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Photon Statistics and Quantum Jumps: The Picture of 
the Dressed Atom Radiative Cascade 

SERGE REYNAUD, JEAN DALIBARD, AND CLAUDE COHEN-TANNOUDJI 

Abstract-The statistics of spontaneous photons emission times in 
single atom resonance fluorescence are investigated through the radia- 
tive cascade of the dressed atom. We calculate the delay function which 
gives the distribution of the delays between two successive emissions 
for a coherent as well as an incoherent laser excitation. For a two-level 
atom, we review in this way various signals concerning the fluorescence 
intensity (average value, photon counting, fluctuations spectrum, etc.). 
For a three-level atom, this approach is applied to the analysis of the 
recently observed phenomenon of intermittent fluorescence and quan- 
tum jumps. 

I. INTRODUCTION 
ESONANCE fluorescence, i.e., resonant absorption R and emission of photons by an atom, has been studied 

for a long time [ 11-[3]. Novel phenomena occur when the 
atomic transition is saturated with an intense, quasi-res- 
onant laser beam: triplet structure of the fluorescence 
spectrum [4]-[6], temporal antibunching of the fluores- 
cence photons [6]-[7], sub-Poissonian statistics [8], etc. 
The possibility of trapping a single ion has recently 
opened the way to new developments. For example, the 
effect of “intermittent fluorescence” has been observed 
[9]-[ 111, giving for the first time a direct evidence at the 
macroscopic level for the “quantum jumps” of an atom 
reaching or leaving one of its eigenstates. 

The statistical properties of the fluorescence light have 
been the subject of several theoretical works. In most of 
these works, the atomic dynamics are described by “op- 
tical Bloch equations” [ 121-[ 131. In spite of its remark- 
able efficiency for the computation of most signals, this 
method does not always provide a simple understanding 
of the statistical properties of the fluorescence light. Since 
the laser field is treated as a classical field, absorption and 
emission do not appear explicitly as elementary processes 
in the equations. A solution to this problem is to treat the 
laser field as a quantum field. The dynamical equation of 
the compound system-atom “dressed” by the laser pho- 
tons-thus directly describes the elementary absorption 
and emission processes. Statistical properties of the fluo- 
rescence light are thus simply understood by considering 
the “dressed atom radiative cascade,” i.e., the dressed 
atom cascading downwards its energy diagram while 
emitting fluorescence photons [ 141-[ 161. 
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The purpose of this paper is to analyze in detail such a 
picture, and to show that it can provide a quantitative un- 
derstanding of the statistical properties of the spontaneous 
emission times of a single atom interacting with a reso- 
nant laser beam. Starting from the master equation de- 
scribing the evolution of the dressed atom density matrix, 
we will show that several photon statistics signals can be 
calculated in terms of a single function, the “delay func- 
tion,’’ which is the probability distribution of the delay 
between two successive spontaneous emission times. Such 
a function already has been used for analyzing various 
effects such as resonance fluorescence [16] or quantum 
jumps [17]-[19]. It has close connections with the so- 
called “exclusive” two-time probability density of the 
general photodetection theory [39], [40]. In this paper, 
we review various types of signals which can be ex- 
pressed in terms of this function and we extend previous 
calculations in order to include the case of an incoherent 
excitation. 

We consider first the simplest case of a two-level atom 
and we calculate the delay function for a coherent (Sec- 
tion 11) and an incoherent excitation (Section 111). We then 
show (Section IV) how various photon statistics signals 
are related to this function. Finally, we extend the pre- 
vious analysis to three-level atoms (Section V) and dis- 
cuss intermittent fluorescence and quantum jumps. 

11. COHERENT EXCITATION OF A TWO-LEVEL ATOM 

The states of the compound system-atom + laser pho- 
tons (the “dressed” atom)-are labeled by two quantum 
numbers: an atomic one ( g for the ground state and e for 
the excited state) and the number n of laser photons. For 
a quasi-resonant excitation, the two states I g,  n ) and I e ,  
n - 1 ) form a nearly degenerate manifold (that we de- 
note E , )  since their splitting is just the detuning 6 = wL 
- wA between the laser frequency wL and the atomic one 
w A .  These two levels are coupled by absorption and stim- 
ulated emission processes: the atom can go from g to e 
(respectively, from e to g ) while absorbing (respectively, 
emitting) a laser photon. On the other hand, spontaneous 
emission is associated with the coupling of the atom with 
the vacuum field reservoir and corresponds to transitions 
between two adjacent manifolds: the atom goes from e to 
g while emitting a fluorescence photon and the number n 
of laser photons is conserved. 

