ψ∗(r)ψ(0)〉 at large distances, r $ ξ,λ, we start with the
Hamiltonian Hθ, and the wave function with no density fluctuations ψ(r) =

√
nseiθ(r).

Note that this normalization of ψ leads in r = 0 to the incorrect value g1(0) = ns, whereas
it should be g1(0) = n > ns. However, as discussed earlier, density fluctuations at short
distances lead to a more complicated decay of g1, and at large r replacing n → ns is the
appropriate normalization.

The long-distance (r $ ξ) behavior of g1(r) essentially depends on the population of
phonon modes with wave vector k - ξ−1, which coincides with the momentum cutoff
introduced in Hθ. The occupation of eigenmodes is in general given by the standard Bose
result (exp(β!ωk)−1)−1. Assuming as in eq. (40) that kBT > gns, the phonon modes are
in the regime !ωk - kBT and the occupation number simplifies into kBT/(!ωk) which
leads to (classical equipartition theorem)

(42) phonon modes: nsL
2 !2k2

2m
〈|ck|2〉 =

kBT

2
.

Introducing the real and imaginary part of the Fourier coefficients ck = c′k + ic′′k, we have

(43)
〈
|c′k|2

〉
=

〈
|c′′k|2

〉
=

π

nsλ2

1
L2k2

.

We recall that c′k and c′′k are independently fluctuating variables (〈c′kc′′k〉 = 0) and that
the mode k and −k are correlated because θ is real: c′k = c′−k and c′′k = −c′′−k.

We want to calculate

(44) g1(r) = 〈ψ∗(r)ψ(0)〉 = ns

〈
ei(θ(r)−θ(0))

〉
,

where

(45) θ(r) − θ(0) =
∑

k

c′k(cos(k · r) − 1) − c′′k sin(k · r).

For each independent Gaussian variable u, 〈eiu〉 = e−
1
2 〈u

2〉. Using eq. (43), and trans-
forming the discrete sum over k into L2/(4π2)

∫
d2k we obtain:

(46) g1(r) = ns exp
(
− 1

2πnsλ2

∫
1 − cos(k · r)

k2
d2k

)
.

The integral in the exponent has significant contributions only from modes k > 1/r so
that 1 − cos(k · r) ∼ 1. Since we restrict our analysis to r $ λ, this is not inconsistent
with the classical field approximation which requires k < 1/λ. The upper limit of the
integral is set by the short-distance cutoff kmax = 1/ξ. We thus expect the integral to
be ∼ ln(r/ξ). More formally, we can note that ∇2

∫
(1 − cos(k · r))k−2 d2k = (2π)2δ(r),

from which we infer

(47)
∫

1 − cos(k · r)
k2

d2k = 2π ln
(

r

ξ

)
.
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This leads to

(48) g1(r) = ns

(
ξ

r

)1/(nsλ
2)

.

Note that depending on the relative size of λ and ξ we can also set the upper limit of the
integral to 1/λ, but this difference in the short-distance cutoff does not affect the main
conclusion about the power law decay of correlations at large distances.

To summarize, we have shown that in an interacting 2d Bose gas at low T , the
first-order correlation function g1(r) decays algebraically with r at large distances. The
conclusion that g1(r) vanishes for r → ∞ is consistent with the Mermin-Wagner theorem,
i.e. the absence of BEC and true LRO at any non-zero T . However the decay of g1(r)
is very slow and the system exhibits a “quasi–long-range order”. Further, as discussed
in the following sect. 3, the exponent 1/(nsλ2) is never larger than 1/4 in the superfluid
state, making the decay of g1(r) extremely slow. The superfluid state with suppressed
density fluctuations can be viewed as a superfluid “quasi-condensate”, i.e. a condensate
with a fluctuating phase [35-37].

3. – The Berezinskii-Kosterlitz-Thouless (BKT) transition in a 2d Bose gas

Our analysis so far does not explain how the phase transition from the low-
temperature superfluid state to the high-temperature normal state takes place. This
transition is unusual because it does not involve any spontaneous symmetry breaking in
the superfluid state, and in the usual classification of classical phase transition is termed
“infinite order”, suggesting that most thermodynamic quantities (except for example su-
perfluid density) vary smoothly at the transition. There is no true LRO on either side
of the transition, but the functional form of the decay of g1(r) changes from algebraic
in the superfluid state (corresponding to quasi-LRO) to exponential in the normal state
(corresponding to no LRO).

The microscopic theory of the 2d superfluid transition was developed by Berezin-
skii [20] and Kosterlitz and Thouless [21] (see [4] for a more recent review). The transition
takes place in the degenerate regime, where the density fluctuations in an interacting gas
are significantly suppressed. We therefore expect that the transition can still be at least
qualitatively explained by considering only phase fluctuations. However, a sudden tran-
sition with a well-defined critical point cannot be explained by considering only phonons,
since we have seen in eq. (48) that, while they destroy true LRO at any non-zero T , their
effect grows smoothly with temperature.

3.1. The role of vortices and topological order . – The key conceptual ingredient of the
BKT theory is that in addition to phonons described by the Hamiltonian (26), another
natural source of phase fluctuations are vortices, points at which the superfluid density
vanishes, and around which the phase θ varies by a multiple of 2π. For our purposes we
can consider only “singly-charged” vortices with phase winding ±2π, which are energet-
ically stable. Around an isolated single vortex, centered at the origin, the velocity field
!∇θ/m varies as !/(mr), corresponding to angular momentum ! per particle. The two
signs of the vortex charge correspond to the two senses of rotation around the vortex.
The size of the vortex core (hole in the superfluid density) is set by the healing length
ξ, so their presence is not inconsistent with the picture that the density fluctuations are
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Fig. 1. – The BKT mechanism at the origin of the superfluid transition. Below the transition
temperature (left figure), vortices exist only in the form of bound pairs formed with vortices of
opposite circulation. When approaching the transition point the density of pairs grows and the
average size of a pair diverges. Just above the transition point (right figure), a plasma of free
vortices is formed and the superfluid density vanishes.

suppressed at length scales r $ ξ. In fact, it makes sense to speak of well-defined indi-
vidual vortices only if away from the vortex cores the density fluctuations are suppressed
on the length scale ξ; otherwise we simply have a fully fluctuating thermal gas.

As we will illustrate below, once one considers vortices as another source of phase
fluctuations, one can explain the microscopic mechanism behind the superfluid-to-normal
phase transition. Below a well-defined critical temperature TBKT, vortices can exist only
in the form of bound (“dipole”) pairs of vortices with opposite circulations ±2π. Since
they do not have any net charge, such pairs do not create any net circulation along closed
contours larger than the pair size, which for a tightly bound pair is also of order ξ(5).
Such pairs therefore have only a short-range effect on the phase θ and the velocity field,
and do not have a large effect on the behavior of g1(r) at large distances. They fall under
“short-range physics” of the system and together with the residual density fluctuations
they lead to some renormalization of ns, but do not qualitatively alter the phenomenology
of the long-range physics discussed in sect. 2. On the other hand, above TBKT unbinding
of vortex pairs and proliferation of free vortices becomes energetically favorable. Free
vortices then form a disordered gas of phase defects and completely “scramble” the
phase θ (see fig. 1). This destroys the quasi-LRO and suppresses superfluidity. At
even higher temperature where density fluctuations are strong, the notion of individual
vortices becomes physically irrelevant.

In hindsight, we can associate superfluidity with presence of a “topological order”.
Long-wavelength phase fluctuations (phonons) destroy true LRO, but do not alter the
topology of the system. In other words, phonons lead to smooth local variations of the
field ψ which can be eliminated (or “ironed out”) by continuous deformations. The same
argument holds for bound vortex pairs which can be annihilated. Therefore, the super-
fluid quasi-condensate with no free vortices is topologically identical to the BEC with
true LRO. On the other hand, an isolated free vortex cannot be unwound and eliminated
from the system by continuous deformations of ψ; it affects the phase θ non-locally, at
arbitrary large distances. The annihilation argument also does not work for a plasma of
free vortices, because if we consider a closed contour of arbitrary large size it will in gen-
eral not contain equal number of vortices with opposite charges. Therefore at any length

(5) For a dipole field |∇θ| ∼ 1/r2, so the circulation
H

∇θ · dr vanishes for large contours.
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scale the free vortex plasma is topologically different from an ordered BEC. Although we
could not have necessarily anticipated this, we can deduce that topological order, rather
than true LRO, is a sufficient condition for superfluidity in an interacting 2d Bose gas.

3.2. A simple physical picture. – The full thermodynamic description of the 2d gas,
including the role of vortices, is a difficuly task. It first requires to introduce the velocity
fields [38] or the mass-current densities [39] in the fluid. The normal and superfluid
components can then be extracted from the spatial correlation functions of this mass-
current density [39]. Finally an analysis using renormalization group arguments leads
to the so-called universal jump for the superfluid density: This density takes the value
ns = 4/λ2 on the low-temperature side of the transition point, and ns = 0 on the high
temperature side. The existence and the value of the universal jump in the superfluid
density was formally derived by Nelson and Kosterlitz [38], and it was first confirmed to
high accuracy in experiments with liquid He films by Bishop and Reppy [2].

This full description is outside the scope of this set of lectures. Here we simply
illustrate how vortices drive the BKT transition, starting from a superfluid with finite
ns, and then considering the free energy associated with spontaneous creation of a single
free vortex. Without any loss of generality, in order to simplify the calculations we
consider a circular geometry, with R → ∞ the radius of the system. The kinetic energy
cost of a single vortex placed at the origin is simply given by

(49) E =
∫ R

ξ

1
2
ns

(
!

mr

)2

d2r =
!2π

m
ns ln

(
R

ξ

)
,

where as always we assume that only the superfluid component rotates under the influence
of the vortex. The normal component does not have any phase stiffness and its motion
is not affected by the presence of the vortex.

The entropy associated with a single vortex core is given by the number of distinct
positions where a vortex of radius ξ can be placed in a disc of radius R:

(50) S = kB ln
(

R2π

ξ2π

)
= 2kB ln

(
R

ξ

)
.

Note that in the above calculations we ignore the “edge effects” such as the correction
to the energy for an off-centered vortex. One can check that these effects are negligible
for R $ ξ. Combining eqs. (49) and (50), we get for the free energy F = E − TS

(51) βF =
1
2
(nsλ

2 − 4) ln
(

R

ξ

)
.

We thus see that the free energy associated with a free vortex changes sign at nsλ2 = 4.
Since ln(R/ξ) diverges with the size of the system, this point separates two qualitatively
different regimes. For nsλ2 > 4, F is very large and positive, so the superfluid is stable
against spontaneous creation of a free vortex. On the other hand, for nsλ2 < 4, the large
and negative F signals the instability against proliferation of free vortices. Appearance
of first free vortices reduces ns and makes the appearance of further free vortices even
easier, and this avalanche effect renormalizes the superfluid density to zero. We thus find
that in contrast to 3d, where below the BEC critical temperature the superfluid density
grows smoothly, in 2d the superfluid density cannot have any value between 4/λ2 and 0.



