
PHYSICAL REVIEW A 84, 053605 (2011)
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Using exact diagonalization for a small system of cold bosonic atoms, we analyze the emergence of strongly
correlated states in the presence of an artificial magnetic field. This gauge field is generated by a laser beam
that couples two internal atomic states, and it is related to Berry’s geometrical phase that emerges when an
atom follows adiabatically one of the two eigenstates of the atom-laser coupling. Our approach allows us to go
beyond the adiabatic approximation, and to characterize the generalized Laughlin wave functions that appear in
the strong magnetic-field limit.
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I. INTRODUCTION

Trapped atomic gases provide a unique playground to
address many-body quantum physics in a very controlled way
[1,2]. Studies of ultracold atoms submitted to artificial gauge
fields are particularly interesting in this context, since they
establish a link with the physics of the quantum Hall effect.
Especially intriguing is the possibility of realizing strongly
correlated states of the gas, such as an atomic analog of the
celebrated Laughlin state [3].

One way to simulate orbital magnetism is to rotate the
trapped gas [3,4]. One uses in this case the analogy between
the Coriolis force that appears in the rotating frame and the
Lorentz force acting on a charged particle in a magnetic field.
This technique allows one to nucleate vortices and observe
their ordering in an Abrikosov lattice [4]. Another promising
method takes advantage of Berry’s geometrical phase that
appears when a moving atom with multiple internal levels
follows adiabatically a nontrivial linear combination of these
levels [5]. This can be achieved in practice by illuminating the
gas with laser beams that induce a spatially varying coupling
between atomic internal levels [6] (for a review of recent
proposals, see, e.g. [7]). Recently, spectacular experimental
progress has been made with this technique, leading here also
to the observation of quantized vortices [8].

In this paper, we focus on the generation of strongly
correlated states of the atomic gas with geometrical gauge
fields. We show how Laughlin-type states emerge in a small
quasi-two-dimensional system of trapped bosonic atoms when
two internal states are coupled by a spatially varying laser field.
The key point of our approach is to go beyond the adiabatic
approximation and study how the possibility of transitions
between the internal states modifies the external ground state of
the gas. We perform exact diagonalization for N = 4 particles,
in order to analyze the overlap between the exact ground state
of the system and the Laughlin wave function, as a function of
the strength of the atom-laser coupling. We identify a region
of parameter space in which the ground state, despite having a
small overlap with the exact Laughlin state, has an interaction
energy close to zero, a large angular momentum, and a large
entropy. We show that it can be represented as a Laughlin-like
state with a modified Jastrow factor.

To better frame our work, let us first emphasize that it is well
known that the adiabatic accumulation of Berry phase induces
artificial gauge fields in electroneutral quantum systems [5,9].
These artificial gauge fields of geometric origin are nowadays
considered as an important new framework in which strongly
correlated quantum states related to fractional quantum Hall
physics can be engineered in systems of ultracold atoms [7].
The major contribution of the present paper is to go beyond
adiabaticity to show that the main fingerprints of the strongly
correlated quantum state are preserved in a significantly broad
region of the experimental parameter space, as demonstrated
by detailed numerical calculations. This objective is discussed
in detail in the framework of the physics of few-body systems,
independent of their attainability in the thermodynamic limit,
which is beyond the scope of the present paper. This goal
is already a realistic one, as there are nowadays a number
of experimental groups able to deal with small bosonic
clouds using several techniques [10,11]. These experimental
developments have triggered a number of theoretical proposals
focusing on the production of strongly correlated quantum
states in small atomic clouds [12–14].

The paper is organized in the following way. First, in Sec. II,
we present the scheme used to generate the artificial gauge
field together with the formalism employed. In Sec. III, we
present our results, discussing in detail the properties of the
Laughlin-like strongly correlated states appearing for different
values of the external control parameters. In Sec. IV, we study
the analytical representation of the ground state in the strongly
correlated Laughlin-like region. Finally, in Sec. V, we provide
some conclusions that can be extracted from our work.

