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Mean-field methods are a very powerful tool for investigating weakly interacting many-body systems in many
branches of physics. In particular, they describe with excellent accuracy trapped Bose-Einstein condensates. A
generic, but difficult question concerns the relation between the symmetry properties of the true many-body
state and its mean-field approximation. Here, we address this question by considering, theoretically, vortex
nucleation in a rotating Bose-Einstein condensate. A slow sweep of the rotation frequency changes the state of
the system from being at rest to the one containing one vortex. Within the mean-field framework, the jump in
symmetry occurs through a turbulent phase around a certain critical frequency. The exact many-body ground
state at the critical frequency exhibits strong correlations and entanglement. We believe that this constitutes a
paradigm example of symmetry breaking in - or change of the order parameter of - quantum many-body systems
in the course of adiabatic evolution.

PACS numbers: 03.75.Hh, 03.75.Kk, 67.40.Vs

In classical physics, examples of the usefulness of mean-
field theory go back to the “molecular field theory” of mag-
netism [1]. In the classical world, symmetry changes (or
breaking) are driven by thermal fluctuations, and in the stan-
dard Landau-Ginsburg scenario are associated with increase
of classical correlations. In quantum physics, the paradigm
example of applicability of the mean field concerns a weakly
interacting quantum Bose gas and Bose-Einstein condensa-
tion [2]. The mean-field description of the gas assumes
that its ground stateΨ is approximated by a product state
Ψ(~r1, . . . , ~rN ) = ψ(~r1) . . . ψ(~rN ), of essencially uncorre-
lated particles forming a superfluid Bose-Einstein condensate
with order parameterψ.

Of particular interest for quantum gases are quantum phase
transitions and symmetry changes/breaking driven by quan-
tum fluctuations. A celebrated example is the superfluid to
Mott-insulator transition of bosons in an optical lattice [3].
Another example yet to be explored experimentally is the case
of a fast rotating gas, when the number of vortices is similar
to the number of particles, or equivalently angular momentum
L ∼ N2 [4]. The ground state of the system is then a strongly
correlated quantum liquid such as the Laughlin state, analo-
gous to those emerging in quantum Hall physics [5]. Here,
we consider another situation, dealing with the case of a rel-
atively slowly rotating gas at the threshold of the nucleation
of the first vortex. We show that owing to the symmetries of
the system, the many-body state at nucleation is strongly cor-
related and characterize its properties.

The symmetry change/breaking that results from vortex nu-
cleation has drawn a lot of attention since the discovery of
superfluids [6]. For quantum gases, atoms are usually con-
fined in an isotropic harmonic trap and experience an extra
quadratic potential rotating at angular frequencyΩ (for a re-
view see ref.7). From a theoretical point of view, the vortex
nucleation can be tackled by several techniques, ranging from
a mean-field approach based on the Gross-Pitaevskii equa-

tion [8, 9, 10] to the investigation of the many-body energy
eigenstates [11, 12, 13, 14, 15, 16, 17]. Within the mean field
framework, standard textbooks [2] associate vortex nucleation
with thermodynamic instability. Above a critical rotationfre-
quencyΩc, the odd solutionψ of the Gross-Pitaevskii equa-
tion with a single vortex [18, 19] has a lower energy than the
even solution corresponding to the Bose-Einstein condensate
at rest [20]. Here, we go beyond the mean-field approach and
study the exact quantum dynamics of a mesoscopic sample of
atoms, in the presence of the stirring potential. Our main re-
sult is that for a rotation frequency close toΩc, the mean-field
description is invalid. The system enters a strongly correlated
and entangled state, well described by an effective two-mode
model. We compare our results with those obtained from a
mean-field description and show that the latter exhibits dy-
namical instability and hysteresis. As we explicitly include
here an anisotropic stirring potential, the present mechanism
concerns a discrete parity symmetry breaking. Therefore, it
differs from the case of the vortex nucleation in axially sym-
metric traps: in the latter case, breaking of the continuousro-
tational symmetry involves a gapless Nambu-Goldstone mode
[21], whereas here we deal with a gapped system.