Fluorescence thus appears as a succession of elemen- 
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Fig. 1. Energy levels of the system atom + laser photons. The horizontal 
arrows describe reversible absorption and stimulated emission processes. 
The wavy arrows describe irreversible spontaneous emission processes. 

tary processes (see Fig. 1): starting, for example, from 
1 g, n ), the dressed atom can go to 1 e ,  n - 1 ) (absorp- 
tion process), then jump down to 1 g,  n - 1 ) (sponta- 
neous emission), etc. This phenomenon is called the 
‘‘dressed atom radiative cascade” because of the analogy 
with atomic or nuclear radiative cascades. 

This radiative cascade can be described quantitatively 
by a “master equation” derived from general relaxation 
theory. Such an equation can be written as follows [12], 
[20]: 

d i 
dt - (J = - - A [ H ,  U ]  

r 
- - (S+S-u + uS+S- )  

+ r r U s +  (2.1) 

2 

where U is the density operator of the dressed atom, H is 
the Hamiltonian describing atom and laser photons inter- 
acting together (thus including absorption and stimulated 
emission), I’ is the Einstein coefficient associated with 
spontaneous emission, and S+ and S- are the raising and 
lowering atomic operators ( S +  = I e )  ( g 1 ;  S -  = 
1 g ) ( e 1 ). Let us consider now the restriction U, of the 
density matrix U inside the manifold E,. Its evolution 
equation can be written from (2.1) as [16], [18] 

- r (S’s-u, + u,s+s-) 
2 

+ rs-u,+IS+. (2.2) 
H, is the restriction of the Hamiltonian inside the mani- 
fold E , :  

Hn = n ~ u L ) g , n ) ( g , n [  

+ (ahaL - A a ) ( e ,  n - 1 )  ( e ,  n - 1 1  

where S2 is the so-called Rabi nutation frequency. The first 
term of (2.2) describes the atom-laser coupling and in- 
cludes absorption and stimulated emission ( terms propor- 
tional to in H,). The second term describes the damping 
of U, due to spontaneous emission. The evolution asso- 
ciated with these two terms is restricted inside the mani- 
fold I,, while the third term describes the transfer to Cr1 
due to the damping of This transfer term can be 
written as 

rs-u,+ls+ = W e ,  n )  1 g ,  n )  ( g ,  n I (2.4) 
where a( e ,  n )  is the population of the state 1 e ,  n ) be- 
longing to the manifold €, + l .  

The solution U, of (2.2) obeys the integral equation 

u,(t) = d r p , ( r )  I’a(e, n,  t - 7) (2.5) s, 
where p, ( r )  is defined by 

r 
- - (S’S-p.,, + p,S+Sp) (2.6) 2 

~ n ( 7  = 0 )  = 1 g ,  n ) ( g ,  n 1 (2.7) 

(evolution inside the manifold €,,-without transfer term- 
starting from the initial state I g ,  n )). It appears in (2.5) 
that the knowledge of the populations T ( e ,  n ) is sufficient 
for the determination of the matrices a,( t ) .  Now, the 
populations of these states I e ,  n ), I e ,  n - 1 ) . . . are 
given by integral equations derived by taking the average 
value of (2.5) in the state I e ,  n - 1 ) :  

r ( e ,  n - 1, t )  = ~ T W , ( T )  x ( e ,  n,  t - r )  (2 .8)  som 
with 

~ ~ ( 7 )  = r ( e ,  n - 1 [ p , ( T ) l e ,  n - 1 ) .  

(2 .9)  
Finally, it appears that the problem of the evolution of 
a( e ,  n )  and therefore of u,~ ,  reduces to the evaluation from 
(2.6) and (2.7) of the function W, (7). 

The previous equations are the formal expression of the 
qualitative picture of the radiative cascade: for the set of 
experiments analyzed in this paper (intensity measure- 
ments with broad-band photodetectors), absorption and 
stimulated emission processes correspond to reversible 
evolutions inside the various manifolds, while sponta- 
neous processes can be considered as irreversible “quan- 
tum jumps” from one manifold to another one. The re- 
versible evolution, for example, inside €,, can be 
switched off by an irreversible process which “projects” 
the system into the state 1 g ,  n - 1 ) : after such a “jump,” 
a new reversible evolution begins inside the manifold 

and so on. It follows that time intervals betueen 
successive fluorescence photon emissions are statistically 
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independent random variables. Any photon statistics sig- 
nal can therefore be deduced from the knowledge of the 
delay functions W,, ( 7) which are just the probability dis- 
tributions of these time intervals. Strictly speaking, the 
function W,, ( 7) depends on n since the Rabi nutation fre- 
quency !J varies as &. But this dependence can be ig- 
nored when the distribution of the values of n is a quasi- 
classical distribution (i.e., when 1 << A n  << E where 
n and A n  are the mean value and width of the distribu- 
tion), which is the case for a laser excitation. Therefore, 
all the delays have the same probability distribution W (  7). 