II. THEORETICAL MODEL

We consider a small quasi-two-dimensional ensemble
of harmonically trapped bosonic atoms in the x-y plane
interacting with a single laser field treated in a classical way.
The single-particle Hamiltonian is given by

Ĥsp = p2

2M
+ V (r) + ĤAL, (1)

where M is the atomic mass and V (r) is an external potential
confining the atoms in the plane. ĤAL includes the atom-laser
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FIG. 1. (Color online) Schematic illustration of the considered setup. (a) Atoms are trapped in the x-y plane and illuminated with a plane
wave propagating along the y direction. (b) The energy difference between the two internal states that are coupled by the laser field varies
linearly along the x direction. (c) Energy eigenvalues of the atom-laser coupling in the rotating wave approximation.

coupling as well as the internal energies. In order to minimize
the technical aspects of the proposal, we consider here a very
simple laser configuration to generate the geometrical gauge
field. However, it is straightforward to generalize our method
to more complex situations. The laser field is a plane wave
with wave number k and frequency ωL propagating along
the direction y [see Fig. 1(a)]. It couples two internal atomic
states |g〉 and |e〉 with a strength that is given by the Rabi
frequency �0.

The atom-laser term comes from the coupling of the electric
dipole of the atom with the electric field of the laser. It can be
written as

ĤAL = Eg|g〉〈g| + Ee|e〉〈e|
+ h̄�0 cos(ωLt − φ)(|e〉〈g| + |g〉〈e|), (2)

with φ = ky. We neglect the spontaneous emission rate
of photons from the excited state |e〉, which is a realistic
assumption if the intercombination line of alkali-earth or
ytterbium atoms is used. For instance, for ytterbium atoms,
the state |e〉 could be taken as the first excited level 6 3P0

which has a very long lifetime of ∼10 s [15]. Importantly,
we further assume that the energies Eg = −h̄�0x/(2w) and
Ee = h̄ωA + h̄�0x/(2w) of the uncoupled internal states vary
linearly along x in a length scale set by the parameter w, as
sketched in Fig. 1(b). This can be achieved experimentally
either by profiting the Zeeman effect, i.e., applying a real
magnetic-field gradient to the system, or by using the ac
Stark shift produced by an extra laser beam with an intensity
gradient. We suppose that the laser is resonant with the atoms in
x = 0, i.e., ωL = ωA. Using the rotating-wave approximation,
ĤAL can be written in the frame rotating with the laser
frequency ωL and in the {|e〉, |g〉} basis [16] as

ĤAL = h̄�

2

(
cos θ eiφ sin θ

e−iφ sin θ − cos θ

)
, (3)

where � = �0

√
1 + x2/w2, and tan θ = w/x.

It is convenient to rewrite Eq. (1) in the basis of the
local eigenvectors of ĤAL, |ψ1〉r, and |ψ2〉r, associated to
the eigenvalues h̄�/2 and −h̄�/2, respectively. These can

be written in the {|e〉,|g〉} basis as

|ψ1〉r = e−iG

(
cos θ/2 eiφ/2

sin θ/2 e−iφ/2

)
,

|ψ2〉r = eiG

(− sin θ/2 eiφ/2

cos θ/2 e−iφ/2

)
, (4)

where G = kxy

4w
. This particular form of Eq. (4) allows us in

what follows to obtain a fully symmetric H22; see Eq. (13). Let
us emphasize that the choice of the phase factor in front of these
eigenstates is nothing but a gauge choice for the following.

The atomic state can be then expressed as

χ (r,t) = a1(r,t) ⊗ |ψ1〉r + a2(r,t) ⊗ |ψ2〉r, (5)

where ai captures the dynamics of the center of mass and |ψi〉r
of the internal degree of freedom (in the following, we drop
the subindex r in the kets |ψ1,2〉 to simplify the notation).
Projecting onto the basis {|ψi〉}, and noting that

∇r (ajψj ) = aj (∇rψj ) + (∇raj )ψj , (6)

the single-particle Hamiltonian, Eq. (1), is represented
by the 2 × 2 matrix Ĥsp = [Hij ] acting on the spinor
[a1(r,t),a2(r,t)]. We find, in particular [17,18],

Hjj = [ p − εj A]2

2M
+ U + V + εj

h̄�

2
, (7)

with ε1 = 1 and ε2 = −1, where we have defined

A(r) = −ih̄〈ψ2| ∇rψ2 〉 (8)

and

U (r) = h̄2

2M
[〈∇rψ2| ∇rψ2 〉 + (〈ψ2| ∇rψ2 〉)2]. (9)