Model. We consider a mesoscopic sample ofN bosonic
atoms of massM placed in an axially symmetric harmonic
potentialV0, with frequencyω⊥ in thexy plane andωz along
thez axis. Here,~ωz is large compared with the interaction
energy so that the dynamics alongz is frozen and the gas is
effectively two-dimensional (2D) at sufficiently low tempera-
ture. The gas is set in rotation using an anisotropic quadratic
potentialV in thexy plane, rotating at angular frequencyΩ
around thez axis. In the rotating frame, this stirring potential
readsV (x, y) = 2AMω2

⊥(x2 − y2), where the coefficientA
(≪ 1) measures the strength of the anisotropy.

For A ≪ 1 andΩ ∼ ω⊥, the single-particle energy lev-
els in the rotating frame are grouped in Landau levels, sepa-
rated by~(ω⊥ +Ω) (refs.7,22). We assume that~(ω⊥ +Ω) is
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large compared with the interaction energy, so that the atomic
dynamics is restricted to the lowest Landau level (LLL). For
A = 0, a basis of the LLL single-particle states is the set
ϕm(x, y) ∝ (x + iy)me−(x2+y2)/2λ2

⊥ , wherem ≥ 0 is an
integer andλ⊥ =

√

~/Mω⊥. Eachϕm is an eigenstate
of thez-component of the single-particle angular momentum
(eigenvaluem~) and of the single-particle Hamiltonian with-
out anisotropy (eigenvalue~[ω⊥ +m(ω⊥ − Ω)]). Within the
LLL, we model the atomic interactions by a 2D contact po-
tentialU(~r) = (~2g/M) δ(~r) whereg =

√
8πa/λz is dimen-

sionless,a is the 3D scattering length andλz =
√

~/Mωz.
We chooseλ⊥, ~ω⊥ andω⊥ as units of length, energy and
frequency.

Energy spectrum. We first recall some important proper-
ties of theN -particle system in absence of anisotropy (A =
0). In this case, the total angular momentum operatorL̂ com-
mutes with the Hamiltonian̂H so that one can look for the
eigenstates of̂H within subspacesEL of fixedL. The lowest-
energy state in eachEL for 2 ≤ L ≤ N is [12, 13, 14]:

ΦL(~r1, . . . , ~rN ) ∝
∑

1≤i1...≤iL

(ui1 − uc) . . . (uiL
− uc) Φ0

whereuj = xj + iyj, uc =
∑

j uj/N and

Φ0(~r1, . . . , ~rN ) ∝ e−
P

j
r2

j /2 .

The energy of the stateΦL is N + (1 − Ω)L + gN(2N −
L− 2)/(8π). At Ω1 = 1 − gN/(8π), all ΦL states forL = 0
and2 ≤ L ≤ N are degenerate. The angular momentum of
the ground stateLGS(Ω) shows sharp steps at critical values
Ωi, i = 1, 2, .. (ref.23). BelowΩ1, the ground state is the zero
angular momentum stateΦ0. At Ω1, LGS jumps from0 toN .
AboveΩ1 the ground-state angular momentum has a plateau
L = N up to Ω2, where a second jump takes place. From
this value, a sequence of jumps and plateaux emerges up to
the last possibleL value,L = N(N − 1), corresponding to
the Laughlin state. In the following, we focus on the vicinity
of the first jumpΩ ∼ Ω1, where the first vortex is nucleated.

We now turn to the case where the rotating anisotropy
is present. The many-body energy spectrum is calculated
numerically by diagonalization of the Hamiltonian (see the
Methods section). We show it in Fig.1 for both zero
anisotropy and forA = 0.03, usingN = 6 for illustration.
The interaction couplingg = 1 so thatΩ1 = 0.761. For
A 6= 0 the ground state does not show any degeneracy around
Ω1, contrary to the caseA = 0. In Fig.2, we compareLGS(Ω)
for A = 0 andA = 0.03. ForA 6= 0 LGS evolves smoothly
from 0 toN aroundΩ1.