TWO-DIMENSIONAL BOSE FLUIDS: AN ATOMIC PHYSICS PERSPECTIVE 405

Even though it does not explicitly address the microscopic origin of the vortex (the
breaking of a vortex pair), this simple calculation correctly predicts the result for the
universal jump in the superfluid density which takes place at the transition temperature
TBKT:

(52) nsλ
2 = 4.

This success relies on the fact that the above derivation is a powerful self-consistency
argument. Whatever the origin of the vortex, and the relation between ns and total
density n, it shows that it is inconsistent to suppose that we have a system with superfluid
density which is non-zero, but smaller than 4/λ2. Remarkably, this result also does not
depend on the strength of interactions g̃, even though we know that the phase transition
is mediated by interactions, since it does not occur in the ideal gas. Recent classical field
Monte Carlo calculations performed with parameters relevant for atomic gases [40-42]
have confirmed the proliferation of vortices around the critical point characterized by
eq. (52), although the transition was rounded off by finite-size effects.

If we repeat the above arguments for tightly bound vortex pairs, we find that a finite
density of pairs is present in the gas at any non-zero temperature. The energy of a pair
is finite since the velocity field decays as v ∝ 1/r2 and the integral

∫
v2 d2r is convergent.

On the other hand, the entropy is still divergent and essentially identical to the result of
eq. (50), since the size of a tightly bound pair is of the same order as the size of a single
vortex. The free energy for vortex pairs is therefore always negative. At any non-zero T
pairs are continuously created and annihilated through thermal fluctuations.

As the temperature is increased, but still kept below TBKT, the density of pairs grows
and also thermal fluctuations result in pairs of increasing size. As the average size of the
pairs becomes comparable to the distance between the pairs, they start to overlap and
this leads to effective screening of the attraction between two bound vortices, making
it easier for fluctuating pairs to grow to even larger sizes. We can use an analogy with
a Coulomb gas: Two nominally paired but well-separated vortices create a field which
polarizes the more tightly bound vortex dipoles between them. This results in an effective
dielectric constant which reduces the attraction between two oppositely charged vortices.
As TBKT is approached from below, this creates an avalanche effect which eventually leads
to breaking up of pairs and creation of a plasma of free vortices. Within the Coulomb
gas analogy, this plasma provides a perfect screening at the transition point: A charge
added at a given point does not change the flux of the electric field across a large radius
circle centred on this point. Proper BKT calculation identifies the phase transition with
the temperature at which the average size of the pairs, or equivalently the screening
dielectric constant, diverges.

3.3. Results of the microscopic theory . – The relation (52) between the superfluid
density and the temperature TBKT at the critical point is elegant and universal, in the
sense that it does not depend on the interaction strength g̃. However this self-consistent
result alone does not allow us to predict the value of TBKT in a given system. It just
tells us that whatever TBKT is, the superfluid density jumps accordingly to 4/λ2 at the
transition.

Calculating the actual value of TBKT in terms of the bare system properties n and g̃
is a difficult problem, because it depends on the short-distance physics, such as density
fluctuations which control the relationship between ns and n at the transition. In the
weak coupling limit, g̃ - 1, a combination of analytical [43] and numerical [29,44] efforts
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gives the value for the critical phase-space density:

(53) Dc = (nλ2)c = ln(C/g̃),

where the dimensionless constant C = 380 ± 3 is obtained by a classical field Monte
Carlo simulation [29]. The calculation leading to eq. (53) is formally valid only in the
weak-coupling limit g̃ - 1. We can set one obvious bound on its validity by noting that
at the transition n ≥ ns. Setting Dc > 4 we obtain g̃ ≤ 7. This result is remarkably
close to our estimate of the strong-coupling limit g̃ = 2π (eq. (22)).

The numerical simulation of [29] provides another quantity of interest, which char-
acterizes the reduction of density fluctuations due to interactions. The authors of [29]
introduce the quasi-condensate density defined as

(54) nqc ≡
(
2n2 −

〈
n2(r)

〉)1/2
.

When interactions are negligible, 〈n2〉 = 2〈n〉2 and nqc = 0. On the other hand if density
fluctuations are completely suppressed, 〈n2〉 = 〈n〉2 and nqc = n. According to [29], at
the critical point

(55)
nqc

n
=

7.16
ln(C/g̃)

.

This result indicates that nqc is of the order of the total density n at the transition
point, unless the interaction strength g̃ is exponentially small. In other words, for realistic
parameters density fluctuations are notably reduced in the vicinity of the BKT transition,
which justifies the simplified Hamiltonian (26) used above. Actually this result sets a
stronger constraint than eq. (53) on the applicability of the classical Monte Carlo analysis:
the condition n ≥ nqc requires g̃ ≤ 0.3.

Note that the terminology quasi-condensate density can sometimes be misleading.
The quantity nqc takes a non-zero value even above the critical temperature for the
BKT transition. It refers only to the properties of the density distribution in the gas,
and not to the phase distribution as the word condensate might suggest. For example,
we can have nqc ∼ n at T > TBKT, but this does not imply that a large contrast
interference would be observed if one would superpose a pair of 2d gases prepared in the
non-superfluid regime (see sect. 7).

Finally, we note that as the transition temperature is approached from above, the
length scale ' characterizing the exponential decay of correlations g1(r) ∼ e−r/& in the
normal state diverges as

(56) ' = λ exp
( √

aTBKT√
T − TBKT

)
,

where a is a model-dependent dimensionless constant. Diverging correlation length is a
very general property of phase transitions, but while in the case of most conventional (3d)
second-order phase transitions the divergence of the correlation length is polynomial, in
the case of the BKT transition it is exponential. This makes the critical region above
TBKT larger, and has implications for the broadening of the transition in finite size
systems (see, e.g., subsect. 4.3).
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4. – The 2d Bose gas in a finite box

It is well known that finite-size effects can play a significant role in the quantitative
analysis of the phase transitions that are observed experimentally. In the two-dimensional
situation of interest here, this is even more the case because the thermodynamic limit is
reached only when ln(R/ξ) $ 1 (see for example eq. (51)), which can be only marginally
true for realistic systems. The analysis of these finite-size effects is therefore crucial for
understanding the observed phenomena, and we will do so for the cases of a flat box
potential (this section) and a harmonic trap (next section).

We consider in this section a gas of N particles confined in a flat box of area L2. The
box is supposed to be square (Lx = Ly = L) except in the last subsection (subsect. 4.5)
where we discuss possible effects due to an anistropic confinement (Lx 2= Ly). The
confinement introduces a natural energy scale E0 = !2/(mL2) in the problem and makes
it possible to reach a true Bose-Einstein condensate at non-zero temperature, in contrast
to the infinite case. In this section we first review the results that can be derived for the
ideal gas case, and then discuss what happens for an interacting system. We will assume
that the size L is much larger than the thermal wavelength λ so that E0 - kBT .

4.1. The ideal Bose gas. – In the absence of interactions, the statistical description of a
Bose gas in a square box of size L is straightforward. Let us choose for simplicity periodic
boundary conditions so that the single-particle eigenstates are plane waves eik·r/L, of
energy εk = !2k2/2m, where the momentum k = (jx, jy)(2π/L), with jx,y positive, zero
or negative integers. The chemical potential µ is always negative so that the fugacity
Z = eβµ lies in the interval 0 < Z < 1. Three regimes can be identified, the first two
being identical to what we have met for the infinite case:

– The non-degenerate, high-temperature regime with a phase space density D =
nλ2 - 1. This corresponds to a negative chemical potential such that |µ| $ kBT
(Z - 1). The one-body correlation function is a Gaussian function in this regime,
g1(r) = n e−2πr2/λ2

, and is vanishingly small for distances r $ λ, which are much
smaller than the box size L. The confinement has no significant consequence on
the coherence of the gas in this regime.

– The degenerate, but non-condensed regime, where the momentum distribution is
bimodal, with a Lorentzian shape for small k (kλ -

√
4π) and a Gaussian shape

for large k. The one-body correlation function decays exponentially at large r, with
a characteristic decay length ' = λeD/2/

√
4π. No significant condensed fraction

appears as long as ' is small compared to the size L of the sample, i.e. when
D < ln(4πL2/λ2) or equivalently |µ| $ E0/2.

– The condensed regime, which occurs when the characteristic decay length ' of g1 is
larger than the system size L. This occurs when the phase space density D reaches
the value ln(4πL2/λ2) (or equivalently |µ| ≤ E0/2). A significant phase coherence
then exists between any two points in the gas.

4.2. The interacting case. – We now turn to the interacting case with repulsive in-
teractions and discuss what can be expected in the vicinity of the BKT transition. For
now we assume that the size of the sample is large enough so that D - ln(4πL2/λ2)
at the point where the phase space density D is equal to Dc, the critical phase space
density for the BKT transition in an infinite system (see eq. (53)). This condition has
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the following physical meaning: suppose that we increase the density of particles n at
fixed temperature; the point where the superfluid transition occurs is reached well before
the point at which the Bose-Einstein condensation due to the finite system size would
occur in the absence of interactions (see subsect. 4.1 above).

We first recall the nature of the superfluid transition in an infinite, homogenous sam-
ple. When D is notably below Dc, but larger than 1, one expects that no superfluid
component is present and g1(r) decays exponentially. When D reaches Dc the super-
fluid transition occurs and g1(r) decays algebraically (eq. (48)): g1(r) ≈ ns(ξ/r)α for
r > ξ, with α = 1/(nsλ2) and nsλ2 ≥ 4. According to the Penrose-Onsager criterion,
no condensate is expected in an infinite system since g1(r) vanishes at infinity for any
non-zero temperature. In sharp contrast with the infinite case, we now show that the
BKT transition in a realistic finite system is always accompanied by the appearance of
a significant condensed fraction, defined as the largest eigenvalue Π0 of the one-body
density matrix. The basic reason for this effect is that the algebraic decay of g1(r) is
extremely slow. To prove this result we proceed in two steps: first we give a general
relation between Π0 and the value of g1(r) for distances r comparable to the size L of
the box; then we discuss what a realistic value of Π0 can be for a typical atomic gas.

Let us denote by Πj and φj(r) the eigenvalues and eigenstates of the one-body density
matrix. The condensed fraction Π0 is associated with the eigenstate φ0(r) = 1/L. We
now consider the general expansion of g1

(57) g1(r) = N
∑

j

Πjφ
∗
j (0)φj(r)

and integrate this expression over the area L2 centered on the origin. For simplicity we
integrate the left-hand side over a disk of radius R = L/

√
π and the right-hand side over

a square of side L. This simplification cannot significantly affect our conclusions. The
left-hand side gives

(58)
∫

g1(r) d2r = 2π ns

∫ R

ξ
(ξ/r)α r dr 4 L2 2

2 − α
πα/2 g1(L).

On the right-hand side, only the contribution of j = 0 is non zero and gives NΠ0. All
the φj ’s with j 2= 0 are orthogonal to φ0, so their integral over L2 is zero. We thus get
g1(L)/n ∼ Π0. Using eq. (18) we can also write this result for the condensed fraction as
Π0 ∼ (ns/n)g̃−α/2N−α/2.