For the chosen gauge, they read

A(r) = h̄k

[
y

4w
,

x

4w
− x

2
√

x2 + w2

]
, (10)

U (r) = h̄2w2

8M(x2 + w2)

(
k2 + 1

x2 + w2

)
. (11)

We consider atomic clouds extending over distances smaller
than w. This allows us to expand the matrix elements Hij up
to second order in x and y. In this approximation, we recover
the symmetric gauge expression A(r) = h̄k

4w
(y, − x) and the

artificial magnetic field reduces to Bj = [εjh̄k/(2w)] ẑ for an
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atom in |ψj 〉. The specific choice of the phase factors in Eq. (4)
is in fact obtained by imposing as a constraint the symmetric
gauge at this step. Finally, we fix the external potential V (r)
such that the total confinement for the spinor component a2 is
isotropic with frequency ω⊥:

1

2
mω2

⊥(x2 + y2) = U (r) + V (r) − h̄�(r)

2
+ A2(r)

2M
. (12)

The Hamiltonian

H22 = p2/2M + p · A/M + Mω2
⊥r2/2

= ( p + A)2

2M
+ Mω2

⊥
2

(1 − η2)r2 (13)

is thus circularly symmetric and its eigenfunctions are the
Fock-Darwin (FD) functions φ
,n, with 
 and n denoting
the single-particle angular momentum and the Landau level,
respectively. The magnetic-field strength is characterized by
η ≡ ωc/2ω⊥, with ωc = |Bj |/M = h̄k/(2Mw) the “cyclotron
frequency.”

The interesting regime for addressing quantum Hall
physics corresponds to quasiflat Landau levels, which oc-
cur when the magnetic-field strength η is comparable
to 1. The energies of the states of the lowest Landau level
(LLL), n = 0, are E
,0 = h̄ω⊥[1 + 
(1 − η) + (k2λ2

⊥/8) +
λ2

⊥/(8w2)], where λ⊥ = √
h̄/Mω⊥.

Relevant energy scales of the single-particle problem are
h̄�0, which characterizes the internal atomic dynamics, and
the recoil energy ER = h̄2k2/(2M), which gives the scale for
the kinetic energy of the atomic center-of-mass motion when it
absorbs or emits a single photon. For h̄�0 	 ER , the adiabatic
approximation holds and the atoms initially prepared in the
internal state |ψ2〉 will remain in this state in the course of
their evolution [7]. The single-particle Hamiltonian H22, in
combination with repulsive contact interactions, then leads to
quantum Hall-like physics, which has already been extensively
studied [3]. Our goal here is to consider corrections to the
adiabatic approximation and to analyze in which respect these
corrections still allow one to reach strongly correlated states.
This aspect is particularly important from an experimental
point of view, since the accessible range of �0 is limited if one
wants to avoid undesired excitation of atoms in the sample to
higher levels and/or an unwanted laser assisted modification
of the atom-atom interaction. Note that the strength of
the atom-laser coupling, characterized by �0, is distinct
from the strength of the magnetic field, characterized
by η. Because the magnetic field has a geometric origin, η is
independent of the atom-laser coupling as long as the adiabatic
approximation is meaningful.

In the following, we consider the situation where h̄�0 is
still relatively large compared to ER , so that we can treat the
coupling between the internal subspaces related to |ψ1,2〉 in
a perturbative manner. In a systematic expansion in powers
of �−1

0 , the first correction to the adiabatic approximation
consists (for the spinor component a2) of replacing H22 by the
effective Hamiltonian [16]

H eff
22 = H22 − H21H12

h̄�0
. (14)

The additional term H21H12/(h̄�0), which does not commute
with the total angular momentum, is somewhat reminiscent

of the anisotropic potential that is applied to set an atomic
cloud in rotation [19,20]. It is, however, mathematically more
involved and physically richer, as it includes not only powers
of x and y, but also spatial derivatives with respect to these
variables; see the Appendix for its explicit form.