We now switch to the explicit calculation of W (  7) from 
(2.6), (2.7), and (2.9). We first note that the structure of 
(2.6), involving only a commutator and an anticommu- 
tator with the operator p n ,  allows an important simplifi- 
cation: one can reduce (2.6)-(2.7) to equations bearing 
only on probability amplitudes, instead of working with 
density matrix equations as usual in relaxation theory. 
More precisely, we can rewrite (2.9) as 

- 

(2.11) 

i t  thus appears from (2.10) that W,, (7) is equal to the de- 
cay rate from the level l e ,  n - l ) at time 7, knowing 
that the dressed atom is in level I g ,  n )  at time 0. Now, 
we note that I $,, ( 7) ) evolves only in the manifold En , so 
that it can be written 

l $ n ( 7 ) )  = aO(7) ( g ,  n )  + ai (7)  ( e ,  n - 1 )  (2.12) 

where the evolution of a. and ai  is obtained from (2.11): 

Solving these equations, one finds in the simple case of 
an exactly resonant excitation ( 6  = 0 )  

!J2 
x W ( 7 )  = r -2 sin2 (:) exp ( - F) (2.14) 

with 

(2.15) 

(these expressions correspond to the case h2 > 0; other- 
wise, one has to change X2 into - h2 and the sine function 
into the hyperbolic sine). It is worth giving also the La- 
place transform W ( p )  of w(~): 

Before discussing how the photon statistics signals can 

be deduced from these expressions, we now turn to the 
case of an incoherent excitation. 

111. INCOHERENT EXCITATION OF A TWO-LEVEL ATOM 
In this section, we suppose that the atom is irradiated 

by a resonant broad-band laser. If the spectral distribution 
of the laser light is large enough, relaxation theory can be 
used to describe not only the atom-vacuum field interac- 
tion, but also the atom-laser interaction. We obtain in this 
manner the following rate equations for the populations 
of the “dressed” states 1 g, n ) and 1 e ,  n - 1 ) where n 
is the total number of laser photons (summed over all fre- 
quencies) : 

d 
- a(g, n )  = r ’ ( a ( e ,  n - 1) - a(g, n ) )  
dt 

+ h ( e ,  n )  (3. l a )  

- h ( e ,  n - 1) .  (3. l b )  

Absorption and stimulated emission processes are de- 
scribed by transitions inside a given manifold €,, (term 
proportional to r ’), while spontaneous emission pro- 
cesses are described by transitions between adjacent man- 
ifolds (terms proportional to r).  The absorption and stim- 
ulated emission rate r’ is the product of the Einstein B 
coefficient by the power spectrum of the laser at the atomic 
frequency, while the spontaneous emission rate r is the 
Einstein A coefficient. As we study the case of a broad- 
band laser, we will consider that the distribution of n is a 
quasi-classical distribution ( 1 << A n  << a)  and we will 
therefore ignore the variation of I” with n. 

Equations (3.1) describe the radiative cascade in the 
case of an incoherent excitation. Since the spontaneous 
emission terms have the same formal structure as for co- 
herent excitation, one can solve this equations in the same 
manner. In particular, their solutions obey the integral 
equation 

a(g, n ,  t )  = Som w g ,  n, 7) w e ,  n, t - 7) 

(3.2a) 

d.rp(e, n - 1, 7) h ( e ,  n,  t - 7) 

(3.2b) 

a(e ,  n - 1, t )  = lorn 
where the populations p are defined by 

(3.3a) 
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p ( g ,  n, 0 )  = 1; p ( e ,  n - 1, 0) = 0. (3.4) 
This equation describes the evolution inside the manifold 
G , ,  without a transfer term from the upper one, starting 
from the initial state 1 g,  n ) [compare to eqs. (2.6), (2.7)]. 
Finally, the populations of the states I e ,  n ) , I e ,  n - 1 ) , 

obey the integral equations deduced from (3.2b): 

n ( e ,  n - 1, t )  = d ~ W ( 7 )  n ( e ,  n, t - 7) (3.5) Sorn 
with 

“(7) = r p ( e ,  n - 1, 7). (3.6) 
An important difference with the case of a coherent ex- 

citation is that these equations can no longer be reduced 
to amplitude equations. This is associated with the fact 
that absorption and stimulated emission are now irrevers- 
ible processes. Solving these equations, one finds the fol- 
lowing expressions for the delay function W ( 7 )  and its 
Laplace transform W( p ): 