Failure of the mean-field approach forΩ ∼ Ω1. We now
explain why a mean-field description must fail atΩ ≃ Ω1. We
notice that the total Hamiltonian is parity invariant. Conse-
quently, one can look for an eigenbasis of theN -body Hilbert
space composed of either even or odd states. From the ground
state of the Hamiltonian, we can extract the single-particle
density matrix (SPDM)n(1)(~r, ~r′) (see the Methods section),
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FIG. 1: Energy spectrum as a function of Ω. a, Anisotropy pa-
rameterA = 0. b, A = 0.03. In both cases,N = 6 andg = 1.
ForA = 0, the ground state is multiply degenerate at the rotation
frequencyΩ1 = 1 − gN/(8π), which corresponds to the nucleation
frequency of the first vortex. A non-zero anisotropy parameter lifts
the degeneracy of the groun state. Here, we plot only the firstnine
energy eigenvalues from the subspace formed with even values of
the total angular momentum, which are the only relevant onesfor the
problem addressed in this article. The arrows mark the valueof Ω1.

which is also parity invariant. Hence, the single-particleor-
bitalsψk, which are eigenstates ofn(1) with eigenvaluesnk

(
∑

k nk = N ), can also be chosen with even or odd parity.
Suppose that we varyΩ from an initial valueΩi (Ωi < Ω1)
to a final valueΩf (Ω1 < Ωf < Ω2), choosingΩi,f in a re-
gion where the mean-field description is valid, that is, when
the largest eigenvaluen1 is close toN . ForΩi < Ω1 the most
(second most) populated stateψ1 (ψ2) has no (has a) vortex
in its central region and is even (odd). ChoosingΩi = 0.7,
we plot the phase profiles ofψ1,2 in the first row of Fig.3 for
N = 6 atoms,g = 1 andA = 0.03. On the other hand, at
Ωf the ground state has a single well-centered vortex andψ1

andψ2 are odd and even, respectively (see last row of Fig.3
for Ω = 0.8). Hence, the parity ofψ1 must change at some
intermediateΩc, which is close (for smallA) to the vortex
nucleation frequencyΩ1 in absence of anisotropy. By conti-
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FIG. 2: Variation of the angular momentum with rotation fre-
quency Ω. The black and red lines show, for an anisotropyA = 0
andA = 0.03 respectively, the angular momentum of the ground
state for a system ofN = 6 particles and an interaction strength
g = 1. The green line is the average angular momentum predicted
by the mean-field treatment whenΩ is linearly ramped from0 to0.85
with a slopeΩ̇ = 10−4. The initial state atΩ = 0 is given by a slight
perturbation of the coefficientsa0 = 1, a1 = a2 = 0. It presents
a dynamical instability of the zero-vortex mean-field solution for
Ω = 0.788 (marked by an arrow). Inset: The evolution of|a1|

2,
which explicitly shows the instability. The blue curve of the main
figure is the backward evolution corresponding to an initialstate at
Ω = 0.85 close to the stationary mean-field solutiona0 = a2 = 0
anda1 = 1. This solution ceases to exist forΩ < 0.764, causing the
large oscillations in the evolution of the angular momentum.

nuity, the two most populated eigenstatesψ1 andψ2 of n(1)

must have equal populations, heralding a failure of the mean-
field atΩc.

We show in Fig.4 the variation ofn1/N andn2/N as a
function ofΩ, for N = 12, g = 0.5 andA = 0.03. These
two populations are equal forΩc = 0.775. We see that
n1 + n2 ≃ N over the whole range of frequencies of this
figure, indicating that most of the population of the SPDM is
concentrated in the first two modesψ1 andψ2. We checked up
toN = 20 that this concentration increases withN . Another
relevant fact is that only the first three LLL single-particle
states (m = 0, 1, 2) have a significant weight in the expan-
sion ofψ1 andψ2. More specifically, belowΩc ψ1 is approx-
imately a coherent superposition ofϕ0 andϕ2, correspond-
ing to two off-centered vortices (even parity), whereasψ2 is
very close to a well-centered single-vortex stateϕ1 (odd par-
ity). AboveΩc, ψ1 andψ2 abruptly exchange their form (see
Fig.3).