III. GROUND-STATE PROPERTIES

The quasidegeneracy in the LLL can lead to strong
correlations as the interaction picks a many-body ground state
for the system. The interaction between the atoms is well
described by a contact interaction with a coupling constant
g = √

8π (as/ l) for the quasi-two-dimensional confinement.
Here, as is the s-wave scattering length and l the thickness of
the gas in the strongly confined z direction. The many-body
Hamiltonian then reads

H =
N∑

i=1

H eff
22 (i) + h̄2g

M

∑
i<j

δ(r i − rj ). (15)

Using an algorithm for exact diagonalization within the LLL
of H22, we have determined the many-body ground state (GS)
of the system, providing phase diagrams of several relevant
average values characterizing the system in a broad range
of laser couplings, �0, and magnetic-field strengths, η. To
ensure the validity of the LLL assumption, we demand that the
difference in energy between different Landau levels is larger
than the kinetic energy of any particle in a FD state inside a
Landau level. In addition, in the full many-body problem, the
interaction energy per particle is always much smaller than
the energy difference between adjacent Landau levels. The
main results are summarized in Figs. 2, 3, and 4 and discussed
in Secs. III A, III B, and III C, respectively. In Sec. III D, we
analyze the internal correlations in the Laughlin state and, in
Sec. III E, we address the important problem of the role of
excitations in the Laughlin-like region. All the calculations
are performed for N = 4 atoms, k = 10/λ⊥, and gN = 6.
As the perturbation H21H12 breaks the rotational symmetry,
we cannot carry out the exact diagonalization by restricting
ourselves to a subspace with fixed angular momentum as in
standard literature. To achieve convergent numerical results,
we need to include a large number of L subspaces, and
this number grows as h̄�0/ER is decreased. In all cases,
we consider all subspaces with 0 � L < Lmax, where Lmax

is chosen to ensure convergency. For definiteness, let us quote
the size of the Hilbert spaces considered in our work. For
N = 4, we require Lmax = 28 for most of the numerical results
reported in the paper, which results in a Hilbert space size of
2157. This rapidly growing size of the Hilbert space as N

is increased, together with our explicit interest in providing
fine-step phase diagrams varying both parameters η and h̄�0 in
a broad region, makes our full study already computationally
very extensive, i.e., the calculations presented in this paper
require on the order of two weeks on a single 2 GHz processor.

A. Angular momentum

In Fig. 2, we show the expectation value of the total
angular momentum of the GS as a function of η and h̄�0/ER .
For large �0, we recover the steplike structure that is well
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FIG. 2. (Color online) Average value of the total angular
momentum, in units of h̄, of the ground state for N = 4 atoms as
a function of η and h̄�0/ER . The insets concentrate on two different
values of h̄�0/ER = 40 and 100, respectively.

known for rotating bosonic gases, with plateaus at L = 0,4,8,
and 12 [3,21] with ηω⊥ playing the role of the rotating
frequency. For an axisymmetric potential containing N 	 1
bosons, it is well known that the value L = N corresponds
to a single centered vortex, described by the mean-field state
�1vx = ∏N

i=1 zie
− ∑

z2
i /2λ⊥ . Here the squared overlap between

our GS and �1vx is relatively low (0.47). This is due to
the small value of N , which causes significant deviations
from the mean-field prediction. The value L = N (N − 1)
(here L = 12) in the axisymmetric case corresponds to the
exact Laughlin state, with a filling factor 1/2 for any N . For
decreasing values of �0, the transitions between the plateaus
become broader and are displaced toward smaller values of η.
The Laughlin-like region is defined here as the interval of η

fulfilling 〈GS|L̂|GS〉 > N (N − 1).

B. Entropy

An interesting measure for the correlations in the ground
state is provided by the one-body entanglement entropy [22]
defined as

S = −Tr[ρ(1) ln ρ(1)]. (16)

Here ρ(1) is the one-body density matrix associated with the
GS wave function defined as

ρ(1)(r,r ′) = 〈GS|�̂†(r)�̂(r ′)|GS〉, (17)

where �̂(�r) is the field operator, �̂(�r) = ∑

 φ
,0â
,0, with â
,0

the operator that destroys a particle with angular momentum 


in the LLL. The natural orbitals, φi(r), and their corresponding
occupations, ni , are defined by the eigenvalue problem,∫

d r ρ(1)(r,r ′)φi(r) = niφi(r ′). (18)

The entropy of Eq. (16) provides information on the degree
of condensation or fragmentation of the system and on the
entanglement between one particle and the rest of the system.
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FIG. 3. (Color online) Entropy of the ground state for N = 4
atoms as a function of η and h̄�0/ER . The insets concentrate on two
different values of h̄�0/ER = 40 and 100, respectively.