rf  
W ( 7 )  = J? - sh ( y )  exp (- 7) (3.7) 

and 
mm I 

IV. PHOTON STATISTICS SIGNALS 

We have shown in the previous sections that the succes- 
sion of spontaneous emission times is a stochastic point 
process characterized by the delays between successive 
emissions. These delays are statistically independent ran- 
dom variables and all have the same probability distribu- 
tion “(7) .  It follows that any photon statistics signal, 
i.e., a signal in which only the intensity of the fluores- 
cence field is measured, can be calculated from this “de- 
lay function” W (  7 ) .  

As a first example, we want to deduce the mean value 
and the fluctuations of the number m of photons emitted 
during a given time t .  We first study a slightly different 
problem: what is the distribution for the variable c which 
is the sum of m successive delays (time between the emis- 
sion of some photon mo and the emission of the photon 
mo + m)? As successive delays are independent vari- 
ables, one obtains 

i = m?; A t 2  = mA7 

where 7 and AT are the mean value and dispersion of one 
delay 7 [which can be calculated from the distribution 
W (  T)] .  When m is a large number, one also knows that 
the distribution pm ( t )  of t is a Gaussian distribution (cen- 
tral limit theorem): 

p , ( t )  - exp [ - ( t  - m T ) 2 / ( 2 m A ~ 2 ) ] .  (4.2) 

(4.1) 2 

Coming back to the original problem, one can obtain the 
distribution q , ( m )  of the number m of photons emitted 
during a fixed time t by inferring that it is also a Gaussian 
distribution at the limit t >> 7 and by identifying the 
arguments of the exponential functions. From 

2 2 
( t  - m?) ( m  - t / . )  

2mAr2 2mAr2/T2 

one deduces the mean value and the dispersion of the dis- 
tribution qr ( m ) :  

(4.3) - - 

(4 .4)  

Am2 =  EAT^/?^. (4.5) 

- m = t/’ 

Equation (4.4) means that the mean value I of the in- 
tensity is just the inverse of the mean delay: 

I = m / t  = l/?. (4.6) 

One can calculate 7 from the expression of W (  7) or, in a 
simpler manner, from the expression of E( p )  which can 
be considered as the characteristic function of the distri- 
bution W ( 7 ) :  

(4.7) 

One thus recovers the usual result in the coherent case: 

I = ra2/(r2 + 2 a 2 )  (4.8a) 

and in the incoherent case: 
- 
I = rrf/(r  + 2177. (4.8b) 

Equation (4.5) shows that the variance A m 2  is propor- 
tional to the mean value E .  The Poisson statistics corre- 
spond to the particular case where the delay dispersion is 
equal to the mean delay. This would occur, for example, 
if the delay function had an exponential form. But it 
clearly appears that the statistics can be sub-Poissonian or 
super-Poissonian depending on the ratio A7/7.  The sta- 
tistics are usually characterized by the Q factor [21] de- 
fined through 

A m 2 / E  = 1 + Q = Ar2 /T2 .  (4.9) 
Computing the delay variance from 

one recovers the well-known result for the Q factor in the 
coherent case [21]. For example, for 6 = 0, we get 

Q = - 6 F 2 Q 2 / ( r 2  + 2a2)* .  (4.11a) 

This corresponds to a photon noise reduction which can 
reach the value 1 + Q = 1 / 4  for r = 2 Q 2 .  A less known 
result is that photon noise reduction also occurs in the 
case of an incoherent excitation where one finds 

Q = - 2 r r ’ / ( r  + 2r7’  (4.1 lb)  

reaching 1 + Q = 3 / 4  for r = 2 r ’ .  As usual, these 
factors correspond to the statistics of photon emissions. 
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The Q factors associated with the statistics of photon de- 
tections are often much smaller since they have to be mul- 
tiplied by the probability for an emitted photon to be ef- 
fectively detected. 

There exist other signals characterizing the fluctuations 
of the fluorescence intensity. The photon correlation sig- 
nal has been studied in great detail, experimentally [6], 
[7] as well as theoretically [ 121, [22], [23] since it reveals 
the effect of photon antibunching. It is interesting to see 
how this signal is related to the picture of the dressed atom 
radiative cascade. 