The failure of the mean-field description aroundΩc may
occur in two ways. A first possibility is that forΩ = Ωc, the
many-body ground level itself has a two-fold degeneracy with
two eigenstates of opposite parity. This scenario corresponds
to a first-order transition. It occurs whenN is odd, because
the graund state evolves from∼ ψ⊗N

1 with ψ1 even to∼ ψ⊗N
1

with ψ1 odd. The second possibility is that the many-body
graund state|Ψ0〉 remains non-degenerate, as this is the case
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FIG. 3: Density of the ground state and phase maps of ψ1 and
ψ2. Four different values ofΩ for N = 6, A = 0.03 andg = 1 are
considered. First row:Ω = 0.7, n1 = 5.85, n2 = 0.12. Second
row: Ω = 0.760, n1 = 5.01, n2 = 0.60. Third row: Ω = Ωc =
0.776 n1 = n2 = 2.88. Fourth row:Ω = 0.8 with n1 = 4.24, n2 =
1.07. The first column is the contour plot of the total density, andthe
second and third columns show the local phase maps ofψ1 andψ2

respectively. Vortices are localized at the singularitiesof the phase
maps, surrounded by diffuse change of the phase. This figure shows
that the nucleation of the first centered vortex in a rotatingcondensate
by a slow frequency sweep does not occur through a smooth entrance
of the vortex. The system passes through a correlated, non-mean-
field state where two single-particle states have equal weight. At this
point,ψ1 changes from being a coherent superposition ofϕ0 andϕ2

(two off-centered vortices) to the singleϕ1 state, which corresponds
to a well-centered single vortex. Simultaneously,ψ2 experiences the
inverse change.

in Fig.1b. In this case,|Ψ0〉 is even over the whole range
[Ωi,Ωf ]. This occurs for evenN and will be of interest for
the rest of the article.

Quantum correlations forΩ ∼ Ωc. We have carried out
a detailed study of the ground state|Ψ0〉 around the critical
frequencyΩc, where the two largest eigenvalues of the SPDM
are equal (n1 = n2). At criticality, the system is very well
described by a two-mode approximation implied by Fig.4a.
The two largest eigenvalues of the SPDM are much larger than
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FIG. 4: Structure of the ground state. a, Variation of the relative
populationsn1/N andn2/N of the two most occupied statesψ1 and
ψ2 of the SPDM. WhenΩ is sufficiently different fromΩc, n1 ≃ N ,
the system is well described by a single mode and the mean-field de-
scription is valid. Conversely, forΩ ≃ Ωc, the two populations are
comparable, corresponding to the case where a two-mode approxi-
mation is valid even in the entangled region.b, Analysis of the state
of the system at the critical point wheren1 = n2, in terms of the
square of the scalar productsPn =| 〈n : ψ1 ; N − n : ψ2|Ψ0〉 |

2.
We obtain| 〈E | Ψ0〉 |= 0.92 (see equation (1)). Both panels are
plotted forN = 12, g = 0.5 andA = 0.03.

all of the others, so thatn1 = n2 ≃ N/2. For example, for
N = 12, g = 0.5 andA = 0.03, we obtainn1 = n2 =
0.49N atΩc = 0.776. The ground state is strongly correlated
and is well described (for evenN ) by

|E〉 = [|N, 0〉+ |N − 2, 2〉+ ...+ |0, N〉]/
√

N/2 + 1, (1)

where|n,m〉 is the state withn (respectivelym) atoms inψ1

(respectivelyψ2). Amazingly, the form of the ground state
at Ωc is practically independent ofA, as long asA ≪ 1.
For a quantitative comparison of the exact ground state with
the state (1), we show in Fig.4b the squared scalar products
〈n,N − n|Ψ0〉 in the caseN = 12. They are all zero for
odd values ofn (as expected from the parity of|Ψ0〉) and
approximately constant for even values ofn. We compared
also our ground state atΩc with other celebrated correlated
states, such as “Schrödinger cat” states(|N, 0〉+ |0, N〉)/

√
2,

or “twin” states|N/2, N/2〉, and found much smaller over-
laps. Although there are various ways of defining entangle-
ment for identical particles (for a review see [24]), according
to Zanardi’s concept of mode entanglement (ref.24), the state
(1) is maximally entangled. This is clearly seen by tracing the
state (1) over one of the two modes and observing that the von
Neumann entropy of the reduced density matrix reaches the
maximal valueS ∼ log(N).