For α ≤ 1/4, in practice we have g̃−α/2 ∼ 1 and ns ∼ n, so just below the transition
temperature Π0 ∼ N−1/8. Taking N = 105 as a typical value for cold atom experiments,
we get Π0 ∼ 0.25.(6). We therefore meet here a paradoxical situation: the appearance
of a non-zero condensed fraction may be used as a signature of the BKT transition,
whereas the BKT mechanism was presented (for an infinite system) as a feature that
takes place in a 2d interacting gas instead of the usual BEC of 3d Bose fluids. Note that
in a “true” BEC the condensed fraction Π0 should not explicitly depend on N . However,
for α ≤ 1/4 this distinction becomes experimentally irrelevant, and in order to observe a

(6) We get an equivalent estimate from Π0 ∼ g1(L)/n and ns ∼ n in the algebraic decay regime.
In cold atom gases, the typical values of λ and ξ are 0.1–1 µm, while the maximal system size
is L ∼ 100 µm. At the transition point we have Π0 ∼ (10−3)1/4 to (10−2)1/4 ∼ 0.2 to 0.3.
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BKT transition with no significant BEC one would need to consider unrealistically large
samples. This was pointed out by the authors of [45] who wrote the famous statement (in
the context of 2d magnetism): “With a magnetization at the BKT critical point smaller
than 0.01 as a reasonable estimate for the thermodynamic limit, the sample would need
to be bigger than the state of Texas for the Mermin-Wagner theorem to be relevant!”.
A similar remark holds in the context of superfluid helium films [2].

4.3. Width of the critical region and crossover . – The intricate mixing between the
BKT mechanism and the emergence of a significant degree of coherence exists even at
temperatures slightly above the BKT transition point. We mentioned in subsect. 3.3
that in the normal state the characteristic decay length ' of g1(r) diverges exponentially
in the vicinity of the critical point: ln('/λ) ≈ (aTBKT/(T − TBKT))1/2, where a is a
model-dependent coefficient (see eq. (56)). The critical region where ' becomes larger
than λ as a precursor of the BKT transition is therefore very broad, (T −TBKT) ∼ TBKT.
Further, there clearly exists a temperature close to (but still above) TBKT for which '
exceeds the system size. At this temperature a significant condensed fraction appears in
the system. Because of the exponential variation of ' with T − TBKT, the temperature
range where ' ! L, and condensation gradually sets in, can be significant(7):

(59)
∆T

TBKT
=
∆D

Dc
∼ a

(ln(L/λ))2
.

Although cold atom systems are so far commonly confined in harmonic rather than
box-like potentials, it is interesting to provide an estimate for this case. Taking a = 1
and reasonable values for L/λ between 10 and 100, the BKT transition is expected to
become a crossover with a relative width ∆T/TBKT ranging from 5% to 20%.

The above analysis explicitly concerns only the emergence of a non-zero condensed
fraction, but it also suggests broadening of the universal jump in the superfluid density.
For example, using standard Bogoliubov argument (see subsect. 2.4) we can deduce that
finite condensed fraction in an interacting system also implies a finite superfluid density.
Also, if we take the definition of superfluid density which associates it with the energy
cost of twisting the phase of the wave function at the edge of the system [46,47], we again
conclude that ' ! L implies a finite superfluid density. In the critical region, quantitative
conclusions might actually depend on what theoretical definition of superfluid density we
accept, but the qualitative conclusions will not change.

4.4. What comes first: BEC or BKT? – This is an often raised and subtle question.
We have so far discussed the case of a large system such that Dc - ln(4πL2/λ2), where
Dc = ln(380/g̃) is the critical phase space density for the BKT transition in an infinite
system. For such large systems, the first relevant mechanism that occurs when increasing
the phase space density is a BKT transition. However, we have seen that the approach of
the BKT threshold always results in the appearance of a significant condensed fraction.
We can qualify this “BKT-driven” condensation as “interaction-enhanced”, since it would
not take place in an ideal gas with the same density and temperature. Experimentally,
the strength of interactions in cold atom systems can be dynamically controlled using a
Feshbach resonance [48, 49]. One can therefore imagine preparing a non-interacting gas

(7) Here we can assume that λ under the logarithm on the right-hand side is constant over the
range ∆T .
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at phase space density where no condensation occurs and then driving the condensation
via the BKT mechanism by turning on the interactions. In the opposite regime of a small
system where the BKT transition would require Dc > ln(4πL2/λ2), the first phenomenon
that is encountered when the phase space density is increased is “conventional” Bose-
Einstein condensation as for an ideal Bose gas. As in the 3d case, in the presence of weak
repulsive interactions the formation of a condensate is accompanied by the apparition of
a superfluid fraction with a comparable value.

It would be very interesting to study cold atomic gases in a (quasi-)uniform potential
and vary the experimental parameters so as to explore both regimes. However we point
out that this will not be an easy task if we require that the criteria for the two types of
transitions are well separated, for example by more than the crossover width discussed in
subsect. 4.3. To analyze the system requirements for reaching the two different regimes, it
is convenient to fix the ratio L/λ and write ln(4πL2/λ2) = γDc. Now γ is a dimensionless
parameter such that γ > 1 means that (as particle number is increased) condensation
occurs via the BKT mechanism. The critical number for the BKT transition is then

(60) Nc =
L2

λ2
Dc =

1
4π

Dce
γDc ,

while the critical number for condensation in an ideal gas is γNc. For illustration purposes
we may define the BKT regime by γ ≥ 1.5, and the BEC regime by γ ≤ 0.5. (For values of
γ close to 1, the two effects are difficult to disentangle experimentally.) The experiments
with cold atoms have so far been performed at coupling strength g̃ ∼ 10−2–10−1. Taking
g̃ = 0.1, γ = 1 corresponds to Nc ≈ 2.5 × 103, and the BKT regime γ = 1.5 corresponds
to Nc ≈ 1.5 × 105, which is easily achievable. However the opposite BEC regime of
γ = 0.5 corresponds to Nc ≈ 40; studying such a small particle number is experimentally
very challenging, although it might become feasible with the development of single-atom
detection [50-52]. For a more weakly interacting gas with g̃ = 0.01, γ = 1 corresponds to
Nc ≈ 3 × 104, and γ = 0.5 to Nc ≈ 160, which might be easier to explore. On the other
hand, γ = 1.5 corresponds to Nc ≈ 6 × 106, which would be experimentally challenging.
It would therefore generally be difficult to explore both the large (BKT) and the small
(BEC) system regime using the same value of g̃, and reaching the BEC regime may
require a more weakly interacting quasi-2d atomic gas than has so far been studied.

4.5. The case of anisotropic samples. – So far we have assumed that for phase space
densities D larger than the critical value Dc for the BKT transition, the functional form
of g1 found in the infinite case (algebraic decay) remained valid for a finite-size system.
This assumption is reasonable for square samples (Lx = Ly), but may not be valid for
anisotropic samples, with a width along one direction (say x) much larger than the other
one: Lx $ Ly. We briefly review the expected properties in this regime, which is relevant
for several of the previous or current experimental setups. Since we are interested in the
regime D > Dc, we assume that a superfluid component is present in the sample and
we use the Hamiltonian Hθ given in (41) to estimate the amplitude of phase fluctuations
and their consequence on the one-body correlation function g1.

We start from the result (46) obtained in the infinite case. In a finite-size system
the integral over k is replaced by a discrete sum over k = 2π(jx/Lx, jy/Ly) times the
constant prefactor 4π2/(LxLy):

(61) ln(g1(r)/ns) = − 2π
nsλ2LxLy

∑

k

1 − cos(k · r)
k2

x + k2
y

.
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We are interested here in the decay of g1 along the long axis of the sample and we choose
r = xux, where ux is the unit vector along the x direction. We take x - Lx so that
the finiteness of the sample along x has no relevance here. On the contrary the size Ly

(- Lx) will play an important role since we can choose x either small or large compared
to Ly. We now show that these two cases lead to different decaying regimes for g1.

Since we assume |x| - Lx, the discrete sum over kx can always be replaced by an
integral and we get

(62) ln(g1(x)/ns) = − 1
nsλ2Ly

∑

ky

∫
1 − cos(kxx)

k2
x + k2

y

dkx = − π

nsλ2Ly

∑

ky

1 − e−|xky|

|ky|
.

We single out the contribution of ky = 0 in the sum, introduce a cutoff kmax for large ky

and use
∑jmax

j=1 1/j ≈ ln jmax and
∑∞

j=1 ζ
j/j = − ln(1 − ζ) for 0 < ζ < 1. We then get

(63) ln(g1(x)/ns) = − 1
nsλ2

{
π|x|
Ly

+ ln
[
kmaxLy

2π

(
1 − e−2π |x|/Ly

)]}
.

Two regimes clearly appear in this expression. If π|x| - Ly then the logarithm on the
right-hand side is the dominant term, and we recover the algebraic decay that holds for
an infinite system:

(64) k−1
max - |x| - Ly : g1(x) ≈ ns

(|x|kmax)α
, with α =

1
nsλ2

.

This result is intuitive: as long as we probe the coherence of the system on a distance
shorter than the smallest size of the sample, the anisotropy introduces no significant
deviation with respect to an infinite system.

The situation is dramatically different when |x| $ Ly. In this case the dominant
contribution on the right-hand side of (63) is the linear term π|x|/Ly. This term, which
originates from the contribution of the ky = 0 mode to the sum (61), leads to an expo-
nential decay of g1:

(65) Ly - |x| : g1(x) ≈ ns e−|x|/d, with d = nsλ
2Ly/π.

It is quite remarkable that when we probe the coherence of this anisotropic system on
distances x ≥ d > Ly, we obtain an exponential decay as if the system was not superfluid.
At the same time, the characteristic distance over which g1 decays, d, explicitly depends
on the superfluid density. The physical interpretation of this counterintuitive result is
that over such distances the system acquires a quasi–one-dimensional character: the
phase stiffness between the origin and the point at coordinate x is decreased with respect
to an infinite plane because there is a severe reduction in the number of independent
paths connecting these two points. Ultimately, for very large |x|, only the channel ky = 0
contributes significantly to the connection between these two points. This explains why,
although the system is superfluid, the decay of g1 turns to an exponentially decaying
function, that is characteristic of 1d degenerate gases (see also [53] for a similar discussion
for elongated atomic 3d gases).
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5. – The 2d Bose gas in a harmonic trap

Up to now, experiments performed with (quasi-)2d atomic gases used harmonic trap-
ping in the xy-plane. We discuss in this section how the presence of the harmonic
trapping potential modifies the above results. We shall see that it can lead to a dra-
matic change of the properties of the system, through the modification of the density
of states of the single-particle Hamiltonian. In particular, in this case “conventional”
Bose-Einstein condensation, as defined through the saturation of excited states at some
non-zero temperature Tc, can occur in the ideal Bose gas even in the thermodynamic
limit. However, in the presence of repulsive interactions, and in large enough systems,
this type of condensation is suppressed and replaced by the BKT normal to superfluid
transition.