The correlation signal C ( t ,  t + 7) is associated with 
the detection of a first photon at time t and of a second 
one at time t -t 7. As discussed previously, the emission 
of the first fluorescence photon “projects” the atom-laser 
photons system into some state I g ,  n - 1 ) .  One thus 
expects that the correlation signal is given by 

C ( t ,  t + 7) = IJ(7) (4.12) 

where Z is the mean intensity (associated with the first 
emission) and J (  7) is the transient intensity emitted by 
the system starting at 7 = 0 from this state I g, n - 1 ). 
The function J (  7) is thus different from W (  7) : W (  7) cor- 
responds to the emission of the next photon at time 7, 
while J (  7) corresponds to the emission of any photon (not 
necessarily the next one) at time 7. So, W ( 7 )  is propor- 
tional to the population of the state I e ,  n )  at time 7, 
knowing that the system is projected into I g ,  n + 1 ) at 
time 0 [see (2.9)], while J (  7) is proportional to the sum 
of all the populations of the states I e, n’ ) (with n’ I n )  
with the same conditions. One can therefore deduce from 
(2.8) the following relation between J and W [ 161, [ 191 : 

(4.13) 

(the symbol O represents the convolution product) which 
has a very simple meaning since W corresponds to the first 
emission, W O W to the second one, and so on. This 
equation leads to an algebraic relation between the La- 
place transforms J and w [ 161, [ 191: 

J =  W +  W O  W +  W O  W O  W +  - * a  

One can check that these results are identical to those al- 
ready known for the correlation signal. 

We will conclude this section by studying the noise 
spectrum of the fluorescence intensity S I (  U )  which could, 
in principle, be measured by entering into a spectrum ana- 
lyzer the fluctuations of the fluorescence intensity. 

One can show that this signal is directly related to the 
Fourier transform of J (  7): 

(4.15) S / ( w )  = So( 1 + Q ( w ) )  

with 

Q ( u )  = J(iw) + J (  -iw) (4.16) 

where So is the standard photon noise and is proportional 
to the mean intensity 7. The limit w --t 0 gives the results 
already discussed for the usual Q factor since counting 

photons during a long time is equivalent to analyzing at 
zero frequency the fluorescence intensity. But it is also 
possible to reduce photon noise at frequencies different 
from zero. A particularly interesting case corresponds to 
a coherent excitation at the high-intensity limit: 

(see (2.13) and (2.14) with 52 >> r) .  The delay function 
W ( T )  exhibits a damped oscillation at frequency Cl, the 
so-called “optical Rabi nutation. ” As a consequence, the 
factor Q ( w )  presents a peak structure around 52. From 
(4.14)-(4.17), one finds that this peak corresponds to a 
photon noise reduction which can reach the value 1 + 
Q ( w )  = 1/3  (for w = 52; !J >> r) .  Note that, as for 
zero frequency, Q has to be multiplied by the photon de- 
tection efficiency in order to get the factor corresponding 
to the experimental effect. 

V.  INTERMITTENT FLUORESCENCE OF A THREE-LEVEL 
ATOM: THE QUANTUM JUMPS 

The picture of the radiative cascade of the dressed atom 
is, of course, not limited to two-level systems. For ex- 
ample, this picture is very convenient for studying the 
phenomenon of intermittent fluorescence recently ob- 
served on a three-level system. Such an effect occurs when 
a system with three levels g ,  e B ,  e R  in a V configuration 
[see Fig. 2(a)] is simultaneously excited by two laser 
waves respectively resonant with the “blue” transition g 
- eB and the “red” transition g - e R ,  the red transition 
being much weaker than the blue one. The fluorescence 
signal, represented in Fig. 2(b), then exhibits bright pe- 
riods, with many fluorescence photons, alternating with 
long dark periods during which no photon is emitted. 

The existence of this effect has been initially suggested 
by Dehmelt [24] who used the following picture: the atom 
excited by the “blue” laser emits many fluorescence pho- 
tons on the g - eB transition, with a rate = r B / 2  if the 
transition is saturated ( P i ’  is the radiative lifetime of c B ) .  
However, when the “red” laser is resonant with the g - 
eR transition, the atom can also absorb a red photon and 
jump into level e R .  This “shelving” interrupts the blue 
fluorescence (dark period) until the atom jumps back from 
eR to g either by spontaneous emission (time constant 
r i ’ )  or by stimulated emission. Consequently, the reso- 
nance of the red laser and the absorption of a single red 
photon results in the absence of a very large number of 
blue photons. This scheme therefore allows a very sensi- 
tive detection of the weak resonance, with an amplifica- 
tion factor r B / r R  which reaches lo8 in the recent exper- 
imental results. 