This entropy definition is enough for our characterization of
the strong correlations of the ground state. More detailed
studies, such as whether our ground state satisfies area laws
for the entanglement entropy [23] are beyond the scope of
the present paper. The entropy can be explicitly evaluated as
S = −∑

i ni ln ni . Thus it can be checked that this entropy is
zero for a true Bose-Einstein condensate, since all particles
occupy the same mode (n1 = 1,ni = 0,i > 1). As the system
loses condensation, with more than one nonzero eigenvalue,
S increases. For the Laughlin wave function with N bosons,
2N − 1 single-particle states are approximately equally pop-
ulated, and the entropy is ∼ ln(2N − 1). The entropy S is
plotted in Fig. 3 and it presents features that are similar to that
of Fig. 2. For a fixed η, the entropy decreases with �0. For
fixed �0, the dependence on η exhibits steps, similar to that of
〈L〉. The region of 〈L〉 = 0 corresponds to a fairly condensed
region with S ∼ 0. In the one vortex region, corresponding
to 〈L〉 = N , the condensation is already not complete. This
is reflected in the above-mentioned low value of the squared
overlap between the GS and �1vx, as well as in the entropy
close to 1. Finally, it gradually increases as we increase η,
and reaches its maximum value in the Laughlin-like region,
η > 0.93.

C. Interaction energy

In Fig. 4, we depict the average interaction energy as
a function of η and h̄�0/ER . In the inset, we also plot
for L = 0 and L = N = 4 the analytical result expected
in an axisymmetric potential, Eint = gN (2N − L − 2)/(8π ),
valid for L = 0 and 2 � L � N [24]. The interaction energy
approaches zero as we increase η, indicating the Laughlin-like
nature of the states in the region η � 0.93.

The standard bosonic Laughlin state (at half-filling) has the
analytical form [25–27]

�L(z1, . . . ,zN ) = N
∏
i<j

(zi − zj )2e− ∑|zi |2/2λ2
⊥ , (19)
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FIG. 4. (Color online) Interaction energy, in units of h̄ω⊥, of the
ground state for N = 4 atoms as a function of η and h̄�0/ER . The
insets concentrate on two different values of h̄�0/ER = 40 and 100,
respectively.

where N is a normalization constant and z = x + iy. It is the
exact ground state of the system for the contact interaction in
the adiabatic case [28]. The contribution of the interaction to
the energy of the system is zero due to the zero probability to
have two particles at the same place.

D. Internal correlations

The pair correlation function provides a test for the presence
of spatial correlations in a system. For the GS, it is defined as

ρ(2)(�r,�r0) = 〈GS|�̂†(�r)�̂†(�r0)�̂(�r0)�̂(�r)|GS〉. (20)

In Fig. 5, panels (c) and (d), ρ(2)(�r,�r0) is depicted, where
�r0 is taken as the maximum of the corresponding density,
depicted in panels (a) and (b). As seen in the figure, once one
particle is detected in �r0, the other three appear localized at the
remaining three vertices of a rectangle. This feature, present
also in the exact Laughlin wave function, survives both for
h̄�0/ER = 40 and 100, even though the squared overlap of
the ground state with the Laughlin differs almost by a factor
of 2, as will be discussed later in Sec. IV. In the adiabatic
case, this spatial correlation could be inferred from the
structure of the analytical expression, i.e., the particles tend to
avoid each other to minimize energy. This is responsible for the
particular spatial correlation shown in panels (c) and (d). No
other ground state with L < N (N − 1) exhibits this property.
A similar phenomenology was found for fermions [29].