5.1. The ideal case. – Consider for simplicity an isotropic 2d harmonic potential
V (r) = mω2r2/2. The single-particle energy levels are Ej = (j + 1)!ω, with j positive
or zero integer, and each level having a degeneracy gj = j + 1. The maximum number
of atoms Nc that can be placed in all excited states (j > 0) at a given temperature T is
obtained by choosing a chemical potential µ equal to the ground-state energy:

(66) N (id)
c (T ) =

+∞∑

j=1

gj

eζj − 1
,

where ζ = !ω/(kBT ). Assuming ζ - 1, the discrete sum can be replaced by an integral
and one obtains

(67) N (id)
c (T ) ≈ π2

6

(
kBT

!ω

)2

.

For an atom number N > Nc(T ) there must be at least N − Nc atoms occupying the
single-particle ground state j = 0. Equivalently, for a given atom number N placed in
the trap, there must be a significant fraction of the atoms that occupy the ground state
j = 0 if the temperature is reduced below the critical value

(68) kBTc =
√

6
π

!ω
√

N.

Since the ground state is separated from the first-excited state by a non-zero gap !ω,
this Bose-Einstein condensation can be viewed as a natural consequence of the finite size
of the system [54], similar to the condensation of the ideal gas in a finite box. However,
one can see that the condensation of the ideal gas in a 2d harmonic trap is a more
interesting phenomenon by considering the appropriately defined thermodynamic limit
for the harmonic confinement. This limit is obtained by taking N → ∞ and ω → 0,
while keeping T and Nω2 constant. For a gas described by Boltzmann statistics, this
ensures that the central density n0 = Nmω2/(2πkBT ) remains constant. Equation (68)
leads to a non-zero critical temperature in the thermodynamic limit, contrarily to what
happens in the uniform case. This result can be understood by noticing that the density
of states has a different functional form in a box (ρ(E) constant) and in a 2d harmonic
potential (ρ(E) ∝ E) [55]. The vanishing density of states at E = 0 for a 2d harmonic
potential leads to a similar situation to the 3d uniform case, hence the possibility for a
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genuine Bose-Einstein condensation in the ideal gas (for a discussion of small logarithmic
anomalies in the compressibility of the trapped ideal 2d gas, see [56]).

Quite remarkably the result (67) can be recovered by starting from the uniform result
given in eq. (6): n = −λ−2 ln(1 − eβµ) and using a local density approximation (LDA).
This approximation amounts to replacing the uniform chemical potential µ by the local
one µ − V (r), which gives the following expression for the total atom number:

N = −λ−2

∫
ln(1 − eβ(µ−V (r))) 2πr dr(69)

= −
(

kBT

!ω

)2 ∫ +∞

0
ln

(
1 − Ze−R2/2

)
R dR,

where we set R = r/rT with r2
T = kBT/mω2. For µ = 0, the result coincides with

eq. (67). Therefore in spite of the fact that LDA leads to a diverging spatial density at
the center of the trap for µ = 0 [n(r) ∝ − ln(r)], it provides the same upper bound Nc

as eq. (66) for the total number of atoms, assuming no macroscopic occupation of the
single-particle ground state.

5.2. LDA for an interacting gas. – In order to take into account repulsive interactions
for a trapped gas, we use again the local density approximation. We will start with an
analytical mean-field treatment based on the Hartree-Fock approximation. We will then
use the numerical results of a classical field Monte Carlo approach [44] that will provide
a more precise determination of the BKT transition.

In the mean-field Hartree-Fock approach when no condensate is present, interactions
are taken into account by adding the energy 2gn(r) to the external potential [57,58]. The
local chemical potential is now µ − V (r) − 2gn(r) so that the local phase space density
D(r) = n(r)λ2 is the solution of the implicit equation

(70) D(r) = − ln {1 − Z exp[−βV (r) − g̃D(r)/π]} .

Putting R = r/rT as above, we can write the total atom number as

(71)
N

N (id)
c

=
6
π2

∫ +∞

0
D(R)R dR,

where D is solution of

(72) D(R) = − ln
{
1 − Z exp

[
−R2/2 − g̃D(R)/π

]}
.

Note that the solution D(R) depends only on the fugacity Z and the interaction
strength g̃. The trap frequency and the temperature do not appear explicitly so that the
scaling of the atom number with ω and T (at fixed Z) is identical to the result (69) for
the ideal gas.

Interactions, when treated at the mean-field level, dramatically change the nature
of the solution of eqs. (71)-(72). For a given trapping frequency ω and temperature
T , and for any non-zero g̃, the atom number N obtained from eq. (71) can be made
arbitrarily large by choosing properly the fugacity Z. The condensation phenomenon
that was obtained in the ideal gas case does not occur anymore. This can be understood
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Fig. 2. – Variation of the central phase space density as a function of the atom number, nor-
malized by the critical atom number N (id)

c for the ideal gas in the same potential and at the
same T . The value of the interaction strength g̃ is given for each curve. The black squares
indicate the values of N at which the BKT criterion of eq. (53) is met at the center of the trap.
(a) Results obtained using the mean-field Hartree-Fock approach. (b) Results obtained using
the bulk results of [44] and the local density approximation.

qualitatively. For an ideal gas, the saturation of the atom number occurs when the
central density in the trap becomes infinite. In the presence of repulsive interactions,
this singular point cannot be reached and the mean-field treatment provides a solution
for any atom number [59].

We have plotted in fig. 2a the prediction of the mean-field approach for the central
phase space density D(0) as a function of the total number of atoms in the trap, for
various values of g̃. As expected, D(0) is a monotonically increasing function of the atom
number N : more atoms in the trap lead to a larger central density. The other expected
feature is that, for a given atom number, D(0) decreases as the repulsion between atoms
is increased. In particular the divergence of D(0) that is found in the ideal case for
N = N (id)

c does not show up anymore in the presence of repulsive interactions. One
could try to push further the mean-field analysis of the equilibrium state, and look for
dynamical or thermodynamical instabilities that could appear above some critical atom
number [60-63]. However we will rather follow the spirit of LDA and assume that the
normal to superfluid BKT transition occurs at the center of the trap when the phase
space density at this point exceeds the critical value Dc (eq. (53)) predicted for the
uniform system [64].

Within the mean-field Hartree-Fock analysis, one can show that, to a very good
approximation, the number of atoms that have to be placed in the trap so that the
central phase space density reaches the critical value Dc is [65]

(73)
N (mf)

c

N (id)
c

= 1 +
3g̃

π3
D2

c .

An obvious consequence of this result is that for a given trap and a given temperature,
the BKT threshold in the presence of interactions requires a larger atom number than the
BEC of the ideal gas. Equivalently, for a given atom number, the superfluid transition
temperature in the presence of interaction is lower than the ideal gas condensation tem-
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perature. In fig. 2a we have indicated with black squares the value of N (mf)
c for various

interaction strengths.
So far we have relied on the mean-field approximation to obtain the relationship

between the density n(r) and the local chemical potential µ − V (r) − 2gn(r). Although
this gives a good feeling for the scaling laws that appear in the problem, it cannot
provide a very accurate description of the transition. Indeed the mean-field expression
2gn(r) for the interaction energy can only be valid at relatively low density, where the
density fluctuations are important, so that 〈n2〉 = 2〈n〉2. When the density increases
and/or the temperature decreases, density fluctuations are reduced and one eventually
reaches a situation at very low temperature where those fluctuations are frozen out and
〈n2〉 = 〈n〉2. At zero temperature, one expects a quasi-pure condensate in the trap
with a density profile given by the Thomas-Fermi law gn(r) = µ − V (r) (whereas the
Hartree-Fock approximation would lead to replacing g by 2g in this equation).

To capture the reduction of density fluctuations as the phase space density increases,
we now use the numerical results of [44] obtained using a classical field Monte Carlo
analysis. They provide the value of the phase space density D as a function of µ/kT
in the vicinity of the BKT critical point for a uniform system. Injecting this numerical
prediction in the LDA scheme, we obtain the results shown in fig. 2b for the central
density as a function of the total atom number. As expected this figure is qualitatively
similar to the one obtained using the mean-field Hartree-Fock approach. However the
classical Monte Carlo results lead to a noticeable reduction of the critical atom number
with respect to the mean-field treatment. For example, for g̃ = 0.15 (as in the ENS
experiment [27], see below) the critical atom number for reaching the BKT threshold
is expected to be ∼ 1.4N (id)

c using the numerical predictions of [44] instead of N (mf)
c ∼

1.9N (id)
c using the Hartree-Fock approximation. One might wonder if the classical Monte

Carlo simulations of [44], which assume g̃ - 1, remain accurate for the relatively large
interaction strength g̃ = 0.15. The (positive) answer was given in [96], which provides a
detailed comparison between the predictions of [44] and those of a quantum Monte Carlo
simulation of an assembly of trapped bosons for the interaction strength and trapping
geometry of the ENS experiment.

5.3. What comes first: BEC or BKT? – In the previous section devoted to the study
of a square potential we have explained that the distinction between a conventional BEC
transition and a BKT transition is subtle, and we introduced two related concepts:

– “BKT-driven condensation”, meaning that if the phase space density is increased
at constant g̃ the first many-body mechanism encountered is the BKT transition,
but due to the resulting slow decay of g1 this transition is accompanied by the
appearance of a finite condensed fraction.

– “Interaction-enhanced condensation”, meaning that there exists a range of phase
space densities for which no condensation occurs in an ideal gas but condensation
via the BKT mechanism can be induced by increasing the interaction strength from
0 to g̃.

In the case of a box potential these two concepts are equivalent. We identified a range of
parameters, such that Dc - ln(4πL2/λ2), for which both effects occur. In the opposite
regime of a small system and/or small g̃ neither of the two effects occurs.

The question “what comes first” is even more subtle in the case of a harmonically
trapped gas because of the inhomogeneous density profile. In this case the notions of
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BKT-driven and interaction-enhanced condensation are not equivalent, and the answer
depends on what we keep constant in an experiment, i.e. which path we follow in the
phase diagram. Since in a harmonic trap ideal gas condensation occurs even in the ther-
modynamic limit (i.e. if we neglect the discreteness of single-particle energy levels in the
trap), we start by analyzing that case, and separately consider two different experimental
paths:

– The critical phase space density Dc for a BKT transition (at a fixed non-zero
g̃) is finite, while the critical phase space density for ideal gas condensation is
infinite. Therefore in a standard experiment where g̃ is kept constant and phase
space density is increased, BKT-driven condensation always occurs. In this sense,
in practice “BKT always comes first”.

– While the critical phase space density for the BKT transition (at non-zero g̃) is
lower than for the ideal gas condensation, the critical atom number at fixed T

is higher. The critical atom numbers N (id)
c and N (BKT)

c scale similarly with the
temperature and the trap frequency (∝ (kBT/!ω)2), and the ratio N (BKT)

c /N (id)
c is

always larger than 1. This can be seen from the mean-field result of eq. (73) or from
the Monte Carlo data shown in fig. 2b. This means that, at fixed N , interactions
always reduce the transition temperature. Therefore, contrary to the case of a
square box potential, we can never have interaction-enhanced condensation.