This scheme also leads to a unique feature as pointed 
out by Cook and Kimble [25]: one can observe “by eye” 
the quantum jumps of a microscopic device. In absence 
of the red laser, it is indeed possible to observe by eye the 
blue fluorescence of a single trapped ion [9]-[I I ] .  When 
the red laser is applied, one can then look “in real time” 
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Fluorescence 

p e r i L  t. + I -  
Time 

(b) 
Fig. 2 .  (a) Three-level atom with two transitions starting from the ground 

state, one strong ( g  - e e )  and one weak ( g - e R ) .  (b) Random se- 
quence of pulses given by a photodetector recording the fluorescence of 
a single atom. The dark periods correspond to the shelving of the atom 
on the metastable level e R .  

at the atom jumping from g to eR (beginning of a dark 
period) or from eR to g (beginning of a bright period). 

After the proposal of Cook and Kimble, several theo- 
retical treatments have been proposed for this effect [17]- 
[ 181, [26]-[3 1). Among them, the dressed atom approach 
appears as a simple and efficient way to predict the var- 
ious characteristics of the signal [17], [18]. In this ap- 
proach, fluorescence is interpreted as a radiative cascade 
of the dressed atom, and dark periods are due to random 
interruptions of this cascade. All the information concern- 
ing these dark periods can therefore be deduced from the 
delay function W (  7) characterizing the probability distri- 
bution of the time interval between two successive fluo- 
rescence photons [17]-[ 181. In the two next subsections, 
we will outline the calculation of W (  7 )  for both coherent 
and incoherent laser excitation, and we will discuss the 
main physical results. 

Coherent Laser Excitation 
For a coherent excitation, the calculation of the delay 

function is done in a way very similar to the procedure 
presented in Section 11. Here, the states of the dressed 
atom are bunched in three-dimensional manifolds E ( nB,  
nR) and can be written in the absence of atom-laser fields 
coupling 

1 % )  = I g ,  ns, nR> 
Ivi)  = (eB3 nB - 1, nR) r 1 ~ 2 )  = leRI n B ,  nR - 1 )  

where nB and nR are the numbers of blue and red laser 
photons. The delay function W ( 7 )  is then given [cf. 

(5.1) 

(2. lo), (2.12)] 

~ ( 7 )  = rBl<eBT 128 - 1, 12Rl $ ( 7 ) ) 1 2  
2 

+ r R  1 ( eR9 nB, nR - 1 I 1 ~ .  (7) ) I (5.2) 
where I $ (7) ) is the ket solution of 

- 2 s i s i )  

(5.3) 

The Hamiltonian HnBnR is the restriction, inside the man- 
ifold E ( n B ,  nR) of the atom-laser fields Hamiltonian, 
generalizing (2.3), and Si ( ( , )  and Si,,, are the raising and 
lowering operators: 

(5.4) 

the equations of motion for the a; coefficients read 

Q B  irB 1 iizl = a. - - 
2 a' 

( la2 . . = y a o  Q R  - y a 2  irR 

\ L L 

where Q B  and QR represent the blue and red Rabi frequen- 
cies. Both blue and red lasers are here supposed to be 
resonant. A straightforward calculation then leads to the 
delay function 

~ ( 7 )  = rBla1(7)I2 + r,la2(7)1 (5.7a) 
2 

which can be written, as soon as r R  and nR are much 
smaller than F a  and Q B ,  as 

W ( 7 )  = Wshort(7) + W ~ n g ( ~ ) .  (5.7b) 

Wshofl(7) is equal to the delay function found if only the 
blue laser is present (2.13), while WIong(7) is an addi- 
tional term, evolving with a time constant Tiong much 
longer than the time constants of Wsho,.,. This evolution 
with two time constants is a clear signature for the exis- 
tence of dark and bright periods: in a bright period, suc- 
cessive photons are separated by an average time 7,hofi de- 
duced from Wshon (4.8a). In the limit of a weak blue laser 
excitation ( Q ,  << F E ) ,  we get from (4.8a) 

7s&n = a;&. ( 5 . 8 )  
On the other hand, the long time constant 
terizing the length of dark periods, is given by 

charac- 

TliAg = r R  + r&p& (5.9) 
As expected, 7& represents the departure rate from eR to 
g induced by spontaneous emission [first term of (5.9)] 
and by stimulated emission [second term of (5.9)]. These 
results are then in perfect agreement with the picture given 
by Dehmelt: the atom cycles on the g - eB transition dur- 
ing bright periods, and randomly jumps on the shelf eR 
(dark period) before falling back on g either by sponta- 
neous emission or by stimulated emission. 