E. Energy spectrum

To further characterize the properties of the system, we
discuss the properties of the low-energy spectrum and its evo-
lution as we decrease �0, i.e., increasing the nonadiabaticity.
In Fig. 6, we show the energy difference between the ground
state and the first ten excitations as a function of η. First, let
us recall that in the adiabatic case the spectrum of the system
has already been studied in the context of rotating atomic
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FIG. 5. (Color online) Density of atoms, panels (a) and (b), and
pair correlation computed as explained in the text, panels (c) and
(d), of the ground state for h̄�0/ER = 40 [(a),(c)] and 100 [(b),(d)],
respectively. The values of η used are 0.942 and 0.955 for h̄�0/ER =
40 and 100, respectively. The solid circle marks the position of �r0.
The length unit is λ⊥.

clouds [3]; thus our main interest here will be to characterize
the nonadiabatic effects.

Let us first consider the most symmetric case, Fig. 6(b). In
the Laughlin region (η > 0.952), there are two types of lowest
excitations: quasiparticle and edge excitations. For 0.952 <

η < 0.961, the excitation with L = N (N − 1) − N marked as
A is a quasiparticle-type state, while for η > 0.961 the state
with L = N (N − 1) + 1 marked as B1 is the center of mass
excitation. The tower of edge excitations of the system are
marked as Bn in the figure and correspond in the adiabatic case
to excitations with L = N (N − 1) + n, with n > 1. They are
fully degenerate in the adiabatic case with a degeneracy given
by the partition function of n, p(n), defined as the number of
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FIG. 6. (Color online) Energy difference in units of g h̄ω⊥
between the first 10 levels of the spectrum and the ground-state energy
as function of η for h̄�0/ER = 40 (a) and 100 (b).
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distinct ways in which n can be written as a sum of smaller
non-negative integers, i.e., 5 if n = 4 [30]. In panel (b), the
degeneracy is partly lifted due to the slight nonadiabaticity
and in panel (a) the condition is clearly relaxed. This structure
of the edge excitations is a fingerprint of the Laughlin state.

Finally, the maximum energy separation between the
ground state and its first excitation in the Laughlin region,
which in our confined case is both a quasiparticle excitation
and the center of mass excitation, increases when decreasing
�0. It changes from ∼0.022gh̄ω⊥ for h̄�0/ER = 100 to
∼0.027gh̄ω⊥ for h̄�0/ER = 40. The bulk energy difference
in the nonadiabatic cases can be estimated by linearly
extrapolating the segment A to η = 1, giving ∼0.18gh̄ω⊥ and
∼0.13gh̄ω⊥ for h̄�0/ER = 40 and 100, respectively. Thus,
by increasing the laser intensity, the bulk energy difference
approaches the value of the gap reported in Ref. [27] for a
symmetric and edgeless system.

IV. ANALYTICAL REPRESENTATION OF THE GROUND
STATE IN THE LAUGHLIN-LIKE REGION

In this section, we calculate the overlap of the exact
solutions for the GS in the Laughlin-like region with several
analytical expressions. To begin, we calculate the dependence
of the squared overlap |〈�L|GS〉|2 of the Laughlin state with
the exact GS as a function of the magnetic-field strength η and
the atom-laser coupling �0. The result is plotted in Fig. 7. For
large �0 (typically >80ER/h̄), the adiabatic approximation
holds (H22 ≈ H eff

22 ): the overlap between the GS and the
Laughlin state jumps from a quasizero to a large (>0.8)
value when the magnetic-field strength η reaches a threshold
value.

For smaller �0, the overlap is much smaller even for large
η (upper left corner of Fig. 7). In this case, the analytical
expression must have Jastrow factors that bring the angular
momentum around the value L = N (N − 1) and that suppress
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FIG. 7. (Color online) Squared overlap |〈GS|�L〉|2 as a function
of η and h̄�0/ER for N = 4. The dashed line marks the region of
squared overlap larger than 0.8. The inset depicts the squared overlap
for h̄�0/ER = 100 (solid) and 40 (dashed) as a function of η.
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FIG. 8. (Color online) (Upper panels) Squared overlaps between
the GS of the system and the Laughlin wave function, PLaug =
|〈GS|�L〉|2 (solid squares) and �L1, PL1 = |〈GS|�L1〉|2 (triangles).
The sum of both is depicted as solid diamonds. The solid and dashed
lines correspond to the weights PL=N(N−1) and PL=N(N−1)+2 in the
GS, respectively. Panel (a) corresponds to h̄�0/ER = 40 and (b) to
100. The shaded band marks the region of squared overlap larger than
0.95. (Lower panels) Energy difference in units of h̄ω⊥ between the
first 10 levels of the spectrum and the ground-state energy as function
of η for h̄�0/ER = 40 (c) and 100 (d).