At this point we mention related work on rotating ring lat-
tices and Josephson junctions [26]. There, strongly correlated
states are predicted at critical rotation, but the mechanism of
their generation, as well as their nature are fundamentallydif-
ferent. The starting situation of these discretized modelsis
that there are two degenerated single-particle states. Interac-
tions lift the degeneracy in the many-body system and favor
the “cat” states. In our case, the ground state forA = 0 is
macroscopically degenerated in the presence of interactions.
The degeneracy is lifted here by the anisotropy, leading to an-
other kind of strongly correlated ground state.

Vortex nucleation with adiabatic passage.We now study
the real-time dynamics of the system using the time-
dependent Schrödinger equation. A quasi-adiabatic evolu-
tion that brings the system from the zero-vortex to the one-
vortex state, is realized by sweepingΩ: Ω(t) = Ωi + γt
from the initial frequencyΩi chosen well belowΩc (typically
Ωi = 0.65) to the final frequencyΩf , well aboveΩc (typi-
cally Ωf = 0.85). This evolution produces as an intermediate
step the strongly correlated state (1). The key parameter for
the success of this quasi-adiabatic evolution is the energygap
∆ between the ground state and the first excited state of the
system.

We have carried out a study of this gap for variousN , keep-
ing the productNg constant so thatΩ1 also remains con-
stant. We found that for smallA values (below 0.1), the gap
is roughly constant over the range10 ≤ N ≤ 20, and equal
to ≃ 0.5 A. Knowing the gap, we estimate the largest pos-
sibleγ compatible with adiabatic evolution following ref. 27
and findγmax = ξ ∆2/N , whereξ ≪ 1 (see the Methods
section). This criterion agrees well with our results. Defining
as successful an adiabatic evolution that leads to an overlap
larger than 0.98 between the final state and the ground state
at Ωf , we find ξ ≃ 0.1 for 10 ≤ N ≤ 20. Such a quasi-
adiabatic evolution anables us to attain the correlated state (1)
with comparable overlap. For practical implementations, the
atoms can be confined in a relatively tight trap at the nodes
of an optical lattice withω⊥/2π in the 10 kHz range. For an
anisotropyA = 0.1 andN = 10 atoms, the sweep time has to
be of the order of one second to ensure adiabaticity.

A natural question is the generalisation of the present
scheme to largeN . Assuming that the gap protecting the
ground state remains constant, the mechanism will in prin-
ciple survive. However, we have neglected here any parity-
breaking perturbation in the Hamiltonian. Such a term would
couple the subspaces corresponding to even and oddL val-
ues. As shown in ref. 17, the lowest energies of these two
subspaces are exponentially close whenN increases, wich af-
fects the robustness of the ground state. This coupling thus
constitutes an important decoherence mechanism for largeN ,
whereas our scheme remains valid forN not exceeding a few
tens.

Mean field approach. As our results point out that
strongly correlated states may be reached in the course of
the time evolution, it is interesting to see what the predic-
tions of usual mean-field theory are. To this aim, we ex-
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pand the condensate wavefunctionf(~r, t) into the relevant
single particle LLL orbitalsϕm(~r) with angular momentum
m = 0, 1, 2, f(~r, t) =

∑2
m=0 am(t)ϕm(~r). Using the dy-

namical variational principle [28], we derive Lagrange equa-
tions for the complex amplitudesam(t) (see the Methods
section), and look for the stationary solutions of the form
am(t) = exp(−iµt)am(0) and their stability. Finally, we
evolve the mean-field equations and compare the results with
the full quantum treatment.

We choosegN = 6 andA = 0.03. Among the several pos-
sible stationary solutions, two of them are relevant. The first
onefa corresponds to the “no vortex” situation with a small
admixture of “two-vortex” orbital, that is,|a0| ≃ 1, |a2| ≪ 1
anda1 = 0. This solution is the ground state forΩ < Ω̃ =
0.773. The second relevant solutionfb contains a non-zero
contribution of the one-vortex state (a1 6= 0) and it is the
ground state forΩ > Ω̃. Thus,Ω̃ marks the critical value ofΩ
for the thermodynamical stability of a centred vortex, and the
“first-order transition” within the mean-field approach.