Note that it is not inconsistent that the BKT transition occurs at a lower critical
density but higher critical number than the ideal gas BEC, because in a harmonic trap
with fixed N and T the peak (phase space) density in a repulsively interacting gas is lower
than in an ideal gas. Also note that if we work within the BKT theory and then formally
take the g̃ → 0 limit, we exactly recover the criterion for ideal-gas condensation, which
is usually derived from a conceptually completely different viewpoint of the saturation of
single-particle excited states. We can therefore think of the BEC transition as a special
non-interacting limit of the more general BKT theory. This connection naturally emerges
when analyzing the case of a harmonically trapped gas, but it could not be made in a
uniform system, where the critical temperature for both transitions vanishes in the g̃ → 0
limit.

Finally, we briefly comment on the case of a realistic experimental harmonic trap,
where the spacing of the single-particle energy levels is non-zero. The results for the
critical atom numbers for the BKT and the ideal gas BEC transition are essentially
unaffected by the non-zero level-spacing. It therefore remains true that interaction-
enhanced condensation is not possible. However, the ideal gas BEC in this case occurs
at a finite phase space density DBEC in the trap center, which can in principle be lower
than Dc for some values of g̃. In this case BKT-driven condensation would also no longer
occur, and “BEC would come first” no matter what path we take in the phase diagram.
This scenario is however not relevant for the currently realistic experiments. The value
of DBEC is not universal and depends on the details of the trapping potential, but we
have evaluated it numerically for a typical trap used in the ENS experiments [26,27], and
obtained DBEC ≈ 13 [66]. This means that the condition DBEC < Dc can be fulfilled
only in an extremely weakly interacting gas with g̃ < 10−3. Experimentally, this regime
is essentially indistinguishable from the g̃ → 0 limit, where the BKT and the BEC
transition are no longer distinct.
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5.4. Width of the crossover . – The divergence of the correlation length that we already
discussed in the case of a square box potential (see subsect. 4.3), must also be taken into
account. Suppose that one lowers the temperature of a cold gas in a trap until the BKT
threshold density is reached right at the center of the trap. Since the density is everywhere
lower than the critical threshold for BKT, LDA would imply that no significant superfluid
fraction is present in the gas at this stage. However a significant part of the gas may
exhibit a certain degree of coherence as we show now. The critical length (56) is now
position dependent, since the critical temperature is a function of the local density. Since
'(r) is a monotonically decaying function of the distance from the trap center r, we can
self-consistently assume that the gas is coherent over a region of radius rc such that
'(rc) = rc. We can also provide a crude estimate of rc: rc ≈ rT (ln(rT /λ))−1/2. For
practical parameters (rT /λ ∼ 10–100), we find rc ∼ rT , which means that this coherence
actually extends over a significant fraction of the cloud when D = Dc at the center of
the trap. We can also estimate the width of the cross-over over which the condensed
fraction becomes significant. If instead of taking D = Dc at the center of the trap, we
take D = 0.7Dc then ' ≈ 5λ at the center of the cloud and no significant coherence
exists at this point. The above analysis is confirmed at least qualitatively by numerical
simulations performed using a classical field Monte Carlo analysis. These simulations
indeed indicate the emergence of an extended coherence over the cloud at temperatures
10% to 20% above the one for which the bulk BKT criterion is met at the trap center [42].

6. – Achieving a quasi-2d gas with cold atoms

The experimental realization of a 2d atomic Bose gas is based on a strongly anisotropic
trap with one very tightly confining direction, say z, and two more loosely confined
degrees of freedom, x and y. The z degree of freedom can be considered as frozen from
the thermodynamic point of view if the energy gap ∆z between the ground state and
the first-excited state of the z motion is much larger than both kBT and the interaction
energy gn (both being typically on the order of one to a few kHz). Since the confinement
along z is usually harmonic, with frequency ωz, the gap is ∆z = !ωz. The z degree
of freedom is thermodynamically frozen when the extension of the ground state of the
z-motion, az =

√
!/mωz, is such that az - ξ, λ/

√
2π.

6.1. Experimental implementations. – Conceptually, the simplest scheme to produce
a 2d gas is to use a single Gaussian light beam that is red-detuned with respect to the
atomic resonance. The beam propagates along the x-direction, with waists along y and
z such that wy $ wz, so that it forms a horizontal light sheet. The dipole potential
created by this light sheet attracts the atoms towards the focal point, and ensures a
strong confinement in the z-direction. This technique was used at MIT to produce the
first atomic gas (of sodium atoms) in a quasi-2d regime [67]. More recently it has been
implemented at NIST to study the coherence properties of the 2d gas [28].

One can also produce a 2d gas by using an evanescent light wave at the surface of a
glass prism [68, 69], so that the atoms are trapped at a distance of a few micrometers
from the horizontal glass surface. The confinement in the horizontal xy-plane is provided
by an additional laser beam or by a magnetic field gradient. The fact that the confine-
ments in the xy-plane and along the z-axis have different origins is an interesting feature
because it offers the possibility, by releasing only the planar confinement, to study the
ballistic expansion of the atoms in the xy-plane only (see subsect. 7.2). Another experi-
mental system providing independent confinement in the xy-plane and along z has been
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investigated at Oxford, where a blue detuned, single node, Hermite Gaussian laser beam
traps atoms along the z-direction, and the confinement in the xy-plane is provided by a
magnetic-field gradient [70].

Two-dimensional confining potentials that are not based on light beams have also
been investigated. One possibility discussed in [71] consists in trapping paramagnetic
atoms just above the surface of a magnetized material that produces an exponentially
decaying field. The advantage of this technique lies in the very large achievable frequency
ωz, typically in the MHz range. One drawback is that the optical access in the vicinity
of the magnetic material is not as good as with optically generated trapping potentials.
Another appealing technique to produce a single 2d sheet of atoms uses the so-called
radio-frequency dressed state potentials [72-74].

A 1d optical lattice setup, formed by the superposition of two running laser waves,
is a very convenient way to prepare stacks of 2d gases [75-79]. The 1d lattice provides
a periodic potential along z with an oscillation frequency ωz that can easily exceed the
typical scale for interaction energy and temperature. The simplest lattice geometry is
formed by two counter-propagating laser waves, and provides the largest ωz for a given
laser intensity. One drawback is that the lattice period is small (λ0/2, where λ0 is
the laser wavelength) so that many planes are generally populated and the addressing
of a single plane is difficult. Therefore practical measurements only provide averaged
quantities. Another interesting geometry consists in forming a lattice with two beams
crossing at an angle θ smaller than 180◦ [80]. In this case the distance λ0/(2 sin(θ/2))
between adjacent planes is adjustable, and each plane can be individually addressable if
this distance is large enough [50,81]. Furthermore the tunneling matrix element between
planes can be made completely negligible, which is important if one wants to achieve a
truly 2d geometry and not a periodically modulated 3d system.

Finally, while here we are primarily interested in continuous 2d gases of spinless
Bosons, two related experiments on 2d physics also need to be mentioned:

First, an experiment performed in Boulder constitutes a direct implementation of
the XY model [82]. There, an array of parallel elongated (quasi-)condensates is created
in a 2d optical lattice, and tunneling matrix element J provides a Josephson-type cou-
pling between the neighboring lattice sites. In this system proliferation of vortices is
observed when the temperature is increased. Vortices are detected by turning off the
optical lattice and allowing the quasi-condensates trapped on different sites to overlap
and interfere. The measured surface density of vortices as a function of the ratio J/T is
in good agreement with the BKT theory applied to this system.

Second, in an experiment at Berkeley 2d physics was studied in a spinor Bose-Einstein
condensate of Rb atoms with total spin F = 1 and weak ferromagnetic spin-dependent
interactions [83]. This system is anisotropic, but still 3d with respect to the density
degrees of freedom, i.e. the healing length ξ is shorter than the shortest extension of
the cloud, along z. However, weak spin-dependent interactions correspond to a longer
healing length ξs, so that the system is 2d with respect to the spin degrees of freedom.
In this case the magnetization transverse to the quantization axis has a role analogous to
the phase of the wave function in a spinless Bose gas. At low T ferromagnetic interactions
favor spontaneous symmetry breaking but spin-vortex structures are also observed.

6.2. Interactions in a 2d atomic gas. – To address the role of interactions in these
gases, we start with some considerations concerning the quantum scattering of two atoms
when the z motion is strongly confined. In a strictly 2d problem and at low energy, the
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scattering state between two identical bosonic particles with relative wave vector k is [25]

(74) ψk(r) ∼ eik·r −
√

i

8π
f(k)

eikr

√
kr

, f(k) ≈ 4π
− ln(k2a2

2) + iπ
,

where a2 is the 2d scattering length. One should notice that contrarily to the 3d case,
the scattering amplitude f(k) does not tend to a non-zero finite value when k tends
to 0. In the experimental implementations of 2d gases that have been achieved so far,
the confinement along z was still relatively weak from a collisional point of view, in
the sense that the thickness az of the gas remained notably larger than the 3d scattering
length as. The scattering problem in this confined geometry has been discussed in [84,85]
(see also [86]); the general expression (74) for the scattering state ψk remains valid and
the scattering amplitude can be written

(75) f(k) ≈ 4π√
2πaz/as − ln(κ k2a2

z) + iπ

with κ ≈ 3.5, corresponding to the 2d scattering length

(76) a2 = az
√
κ exp

(
−

√
π

2
az

as

)
.

Now for all experiments realized so far, the first term
√

2πaz/as in the denominator of
eq. (75) is large compared to 1, and dominates over the logarithmic term ln(κ k2a2

z) and
the imaginary term iπ. We can then take a constant scattering amplitude (as in 3d) to
describe the collisions in the gas: f(k) ≡ g̃ ≈

√
8πas/az. With this approximation the

interaction energy of the gas with density n(r) in the xy plane is

(77) Eint =
!2g̃

2m

∫
n2(r) d2r.

The corresponding values for the 2d scattering length are extremely small, due to the
exponential factor in eq. (76). Taking for example az = 200 nm and as = 5 nm (87Rb
atoms), we find a2 = 6 10−29 m. Typical surface densities are in the range 1013 m−2,
and the dimensionless parameter na2

2 that is relevant for perturbative expansions of the
equation of state of the 2d Bose gas [87-93] is also extremely small: na2

2 ∼ 4 10−44 for
the numbers given above.

The expression (77) can also be obtained by starting from the 3d interaction energy

(78) Eint,3d =
2π!2as

m

∫
n2

3(r) d3r,

in which we plug directly n3(x, y, z) = n(x, y) exp(−z2/a2
z)/

√
πa2

z. However the validity
condition as - az remains hidden in this procedure.