interactions (Figs. 2 and 4). Based on these observations, we
propose an analytical ansatz for this GS of the form

�GL = α�L + β�L1 + γ�L2, (21)

with

�L1 = N1�L

N∑
i=1

z2
i ,

�L2 = N2(�̃L2 − 〈�L1|�̃L2〉�L1),
(22)

�̃L2 = Ñ2�L

N∑
i<j

zizj ,

such that we ensure 〈�L|�Li〉 = 0 and 〈�Li |�Lj 〉 = δij .
This ansatz involves components of angular momentum
L = N (N − 1) and L = N (N − 1) + 2, and zero interaction
energy. The coefficients α, β, and γ are given by the projections
of the exact GS onto �L, �L1, and �L2, respectively. In
Figs. 8(a) and 8(b), we present the squared overlaps PLaughlin,
PL1 and PLaughlin + PL1 between the exact GS wave function
and the functions �L, �L1 and �GL respectively. We restrict
our study to the Laughlin region. We also plot the weights
of the angular momentum subspaces in the GS: PL=N(N−1)

and PL=N(N−1)+2.
The first result of our numerical analysis is that PL2 is

negligible (<0.005) over the whole range of Fig. 8. Then we
note that the relations PL=N(N−1) ≈ PL and PL=N(N−1)+2 ≈
PL1 hold over this range. This implies that the deviation with
respect to the adiabatic approximation mostly increases the
weight of the �L1 component in the GS. For small values
of h̄�0/ER , the squared overlap with the proposed ansatz
reaches values of ∼0.85, with the weight of �L and �L1

being of comparable size. As h̄�0/ER increases above 80, the
GS is very well represented by Eq. (19), as already explained.
Considering different particle numbers from N = 3 to N = 5,
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we always find a very similar behavior and thus conclude that
Eq. (21) quite generally provides a good representation of the
GS in the Laughlin-like region.1

V. SUMMARY AND CONCLUSIONS

In conclusion, we have performed exact diagonalization
to analyze the ground state of a small cloud of bosonic
atoms subjected to an artificial gauge field. Our approach
allowed us to explore both the regime of very large atom-laser
coupling, where the adiabatic approximation is valid, and the
case of intermediate coupling strengths. In the first case, we
recovered the known results for a single component gas in an
axisymmetric potential. The second case is crucial for practical
implementations because it requires less light intensity on the
atoms, which decreases the residual heating due to photon
scattering. In this case, we have identified a regime where
a strongly correlated ground state emerges, which shares
many similarities with the Laughlin state in terms of angular
momentum, energy, internal spatial correlations, and lowest
excitations, although the overlap between the two remains
small. Importantly, a reduction of the laser intensity shifts
the region where Laughlin-like states exist to lower values of
the effective magnetic field, thus departing from the instability
region, η > 1. We have also proposed an ansatz that represents
the ground state quite accurately for a region of the parameter
space. Finally, let us emphasize that the properties analyzed
in this paper are measurable quantities, as is the case of the
expected value of the angular momentum, the pair correlation
distribution, and excitation spectrum.

1Note that the Laughlin-like region decreases notably in size as N

is increased.
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APPENDIX: EXPLICIT FORM OF THE H21 H12 TERM

We provide here the explicit expression for the term H21H12

appearing in the perturbatively derived Hamiltonian H eff
22 . As

explained in the text, we consider up to quadratic terms in x

and y. The explicit expression then reads

H21H12 =
(

h̄4

4M2w4
− 2x2h̄4

M2w6
+ k2x2h̄4

16M2w4
+ k4x2h̄4

64M2w2

+ ikxyh̄4

4M2w5
+ k2y2h̄4

64M2w4

)

+
(

− ikxh̄4

4M2w3
− ik3xh̄4

8M2w

)
∂y

+
(

xh̄4

M2w4
− ikyh̄4

8M2w3

)
∂x

+
(

− k2h̄4

4M2
+ k2x2h̄4

4M2w2

)
∂2
y

+
(

− h̄4

4M2w2
+ x2h̄4

2M2w4

)
∂2
x . (A1)
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