In the frequency range0.764 < Ω < 0.788, both solu-
tions exist and are stable, leading to a bistable and hysteresis
behaviour. ForΩ > 0.788, fa becomes dynamically unsta-
ble (|a1| grows exponentially in time, starting from noise, see
inset in Fig. 2). ForΩ < 0.764, fb does not exist. The nu-
merical study confirms this hysteresis behaviour, as shown in
Fig. 2. The green line shows the angular momentum whenΩ
is ramped linearly in time fromΩi = 0 to Ωf = 0.85, with
the rateΩ̇ = 10−4. A turbulent behaviour occurs onceΩ(t)
reaches the edge of the stability domain offa. The blue line
shows the reverse evolution in whichΩ varies fromΩf to Ωi

at the same rate. Evidently, the adiabatic character of the dy-
namics cannot be maintained, in contrast to the result of the
exact many-body treatment.

Summary We conjecture that the scenario presented
above is generic for the following situations: (1) it concerns
quantum mechanical systems in which the ground state un-
dergoes symmetry change/breaking as some parameter of the
systemλ crosses a critical valueλc; (2) far fromλc, the sys-
tems are well described by the mean-field theory with order
parameters reflecting the change of symmetry; (3) in the dy-
namical mean-field description, the system exhibits dynami-
cal instability and breakdown of adiabaticity.

In such situations we expect the appearance of strongly
correlated states. The SPDM shows typically a few rele-
vant single-particle modes that are involved in the symmetry
change. They can be guessed by analyzing the results of the
dynamical mean-field approach. For instance, if this approach
exhibits standard signatures of bistability, we can expecttwo
relevant modes as in the case study presented here. Similar
insight can be gained from analysis of small Gaussian fluctu-
ations around the mean-field solutions, that is, Bogoliubov-
de Gennes equations [29]. Reduction of the full theory to
the quantum modes provides then a very good approxima-
tion. Alternatively, it can be viewed as re-quantization ofthe
mean-field theory reduced to the relevant single-particle or-

bitals [17]. The strongly correlated states appearing in such a
situation exhibit strong entanglement and this property can be
detected in experiments with moderateN .

Methods

Diagonalization of the Hamiltonian. In the frame rotat-
ing at angular frequencyΩ, the Hamiltonian of the system is
H = H0 + U , whereH0 is the sum of one-body Hamilto-
niansH0 =

∑N
j=1H0,j andU is the two-body interaction

potential, characterized by the 3D scattering lengtha. Each
one-body Hamiltonian is the sum of kinetic, potential and ro-
tation energy:

H0,j =
p2

j + p2
zj

2M
+
M

2
(ω2

⊥r
2
j + ω2

‖z
2
j )

− ΩLz,j + Vj

whereVj = 2AMω2
⊥(x2

j−y2
j ) is the anisotropic potential that

sets the gas in rotation. We assume that the interaction energy
is much smaller than~ωz so that thez motion is frozen and
the atoms occupy only the ground stateexp(−z2/(2λ2

z)) of
this degree of freedom. The gas is supposed to be rotating
sufficiently fast to haveω⊥ − Ω ≪ ω⊥ + Ω, which guaran-
tees that the various Landau levels are well separated from
each other. The interaction energy is also assumed to be small
compared to~(ω⊥ +Ω) so that the low temperature dynamics
is restricted to the LLL.

In the absence of anisotropic potentialA = 0, the eigen-
states of the one-body Hamiltonian in the LLL are the func-
tionsϕm(x, y) ∝ (x + iy)me−(x2+y2)/2λ2

⊥ , m = 0, 1, 2, . . ..
We introduce the creationa†m and annihilationam operators
of an atom in stateϕm, and we writeH in the second quanti-
zation

Ĥ = ~ ω⊥N̂ + ~ (ω⊥ − Ω)L̂ + V̂ + Û ,

whereN̂ =
∑

a†mam andL̂ =
∑

ma†mam are the particle
number operator and the totalz-component angular momen-
tum operator, respectively. The expression of the rotatingpo-
tential in the second quantization is

V̂ =
A

2
λ2
⊥

∑

m

(

√

m(m− 1) a†m am−2

+
√

(m+ 1)(m+ 2) a†m am+2

)

.