Incoherent Laser Excitation 
For an incoherent excitation, the procedure of Section 

I11 can be duplicated in a straightforward way. The delay 
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~ ~ ( 0 )  1 p B ( 0 )  = P R ( O )  = 0.  (5 .12)  
rb and I’k are the rates for absorption and stimulated 
emission on the blue and red transitions ( r R ,  rh << Fa, 
rh). The delay function W (  T), calculated from (5. lo) ,  
can again be written 

W ( 7 )  = Wyhon(7) + W o n g ( 7 )  (5 .12)  
where Wshort( 7) is just equal to the delay function calcu- 
lated for the two-level system g - eB alone in Section I11 
[cf. (3.7)]. The additional term Wlong, with a long time 
constant T,,,,,~, is the signature of the existence of dark pe- 
riods. The average length of these dark periods is equal 
to 

7,iAg = r R  + FA. (5 .14)  
Here, again, Dehmelt’s picture for quantum jumps is fully 
confirmed by these analytical results. 

VI. CONCLUSION 
We have shown in this paper how a single function, the 

delay function W ( T ) ,  can provide a quantitative under- 
standing of various photon statistics signals. It must be 
noted, however, that such a simplification does not nec- 
essarily apply to all situations. All the experiments ana- 
lyzed in this paper are characterized by the fact that the 
emission of a photon “projects” the atom in a well-de- 
fined state, the ground state g .  Therefore, after each emis- 
sion, the dressed atom starts from a well-defined state of 
a given manifold G, ,  and the study of its subsequent ev- 
olution in E ,  gives unambiguously the distribution of the 
delay between this first emission and the next one. One 
could, however, consider situations where the emission 
of a photon does not necessarily project the atom in a well- 
defined state. This occurs, for example, when the atom 
can decay to several lower states. It is then clear that the 
statistics of emission times cannot be analyzed with a sin- 
gle delay function. Another example is the study of tem- 
poral correlations between the photons emitted in the var- 
ious components of the fluorescence triplet of a two-level 
atom. The dressed state in which the system is projected 
depends on the line in which the photon is emitted. 

For all these more complex situations, the picture of the 
radiative cascade of the dressed atom appears to still be 
quite useful. For example, the study of the radiative cas- 
cade on the basis of dressed states allows a quantitative 
understanding of the temporal correlations between the 
photons emitted in the two sidebands of the fluorescence 
triplet [15], [16], [32], [33]. We can also mention the 
“black resonances” of Gozzini [34]-[36] which appear 
in three-level systems with a A configuration (one excited 
level and two ground state levels). In the dressed atom 
approach, these resonances are interpreted as being due 
to a stopping of the radiative cascade occurring when the 
dressed atom decays in a stable trapping level [37]-[38]. 

REFERENCES 

[ I ]  A.  Einstein, “Zur Quanten-theorie der Strahlung,” Physikal Zeit- 
schrift, vol. 18, pp. 121-128, 1917. 

[2] P. A.  M. Dirac, “The quantum theory of the emission and absorption 
of radiation,” Proc. Roy. Soc., vol. 114, pp. 243-265, 1927. 

[3] V.  Weisskopf and E. Wigner, “Berechnung der naturlichen Linen- 
breite auf Grund der Diracschen Lichttheorie,” Zeitschrift Phys., vol. 

[4] F. Schuda, C. R.  Stroud, and M.  Hercher, “Observation of the res- 
onant Stark effect at optical frequencies,” J .  Phys., vol. B7, pp. L 
198-L 202, 1974. 

[5] R. E. Grove, F. Y.  Wu, and S .  Ezekiel, “Measurement of the spec- 
trum of resonance fluorescence from a two-level atom in an intense 
monochromatic field,” Phys. Rev., vol. A15. pp. 227-233, 1977. 

[6] J .  D. Cresser, J .  Hager, G .  Leuchs, M. Rateike, and H. Walther, 
“Resonance fluorescence of atoms in strong monochromatic laser 
fields,” in Dissipative Systems in Quantum Optics, Topics in Current 
Physics, Vol. 27, R. Bonifacio, Ed. Berlin: Springer-Verlag, 1982, 
pp. 21-59. 

[7] M. Dagenais and L. Mandel, “Investigation of two-time correlations 
in photon emissions from a single atom,” Phys. Rev. ,  vol. A18. pp. 
2217-2228, 1978. 

[8] R. Short and L. Mandel, “Observation of sub-Poissonian photon sta- 
tistics,” Phys. Rev. Letr., vol. 51, pp. 384-387, 1983. 

[9] W. Nagoumey, J .  Sandberg, and H. Dehmelt, “Shelved optical elec- 
tron amplifier: Observation of quantum jumps,” Phys. Rev. Lett.,  
vol. 56, pp. 2797-2799, 1986. 

101 Th. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek. “Observa- 
tion of quantum jumps,” Phys. Rev. Lett., vol. 57. pp. 1696-1698, 
1986. 