To summarize, the collision dynamics in the experiments performed so far is still
dominated by 3d physics. The 3d scattering length as is much smaller than the thickness
of the gas and the scattering amplitude is nearly k-independent. This regime is often
referred to as “quasi-2d”. It is important to note that the term “quasi-2d” is also used
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to describe another aspect of the 2d gases: very often the temperature of the gas (and
possibly the interaction energy) is not small compared to !ωz, but comparable or even a
bit larger. We discuss in the next subsection how to handle this problem.

6.3. Residual excitation of the z-degree of freedom. – For a quantitative analysis of
experiments performed with 2d gases, in particular for the determination of the tem-
perature, it is important to take into account the residual excitation of the z-degree
of freedom. This was first pointed out in [94], where a quantum Monte Carlo sim-
ulation gave an estimate for the distortion of the density profile due to this residual
excitation. Several possible ways were subsequently proposed to take this excitation into
account [94,65,66,95,96]. The simplest method consists in renormalizing the interaction
strength g̃ to account for the density profile of the gas along the z direction [94]. The
predictions derived with this method were compared with quantum Monte Carlo results
in [65] and later analyzed in detail in [95]. In the following we outline the slightly more
elaborate treatment of [66] which has the advantage of taking into account not only the
thermal excitation of the z degree of freedom, but also the possible deformation of the
ground state of the z-motion due to atomic interactions.

The method used in [66] is a direct implementation of the Hartree-Fock approximation
(see, e.g., [97]) and we first present it for a gas which is uniform in the xy-plane. We
choose a 3d trial density profile n3(z) uniform in the xy-plane and varying along the
strongly confined z direction. We then consider the Hamiltonian with the mean-field
energy

(79) H = − !2

2m
∇2 +

1
2
mω2

zz2 + 2g(3d)n3(z).

The single-particle eigenfunctions of this Hamiltonian can be written ψk,j(x, y, z) =
ϕj(z) ei(kxx+kyy)/2π, with energy Ek,j = !2k2/(2m) + εj , where k2 = k2

x + k2
y. The

normalized functions ϕj(z) and the energies εj of the z-motion of course depend on
the choice of the trial density profile n3(z). In the Hartree-Fock approximation the
average occupation of the single particle level ψk,j is given by the Bose factor f(Ek,j) =
(exp(β(Ek,j − µ)) − 1)−1. We calculate the corresponding 3d density profile, which is
still uniform in xy and has the following z-dependence:

(80) n′
3(z) =

∑

j

∫
d2k |ψk,j |2 f(Ek,j) = − 1

λ2

∑

j

|ϕj(z)|2 ln
(
1 − Ze−βεj

)
.

The self-consistency of the Hartree-Fock approximation requires that n3(z) and n′
3(z)

coincide, which can be achieved by iterating the solution of the above set of equations
until a fixed point is reached. With this method, we fulfill two goals: i) We take into
account the residual thermal excitation of the levels in the z-direction. ii) Even at
zero temperature we take into account the deformation of the z ground state due to
interactions. When interactions can be neglected, the eigenstates ϕj(z) are the Hermite
functions and εj = !ωz(j + 1/2).

Using the local density approximation, the above method can be straightforwardly
adapted to the case where a trapping potential V⊥ is present in the xy-plane. The trial
density distribution n3(r) is now a function of all three spatial coordinates. At any point
(x, y), we treat quantum mechanically the z motion and solve the eigenvalue problem for
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the z variable

(81)
[
−!2

2m

d2

dz2
+ Veff(r)

]
ϕj(z|x, y) = εj(x, y)ϕj(z|x, y),

where Veff(r) = V⊥(x, y) + mω2
zz2/2 + 2g(3d)n3(r) and

∫
|ϕj(z|x, y)|2 dz = 1. Treating

semiclassically the xy degrees of freedom, we obtain a new spatial density

(82) n′
3(r) = − 1

λ2

∑

j

|ϕj(z|x, y)|2 ln
(
1 − Ze−βεj(x,y)

)
.

Again the Hartree-Fock prediction is obtained by iterating this calculation until the
spatial density n3(r) reaches a fixed point. Since ϕj is a normalized function of z at any
point (x, y), the total 2d density is

(83) n(x, y) =
∫

n3(r) dz = − 1
λ2

∑

j

ln
(
1 − Ze−βεj(x,y)

)
.

In the limit where only the ground state j = 0 of the z motion is populated, the result of
this Hartree-Fock approach coincides with the solution of (70). The method used in [95]
is similar to this approach, but the deformation of the eigenstates due to mean-field
interaction was neglected.

The density profiles predicted by this method have been compared with the results
of a quantum Monte Carlo simulation [96]. An important outcome for the analysis
of experimental data is the excellent agreement between the two approaches as long as
nλ2 < 2. This agreement holds for the temperature regime (kBT ≤ 2!ωz) and interaction
strength (g̃ " 0.15) relevant for current experiments. The Hartree-Fock approach is
therefore well suited for fitting the wings of the experimental density profiles of a quasi-
2d gas to extract the temperature and chemical potential.

7. – Probing 2d atomic gases

This section is devoted to the presentation of some methods that have been used
for the experimental study of 2d Bose gases. We start with the conceptually simplest
approach, which consists in the measurement of the steady-state distribution of atoms
in a trap. We then turn to the information that can be acquired in a Time-of-Flight
expansion. Finally we discuss two schemes that give access to the phase coherence of
the gas.

7.1. In situ density distribution. – Conceptually the simplest information that can
be obtained on a 2d gas is a picture of the sample along the direction that is strongly
confined. Since this degree of freedom is supposed to be frozen out, there is no loss of
information due to integration along the line-of-sight. This is in contrast to what happens
in 3d, where one has to resort to a non trivial transformation to reconstruct the spatial
distribution [98] (see also [99] for a review).

Assuming that local density approximation (LDA) is valid, the density distribution
in the trap n(r) can be obtained from the equation of state of the homogeneous system.



422 Z. HADZIBABIC and J. DALIBARD

The general form of this equation of state is

(84) nλ2 = F (µ, kBT, a2),

where F is at this stage an unknown function and a2 is the 2d scattering length. Within
LDA the density n(r) in the trap is calculated by replacing µ by µ − V (r), where V (r)
is the trapping potential.

In the quasi-2d regime that is of practical interest (as - az), we have seen in sub-
sect. 6.2 that the interactions in the gas are characterized to a good approximation by
the dimensionless number g̃ =

√
8π as/az - 1. In this case eq. (84) can be simplified

using dimensional analysis; the expression of the phase space density D = nλ2 must take
the functional form

(85) D = G(α, g̃) with α =
µ

kBT
.

For a gas that is trapped in a harmonic potential mω2r2/2, the in situ density profile is
then given by

(86) n(r)λ2 = G

(
α− r2

2r2
T

, g̃

)
,

where we set as above mω2r2
T = kBT . This expression clearly shows a scale invariance for

a given interaction strength g̃. Suppose that different density profiles n(r) are recorded
for various temperatures T and various atom numbers N (hence different chemical po-
tentials µ). According to eq. (86) the profiles can all be superimposed on the same
curve G(α, g̃), provided they are plotted as a function of r2/r2

T and translated along the
x-axis by the dimensionless quantity α = µ/kBT . This scale invariance behaviour has
been checked with excellent accuracy by M. Holzmann and W. Krauth using quantum
Monte Carlo simulations [100]. These simulations were performed for g̃ = 0.15, which
corresponds to the interacting strength in ENS experiments with Rb atoms.

For g̃ - 1, various asymptotic forms of the function G(α, g̃) have been given earlier.
When interactions can be neglected (g̃ = 0), the equation of state is (cf. eq. (6)): D =
− ln(1 − eα). In the presence of interactions and for small phase space densities, the
mean-field Hartree-Fock method amounts to replace µ by µ − 2gn into the ideal-gas
result, which leads to the implicit equation D = − ln(1 − eα−g̃D/π), from which one
can extract D as a function of α and g̃ (see also eq. (70)). In the strongly degenerate
limit, where µ $ kBT and D $ 1, density fluctuations are strongly reduced and one
expects µ = gn, which can be written as D = (2π/g̃)α. In the intermediate regime,
in particular close to the BKT transition point, one can use the results of the classical
field Monte Carlo analysis of [44]. The resulting function D = F (α, g̃) is represented in
fig. 3 for g̃ = 0.15. The two asymptotic regimes that we just described are indicated
with dotted and dash-dotted lines. A remarkable characteristic of the function F (α, g̃) is
precisely the absence of significant features at the critical point for the BKT transition
(corresponding to α ≈ 0.2 and D ≈ 8 for g̃ = 0.15). This is due to the infinite order of
the BKT transition, that does not cause any singularity in the dependance of the total
density n on T or µ. On the other hand, the superfluid density ns (plotted as a dashed
line in fig. 3) is discontinuous at the transition point, but this quantity is not directly
accessible from an in situ measurement. For a detailed comparison between the results of



TWO-DIMENSIONAL BOSE FLUIDS: AN ATOMIC PHYSICS PERSPECTIVE 423

0

5

10

15

20

0 +0.5-0.5-1.0 0.0 0.5 1.0 1.5

0

5

10

15

20

Ph
as

e 
sp

ac
e 

de
ns

ity

µ/kBT

g̃ = 0 .15

r/rT

(a) (b)

g̃ = 0 .15

Fig. 3. – (a): Phase space density as a function of α = µ/kBT for g̃ = 0.15. Continuous line:
Total phase space density D = nλ2; dashed line: superfluid phase space density nsλ

2. The
dotted and dash-dotted lines represent the asymptotic regimes for low and high phase space
densities, respectively. (b) In situ density profiles in a trap deduced from the left panel using
the local density approximation. The plot is made for µ/kBT = 0.5 so that the Thomas-Fermi
radius rTF =

p
2µ/mω2 is equal to rT .

the mean-field Hartree-Fock approach and those obtained from a quantum Monte Carlo
simulation and from a renormalization group treatment, see [96] and [63], respectively.

Finally we note that the analysis of individual images requires a proper knowledge of
the temperature and the chemical potential. These are usually obtained by fitting the
wings of the distribution with the appropriate function for the quasi non-degenerate gas
(see the discussion following eq. (83)). An interesting alternative consists in using in situ
density fluctuations to determine these thermodynamic quantities [101]. This promising
method that relies on the fluctuation-dissipation theorem for a non-uniform system has
not yet been implemented experimentally for a 2d Bose gas.

7.2. Two-dimensional Time-of-Flight expansion. – Generally speaking, a Time-of-
Flight (TOF) procedure consists in switching off abruptly the potential confining the
atoms, letting the cloud expand for an adjustable time, and then measuring the den-
sity profile. If the role of interactions is negligible during the expansion, the density
profile after a long TOF is proportional to the in-trap momentum distribution. For a
two-dimensional system, two types of TOF can be considered. One can switch off the
potential confining the atoms in the xy-plane, while keeping the strong confinement along
the frozen direction z; we will call this procedure a “2d TOF”. Alternatively, one can
switch off simultaneously the potential in the xy-plane and the confinement along z,
corresponding to a “3d TOF”. We discuss 2d TOF in this section, and 3d TOF in the
following one.