Finally the contact interaction potential reads

Û =
1

2

∑

m1m2m3m4

U1234 a†m1
a†m2

am4
am3

,

where the matrix elements are given by

U1234 = 〈m1m2 | U | m3m4〉

=
g

λ2
⊥π

δm1+m2,m3+m4√
m1!m2!m3!m4!

(m1 +m2)!

2m1+m2+1
.
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In the absence of anisotropy (A = 0), Ĥ and L̂ com-
mute and share a common basis. The first step in the diag-
onalization of the Hamiltonian is to determine a basis|Λp〉
(p = 1, . . . , nL) for each subspace of given total angular mo-
mentumL. The dimensionnL of each subspace corresponds
to all of the possible configurations ofN particles with an-
gular momentummj that fulfil the conditionL =

∑N
j=1mj .

The matrix of the Hamiltonian in the LLL basis then consists
of blocks of sizenL × nL, which we diagonalize using stan-
dard codes.

WhenA 6= 0, the anisotropic potential connects the various
subspaces of givenL. We then choose a maximum angular
momentumLmax and write the matrix giving the restriction
of the Hamiltonian to the subspace of states withL ≤ Lmax.
ThisQ×Q matrix, withQ =

∑Lmax

L=0 nL, is again diagonal-
ized using standard codes. In practice the value ofLmax is
chosen to ensure a good convergence for the energies and the
eigenstates of the Hamiltonian. The results given here have
been obtained withLmax = N + 2.

Note that the anisotropic rotating contributionV can in
principle be included within the framework of the LLL ap-
proximation in two ways. The first approach has just been de-
scribed above and consists of keeping the same Landau levels
as forA = 0 and then diagonalizinĝH within the LLL. The
second approach consists of calculating exactly the single-
particle eigenstates in presence of the anisotropyV , and defin-
ing a new LLL accordingly [30]. The Hamiltonian is then
diagonalized within this ‘anisotropic’ LLL. We have checked
that both methods lead to very similar results forΩ ∼ Ω1.
The results presented here have been obtained with the first
approach.

Single particle density matrix The SPDM can be re-
garded as an integral operator with the kernel:

n(1)(~r, ~r′) = 〈Ψ0 | Ψ̂†(~r) Ψ̂(~r′)|Ψ0〉,

with Ψ̂(~r) and Ψ̂† being the annihilation and creation field
operators of an atom in~r. The single-particle orbitals are the
eigenstates of the SPDM:

∫

d~r′n(1)(~r, ~r′)ψ∗
k(~r′) = nkψk(~r).

If there exist a single relevant eigenvalue such thatn1 ≫
∑

k≥2 nk, then
√
n1ψ1(~r) has the role of the order parame-

ter of the system. In particular, the map of the local phase
of this function gives precise information on the location of
vortices [15].

Adiabatic approximation The diagonalization of the
many-body Hamiltonian provides the eigenstates|Ψj(Ω)〉 and
the eigenenergiesEj(Ω). In particular, the ground state
|Ψ0(Ω)〉 is separated from the first excited state|Ψ1(Ω)〉 by an
energy gap~ω10(Ω), which is minimal at the avoided crossing
close toΩ1. We consider here a process whereΩ is scanned
linearly from Ωi < Ω1 to Ωf > Ω1 and we want to find a
criterion onΩ̇ ensuring that the system follows adiabatically
the ground state, with a negligible transition rate to the other
states.

The probability for a non-adiabatic transitionΨ0 → Ψj is
given by [27]:

p0→j ≤ max

(

αj0

ωj0

)2

whereαj0 = 〈Ψj |(d|Ψ0〉/dt). We have

d|Ψ0〉
dt

= Ω̇
d|Ψ0〉
dΩ

.