We consider here the case of an isotropic harmonic trap in the xy plane V (r) =
mω2r2/2. A 2d gas is initially at thermal equilibrium in this trap, with a density profile
neq(r). Suppose that this potential is suddenly switched off at time t = 0 whereas the
confinement along the z direction remains unchanged. Using the Bogoliubov approach,
it was predicted in [102] that the subsequent evolution of the density distribution is given
by the scaling law

(87) n(r, t) = η2
t neq(ηtr), ηt = (1 + ω2t2)−1/2.
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This means that the global form of the spatial distribution is preserved during the TOF.
As the expansion proceeds, the interaction energy that was initially present in the gas is
converted into kinetic energy in such a way that the density profile at time t is obtained
using a scaling transform of the initial one. We emphasize that this remarkable result is
stronger than its 3d counterpart [103,102] which holds only in the Thomas-Fermi regime:
In the 2d case the scaling behavior is valid both for the superfluid component and for
the thermal Bogoliubov excitations. This scaling behavior has been recently observed by
the ENS group [104].

The scaling invariance in the expansion of a 2d interacting gas has been explained
in terms of the SO(2, 1) symmetry group for a whole class of interaction potentials
U(r) between two particles [105]: it is sufficient that U is a homogeneous function of
degree 2, U(αr) = U(r)/α2. When this is the case, the result of eq. (87) holds for an
arbitrary initial state of the 2d gas, irrespective of its temperature. The 2d contact
interaction potential, which is implicitly assumed in eq. (16), belongs to this class of
functions. We note however that a true contact interaction is singular in 2d because it
leads to ultraviolet divergences at the level of quantum field equations. A real interatomic
potential has a finite range which provides a UV cut-off that eliminates the divergences.
This regularization will occur if one uses the more precise treatment of atomic interactions
given in eq. (75). It will lead to deviations with respect to the universal law (87), which
remain to be evaluated and characterized.

7.3. Three-dimensional Time of Flight . – In a 3d TOF both the trapping potential in
the xy-plane and the strong confinement along the z-direction are switched off simulta-
neously. The physics is then very different from that of a 2d TOF. Along the initially
strongly confined direction z, the atom cloud expands very fast since the momentum
width ∆pz ∼ !/∆z is large. If the atoms are initially in the ground state of a harmonic
potential with frequency ωz along this axis, the extension of the cloud is multiplied by√

2 in a time t = ω−1
z . The time scale for the expansion of the gas in the xy-plane

is much longer; it is given by ω−1, where ω - ωz is the trapping frequency in this
plane. Therefore it is a good approximation to decompose a 3d TOF into two phases.
During the first phase, whose duration is a few ω−1

z (typically 1 ms if ωz/2π = 3 kHz),
the thickness of the gas along z increases by a factor much larger than 1, but the xy
spatial distribution is nearly not modified. At the end of this first phase, the interactions
between atoms have become negligible. During the subsequent phase the expansion in
the xy-plane becomes significant, but on a much longer time scale. It corresponds to the
expansion of an ideal gas, whose initial state is equal to the state of the system in the
xy-plane before the beginning of the TOF.

We now focus on the evolution of the xy degrees of freedom during the second phase,
which is essentially governed by single-particle physics. The evolution of the density
distribution in the xy-plane can be determined from the initial one-body density matrix
g1(r, r′) = 〈r|ρ(1)|r′〉, or from its Fourier transform Π(p) with respect to the variable
r − r′, which represents the momentum distribution in the xy-plane.

In the absence of any extended coherence in the gas, g1(r, r′) tends to zero when
|r − r′| increases, with a characteristic decay length given by the thermal wavelength
λ. The corresponding momentum width is ∆p ∼ !/λ and the spatial distribution after
TOF will reflect the initial momentum distribution if the TOF duration t is such that
∆p t/m $ rT , where rT is the initial size of the gas. For a harmonic confinement in the
xy-plane, this “far field” regime corresponds to ωt $ 1. Taking ω/2π = 30 Hz as a typical
value, the far field regime (say ωt > 3) is reached for t > 15 ms. This corresponds to a
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typical value for TOF experiments, which thus give access to the momentum distribution
in this non (strongly) degenerate regime.

The situation is very different if a significant condensed fraction is present in the gas,
as expected in the vicinity and below the BKT transition temperature. In this case we
have seen in subsect. 5.4 that the size rc of the coherent region of the cloud is rc ∼ rT .
The momentum width ∆pc = !/rc of this coherent component is then extremely narrow,
and it would require a very long TOF to reach the “far field” regime for this coherent
component. Taking rc = rT as a typical value, we find that the time t required for a
significant expansion of this component, i.e. ∆pc t/m = rc, is such that ωt = kBT/!ω.
For ω/2π = 30 Hz and T = 100 nK, this gives t > 300 ms, which is too long in practice
for a TOF.

Therefore in the regime where a relatively strong coherence of the gas is present, a
3d TOF of a realistic duration gives access to a hybrid information. The high-energy
fraction of the gas is in the far-field regime and the wings of the density profile after TOF
give access to the large momentum part of the initial state. On the contrary the central
feature corresponding to the condensed, superfluid fraction, has not yet undergone a
significant expansion. The detailed study of the border between these two components
is still a matter of debate. In experiments with rubidium atoms [27, 106], the density
profile after a 3d TOF is well modeled by a two-component distribution and fits with
the line of reasoning we just presented. In contrast, in the experiments performed at
NIST with a sodium gas [28], an intermediate third component was introduced in order
to obtain a good description of the density profiles after a 3d TOF. This component
corresponds to a phase with a spatial scale of coherence that is intermediate between the
microscopic length λ and the macroscopic one rT , and it is qualified as a “non-supefluid
quasi-condensate” in [28].

It is interesting to note that 3d TOF is the most common and natural experimental
method used in the studies of 3d atomic gases. However, in hindsight, its availability is a
non-trivial and rather serendipitous feature of atomic systems for studies of BKT physics.
In combination with the finite-size induced condensation, the ability to suddenly turn off
the interactions through the fast z-expansion provides a much more striking signature of
the BKT transition [27, 28, 106] than one might have theoretically expected. Thinking
strictly in 2d, the transition is extremely smooth and one would not naturally expect
to see such a dramatic signature in any quantity except the superfluid density. As we
discussed in subsect. 7.2, in 2d TOF the observed density distribution indeed varies
smoothly across the transition.

So far we have discussed the “average” density profile in 3d TOF, which theoretically
corresponds to the average of a large number of images obtained under same conditions. It
is also interesting to consider the density noise in individual images, which can be related
to the phase noise of the gas before expansion. This connection has been exploited for
quasi-1d gases since 2001 [107]. For the 2d case, it has been shown theoretically in [108]
that the two-point density correlation function after TOF can provide information on
the in situ g1 function, at least in the superfluid regime. This method is also specific
to 3d TOF, where the phase noise evolves into density noise in interaction-free ballistic
expansion.

7.4. Interference between independent planes. – Since an important aspect of the
physics of 2d Bose gases is related to phase properties, it is natural to investigate mea-
surement schemes based on interferometry. We start with the proposal by Polkovnikov
et al. [109] which showed how a single experimental procedure could characterize both
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Fig. 4. – (a) Principle of an experiment giving access to the interference between two independent
planar gases, observed after time-of-flight. (b-d): Examples of interference patterns measured
with the experimental setup described in [26]. The imaging beam is propagating along the
y-axis. The pattern (b) is obtained with very cold gases, whereas (c) corresponds to a larger
temperature. The dislocation in (d) is the signature for the presence of a vortex in one of the
two gases.

the normal regime (exponential decay of g1) and the superfluid regime (algebraic decay
of g1) (see also [110] for a more complete review). Consider two independent, infinite
planar gases located at za = +dz/2 and zb = −dz/2. They are prepared in identical
conditions, i.e. they have the same temperature and the same density. We perform a 3d
time-of-flight of duration t, that is chosen such that the final extension along z of each
cloud is large compared to the initial separation dz between the planes. The two clouds
thus overlap and we want to extract information about the one-body correlation function
g1 from their interference pattern (fig. 4a).

The state of each plane is described by the wave function ψa/b(x, y). After expansion,
the spatial atomic density n is modulated along any line parallel to the z axis with the
period Dz = ht/mdz [111]:

(88) n ∝ |ψa|2 + |ψb|2 +
(
ψaψ

∗
b ei2πz/Dz + c.c.

)
.

For simplicity we have omitted in the above equation a global envelope factor giving
the variation of the density along the z-axis. Also we have neglected the expansion in
the xy-plane during the TOF. As explained above there exists a range of TOF duration
where this is valid, if the trapping frequency ω in this plane is much smaller than ωz. We
see from eq. (88) that the local (complex) contrast of the density modulation is ψaψ∗

b .
Experimentally one cannot measure this quantity along a single line, and one rather has
access to the average contrast over a region of finite area A in the xy-plane. In particular
if one performs absorption imaging along the y-axis (fig. 4b-d), the image involves an
integration of the local contrast ψaψ∗

b along the y-direction(8). Averaging the result of
this contrast measurement over a large number of realizations, one can define the average
contrast C(A):

(89) C2(A) =
1

A2

〈∣∣∣∣
∫

A
ψa(r)ψ∗

b (r) d2r

∣∣∣∣
2
〉

.

Using the fact that the fluctuations of the wave functions ψa and ψb are uncorrelated

(8) The length over which the line-of-sight integration occurs can be adjusted by a proper
“slicing” of the cloud just before the imaging process, as in [111].
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and taking advantage of the translational symmetry of the system, we find

(90) C2(A) =
1
A

∫

A
|g1(r)|2 d2r,

where g1(r) = 〈ψ∗
j (r)ψj(0)〉 for j = a, b. Suppose for simplicity that the area A is a

square and consider the two cases of an exponentially decaying g1(r) ∝ e−r/&, with a
characteristic length ' -

√
A (normal fluid), and an algebraically decaying g1(r) ∝ r−α,

with an exponent α < 1/4 (superfluid regime). In the first case, the integral is nearly
independent of A and C2(A) ∝ A−1. In the second case we find C2(A) ∝ A−2α which
corresponds to a decay always slower than A−1/2. This method is very appealing in the
sense that the measurement of a single number, i.e. the exponent η characterizing the
variation of C ∝ A−η, is sufficient to identify the two possible regimes of a 2d Bose gas,
and obtain the value of nsλ2 = 1/η in the superfluid case.

A measurement scheme inspired by this method was implemented at ENS [26], and it
indeed revealed a relatively rapid variation of the exponent η, in qualitative agreement
with what is expected near the BKT transition point in the center of the trap. However
some notable deviations with respect to the original proposal must be stressed. First,
the measurement was performed with anisotropic samples, with lengths Ly - Lx. The
imaging beam was propagating along y and the measured contrast involved a line-of-sight
integration over the full length Ly(9), which formally breaks the translational invariance
that we used to prove eq. (90). Also the presence of a trapping potential in the ex-
periment causes an additional softening of the transition, because of the inhomogeneity
of the density along the line-of-sight of the imaging beam. Finally we note that even
deep in the superfluid regime where nsλ2 $ 1, the anisotropy of the sample adds some
complexity as discussed in subsect. 4.5. At large distances (∆x > nsλ2 Ly), g1 starts to
decay exponentially, which complicates the analysis of the dependence of C2 on ∆x. In
summary the rapid increase in coherence that occurs in the vicinity of the BKT tran-
sition point is sufficiently robust to be revealed experimentally in the average contrast
of the interference pattern, but it is difficult to provide a quantitative analysis of the
experimental measurements for the variations of C2(A) over a large range of ∆x.