From the eigenvalue equationH |Ψ0〉 = E0|Ψ0〉, we obtain
after a derivative with respect toΩ:

−Lz |Ψ0(Ω)〉+H(Ω)
d|Ψ0〉
dΩ

=
dE0

dΩ
|Ψ0(Ω)〉 + E0

d|Ψ0〉
dΩ

.

We now take the scalar product with〈Ψj | (j 6= 0) and we get:

〈Ψj |Lz|Ψ0〉 = (Ej − E0)〈Ψj |
d|Ψ0〉
dΩ

.

We choose|Ψj〉 equal to the first excited state of the system
|Ψ1〉. The matrix element〈Ψ1|Lz|Ψ0〉 is at most of orderN~

in the vicinity of the avoided crossing. Therefore:

α10 = 〈Ψ1|
d|ψ0〉
dt

≤ Ω̇
N~

~ω10
,

hence the condition forp0→1 ≪ 1:

Ω̇
N

ω2
10

≪ 1 .

Mean-field approach. The mean-field approach consists
of assuming that all atoms are in the same statef(~r, t) =
∑2

m=0 am(t)ϕm(~r) with
∑

|am|2 = 1. The average angular
momentum per particle isL = |a1|2 + 2|a2|2 and the average
energy per particleE(ψ) = 1

N 〈f⊗N |H |f⊗N〉 reads (up to an
additive constant):

E(ψ) = (1 − Ω)(|a1|2 + 2|a2|2) +
√

2A(a0a
∗
2 + a∗0a2)

+
Ng

4π

[

|a0|4 +
1

2
|a1|4 +

3

8
|a2|4

+2|a0|2|a1|2 + |a0|2|a2|2 +
3

2
|a1|2|a2|2

+
1√
2
(a0a2(a

∗
1)

2 + a∗0a
∗
2a

2
1)

]

.

The Lagrange equations associated with this energy areiȧj =
∂E/∂a∗j (ref. 28), which gives for example:

iȧ0 =
√

2Aa2+
Ng

2π

[

a0

(

|a0|2+|a1|2+
1

2
|a2|2

)

+
1

2
√

2
a2
1a

∗
2

]

and two similar equations foṙa1 and ȧ2. Note that in this
mean-field approach,N andg have a role only through the
productNg. In particular, the fact thatN is even or odd is of
no relevance here.
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The stationary solutions are obtained by insertingam(t) =
am(0) e−iµt in the three Lagrange equations. A detailed anal-
ysis of the resulting3 × 3 nonlinear system shows that two
classes of solution exist. The first class (fa) corresponds to
a1 = 0. Depending on the value of the parametersNg,A and
Ω, there may exist two, three or four solutions of this kind.
After some tedious but straightforward calculation, one can
obtain for this first class of solution an analytical relation be-
tweenΩ and the angular momentum per particleL = 2|a2|2:

Ω = 1 − Ng

8π

(

1 − 3

8
L

)

±
√

2A
1 − L

√

L(2 − L)
.

The second class of solution corresponds to a non-zero value
for a1 and we have not been able to provide an exact analytical
expression for the solution in this case. Using a numerical
analysis, we have determined the local minima of the energy
and we found that one solution of this kind exists if and only
if Ω > 0.766. We have compared the energy of this solution
with the lowest energy of the solutions in the first class: for
Ω < Ω̃ = 0.773 (respectivelyΩ > Ω̃), the the ground state
is obtained with a solution belonging to the first (respectively
second) class.

The stability of the solutions of the first class (a1 = 0) can
be studied analytically by looking at the equation of evolution
of b1 = a1e

iµt. This equation can be linearized aroundb1 = 0
and written in the formiḃ1 = Ab1 +Bb∗1, where the constants
A andB are real numbers that can be calculated explicitly in
terms of the parametersΩ,A andNg. The stationary solution
corresponds tob1 = 0, and it is stable ifb1(t) stays around 0
when starting from a small non-zero initial value. This hap-
pens when|A| > |B|, whereasb1 undergoes an exponential
divergence from any initial noise if|A| < |B|, signalling a
dynamical instability of the solution.
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