A subsequent experiment at ENS has compared the conditions for observing a signif-
icant interference contrast between the planes and for measuring a clear bimodal density
profile after a 3d TOF [27]. The onsets of the two phenomena were found to coincide
within experimental error. Furthermore the spatial part of the gas that gives rise to a
visible interference signal coincides with the central, “non expanding” component of the
TOF profile.

An important outcome of the experiments on the interference between two planes is
a direct evidence for thermally activated vortices. At low temperatures, long-wavelength
phase fluctuations (phonons) result in smooth variations of the phase of the interference
fringes, such as seen in fig. 4c. However, if a single isolated vortex is present in one of the
two planes while the phase profile of the other plane is smooth, the interference pattern
exhibits a sharp dislocation at the coordinate x of the vortex core. Such dislocations
have been observed experimentally [81, 26, 69] and an example is shown in fig. 4d. The

(9) The area A was varied by changing the integration distance ∆x along x. In this case, the
BKT transition causes a crossover from η = 1/2 for an exponentially decaying g1 function (with
a decay length ' & ∆x), to η = 1/4 for a superfluid state.
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occurrence probability of these dislocations has been measured as a function of tempera-
ture [26]. The number of dislocations increases with T , until one reaches the temperature
at which no interference is visible anymore. Moreover, the relatively sharp increase in the
probability of dislocations experimentally coincides with the increase in the exponent η
characterizing the decay of g1 [26]. Such dislocations also appear in a classical field sim-
ulation mimicking the interference between two planar gases [40]. They result from the
thermal activation of a vortex pair for which the two members are sufficiently separated
from each other. In principle one should also observe in the interference patterns tightly
bound vortex pairs where the two members are separated by ∼ ξ. However these pairs
only shift the fringe pattern by a small fraction of the fringe spacing, which is below the
current sensitivity of the experiments.

7.5. Interfering a single plane with itself . – An interesting alternative to the two-plane
interference described above consists in preparing a single plane of atoms and looking at
its “self-interference”, using a Ramsey-like method [28]. The gas is initially prepared in
an internal state |1〉. Half of the atoms are coherently transferred into another internal
state |2〉 by a stimulated laser Raman process (π/2 pulse) that also provides a momentum
kick k0 to the atoms. After this process, the part of the cloud in |1〉 is still globally at
rest and the part in |2〉 moves with the global velocity v0 = !k0/m. After an adjustable
time t a second π/2 Raman pulse remixes the amplitudes of |1〉 and |2〉 and provides
a momentum kick k0 − k1. Immediately after this second Raman pulse, one measures
the spatial density distribution in |2〉. This distribution exhibits a modulation along the
direction k1, resulting from the interference between the initial state of the cloud and
the state displaced by the distance R = v0t:

(91) n(r) ∝ |ψ(r)|2 + |ψ(r − R)|2 +
(
ψ(r)ψ∗(r − R)eik1·R + c.c.

)
.

Note that we assume here that no collision occurred during the time t between the part
of the cloud at rest in |1〉 and the part moving at velocity v0 in state |2〉. This is a valid
assumption for the weakly interacting sodium gas of [28]. The modulated density profile
in eq. (91) gives a direct access to the function g1(r, r −R). It can be observed with an
imaging beam along the z-direction, so that its measurement does not involve any line-
of-sight integration. This method can then reveal finer details than the one presented
in subsect. 7.4. In particular the authors of [28] could observe a gradual increase of
the coherence length ' of the cloud, as expected from eq. (56). For small phase space
densities the measurement gives ' ∼ λ, and ' increases to much larger values when
the temperature decreases towards the critical temperature TBKT. When T < TBKT

a significant interference contrast is observed for all values of R within the size of the
central superfluid region.

8. – Conclusions and outlook

We have reviewed in these notes the theoretical basis for the understanding of the
physics of 2d quantum fluids, and discussed some recent experiments performed with
atomic gases. These experiments have given access to some aspects of 2d physics that
were previously hidden or not measurable in other physical systems, such as the exis-
tence of thermally activated individual vortices or the spatial variation of the first-order
correlation function g1(r). However a number of issues is still open in the physics of 2d



TWO-DIMENSIONAL BOSE FLUIDS: AN ATOMIC PHYSICS PERSPECTIVE 429

quantum gases, and we outline below some topics which are likely to be of experimental
and theoretical interest in the future.

Higher-order correlation functions. – The matter-wave interference between two sta-
tistically similar, but independent quasi-condensates (such as shown in fig. 4), can reveal
a wealth of information on the correlations within each individual 2d gas. So far only a
fraction of this information has been harnessed, with the study of the average contrast
of the interference pattern integrated over some area of interest. A convenient tool for
extracting more complete information on g1 as well as higher-order correlation functions
is the full statistical distribution of interference contrasts. Two limiting cases can easily
be characterized: i) If the two independent fluids are fully condensed, each image shows
a 100% contrast, with the position of the fringes fluctuating randomly from shot to shot.
ii) If each cloud exhibits only short-ranged correlations, the observed interference results
from many uncorrelated fringe patterns along the light of sight, and the distribution of
contrasts is an exponential function. For 1d gases, it is possible to describe quantitatively
the transition between these two limiting cases [112], and the experimental results [113]
are in good agreement with the predictions. In the 2d case, the evolution of the contrast
distribution through the BKT transition is still an open problem.

Out-of-equilibrium dynamical effects. – Throughout this paper we restricted our dis-
cussion to the equilibrium properties of a 2d Bose fluid. The study of dynamical effects,
such as transient regimes, can reveal additional information about the system. For ex-
ample Burkov et al. [114] have studied the dynamics of decoherence between two planar
Bose gases, assuming that their local phases are initially locked together, and then the
two gases are allowed to evolve independently. This can be achieved experimentally by
having a weak potential barrier and hence large tunnel coupling between the two planes
for t < 0, and then suddenly raising the barrier at t = 0. The contrast of the interference
between the two gases gives access to the evolution of the phase distribution under the
influence of thermal fluctuations. In [114] this contrast was shown to decay algebraically
at long time, as t−ζ , with the exponent ζ proportional to the ratio T/TBKT. Therefore,
in addition to being a stringent test of thermal decoherence in a quantum many-body
system, this out-of-equilibrium study could constitute a novel thermometry method. A
related phenomenon occurs in 1d systems, where the interference contrast is predicted to
decay as exp(−(t/t0)2/3) (with t0 constant) [114], and this prediction is nicely confirmed
in the experiments by the Vienna group [115].

Transition from 2d to 3d behavior . – The possibility to vary the tunnel coupling be-
tween two or more planar gases can also be used to study the so-called “deconfinement
transition” [116], corresponding to a gradual evolution from 2d to 3d behavior. The phase
coherence between the planes will build up as the strength of the coupling is increased,
creating a situation that is reminiscent of the high-Tc cuprate superconductors. For a
large number of parallel planes, the deconfinement transition should give rise to a true
Bose-Einstein condensate [116]. The two-plane situation is also very interesting, and can
lead to the observation of the Kibble-Zurek mechanism [117]: the superfluid transition
temperature is higher for two coupled planes than for a single one, so that sudden switch-
ing on of the coupling between the planes (initially in the normal state but close to the
single-plane critical temperature) constitutes a quench of the system, and one could ob-
serve the subsequent dynamical apparition of a macroscopic quantum (quasi-)coherence.
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Tunable interactions. – As we have seen throughout the paper, interactions between
particles play a crucial role in our understanding of the superfluid phase transition and
condensation in 2d fluids. In contrast to the conventional 3d BEC of an atomic gas,
where the critical temperature can to a good approximation be predicted using the ideal
gas model, the BKT transition is fundamentally interaction-driven. The strength of
interactions also affects a variety of other phenomena such as the suppression of density
fluctuations in the normal state and the connection between the 2d Bose fluid and the
XY model. It would therefore be interesting to revisit the various effects described
in these notes while continuously tuning the strength of interactions with a Feshbach
resonance [48, 49]. In the weak coupling regime (g̃ < 10−1) we expect a gradual change
from the BKT-dominated to the BEC-dominated behavior, as discussed in sects. 4 and 5.
Further, it would be very interesting to explore the strong-coupling regime (g̃ > 1), which
is closer to liquid helium films. This regime, which is outside the domain of validity of
the Monte Carlo results [29, 44], corresponds to the case where the scattering length as

becomes comparable the thickness of the sample along the kinematically frozen direction,
az (see 6.2). There the very nature of two-body interactions is expected to change from
3d to 2d [84, 85, 118, 119]. Therefore, experimentally reaching the condition as ≥ az

would correspond to producing a “truly 2d” as opposed to a quasi-2d Bose gas.

Superfluid density . – Generally speaking, studies of coherence and correlation func-
tions in a 2d fluid, which are well suited to experimental tools of atomic physics, are a
natural complement to the “traditional” studies of superfluidity based on transport mea-
surements, which are well suited to other physical systems such as liquid helium films [2].
For example, we have so far assumed that the two types of measurements probe the same
superfluid density (see, e.g., subsect. 7.4). However this correspondence may in fact de-
pend on the theoretical model and the exact definition of the superfluid density, and be
valid only within the effective low-energy theories. It is therefore important to stress
that superfluidity in the traditional transport sense has not yet been directly observed
in atomic 2d Bose gases (see, e.g., [116]). Establishing atomic 2d gases as experimental
systems in which both coherence and transport measurements of superfluidity could be
performed would be an important advance, as it would allow experimental scrutiny of the
theoretical connections between the two types of probes, and a direct comparison of the
different definitions of superfluidity. Two promising schemes for a direct measurement of
the superfluid density (as traditionally defined through transport properties [46]) in an
atomic gas have recently been proposed [120,121]. The first scheme [120] is based on ex-
tracting the superfluid density from the in situ density profiles of a rotating 2d gas. The
second scheme [121] is based on using a vector potential generated by Raman laser beams
to simulate slow rotation of a gas [122], and allows direct spectroscopic measurement of
the superfluid density.

Note added in proofs.
A measurement of the equation of state of a 2d Bose gas for various interaction strengths
has just been reported in [123].

∗ ∗ ∗

We warmly thank the directors of the school R. Kaiser and D. Wiersma, as well
as the scientific secretary L. Fallani, for organizing this very successful meeting. Many
colleagues helped us with discussions and interactions and the list of those we would like
to thank is too long to fit here, but we mention in particular E. Altman, N. Cooper, E.



TWO-DIMENSIONAL BOSE FLUIDS: AN ATOMIC PHYSICS PERSPECTIVE 431
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