111 J .  C. Bergquist, R. B .  Hulet, W. M. Itano, and D. J .  Wineland, “Ob- 
servation of quantum jumps in a single atom,” Phys. Rev. Lett.,  vol. 

121 C. Cohen-Tannoudji, “Atoms in strong resonant fields,’’ Frontiers 
in Laser Spectroscopy, Les Houches, session XXVII, 1975, R. Bal- 
ian, S .  Haroche, and S .  Liberman, Eds. Amsterdam: North-Hob 
land, 1977, pp. 3-104. 

[I31 B. R. Mollow, “Theory of intensity dependent resonance light scat- 
tering and fluorescence,” in  Progress in Optics XfX. E. Wolf, Ed. 
Amsterdam: North-Holland, 1981, pp. 1-43. 

[ 141 C. Cohen-Tannoudji and S .  Reynaud, “Dressed-atom description of 
resonance fluorescence and absorption spectra of a multi-level atom 
in an intense laser beam,” J .  Phjls., vol. BIO. pp. 345-363, 1977. 
See also same authors, “Dressed atom approach to resonance fluo- 
rescence,” in  Multiphoton Processes, J .  Eberly and P. Lambropou- 
los, Eds. 

[ I51 -, “Atoms in  strong light-fields: Photon antibunching in  single 
atom fluorescence,” Phil. Trans. Roy. Soc. London. vol. A293, pp. 
223-237, 1979. 

[ I61 S .  Reynaud, “La fluorescence de resonance: Etude par la methode de 
l’atome habille,” Annales de Physique. vol. 8, pp. 315-370, 1983. 

[ 171 C. Cohen-Tannoudji and J .  Dalibard, “Single-atom laser spectros- 
copy. Looking for dark periods in fluorescence light,” Europhys. 
Lett., vol. 1, pp. 441-448, 1986. 

[I81 P. Zoller, M.  Marte. and D. F. Walls, “Quantum jumps in atomic 
systems,’’ Phys. Rev., vol. A35, pp. 198-207, 1987. 

[19] M. S .  Kim, P. L. Knight, and K. Wodkiewicz, “Correlations be- 

63, pp. 54-73, 1930. 

57, pp. 1699-1702, 1986. 

New York: Wiley, 1978. pp. 103-1 18. 



1402 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 24, NO. 7, JULY 1988 

tween successively emitted photons in resonance fluorescence,” Opt. 
Commun., vol. 62, pp. 385-388, 1987. 
G .  S .  Aganval, “Quantum statistical theories of spontaneous emis- 
sion and their relation to other approaches,” in  Springer Tracts in 
Modern Physics, Vol. 70, 1974. 
L. Mandel, “Sub-Poissonian photon statistics in resonance fluores- 
cence,” Opt. Lerr., vol. 4,  pp. 205-207, 1979. 
H. Carmichael and D. F. Walls, “Proposal for the measurement of 
the resonant Stark effect by photon correlation techniques,” J .  Phys., 
vol. B9, pp. L 43-L 46, 1976, and “A quantum-mechanical master 
equation treatment of the dynamical Stark effect,” J .  Phys., vol. B9, 

H. J.  Kimble and L.  Mandel, “Theory of resonance fluorescence,” 

H. G. Dehmelt, “Mono-ion oscillator as potential ultimate laser fre- 
quency standard,” IEEE Trans. Instrum. Meas., vol. IM-31, pp. 83- 
87. 1982; “Proposed A Y  > v laser fluorescence spectroscopy on 
TI  + mono-ion oscillator 11,” Bull. Amer. Phys. Soc., vol. 20, p. 60, 
1975. 
R. J.  Cook and H. J .  Kimble, “Possibility of direct observation of 
quantum jumps,” Phys. Rev. Lrrr., vol. 54, pp. 1023-1026, 1985. 
J .  Javanainen. “Possibility of quantum jumps in a three-level sys- 
tem,” Phys. Rei,., vol. A33, pp. 2121-2123, 1986. 
D. T. Pegg, R. Loudon, and P. L. Knight, “Correlations in light 
emitted by three-level atoms,” Phys. Rev., vol. A33, pp. 4085-4091, 
1986. 
F. T .  Arecchi, A. Schenzle, R. G. De Voe, K. Jungman, and R. G. 
Brewer, “Comment on the ultimate single-ion laser frequency stan- 
dard,” Phys. Rev.. vol. A33, pp. 2124-2126, 1986. 
A. Schenzle, R. G. De Voe, and R. G .  Brewer, “Possibility of quan- 
tum jumps.” Phys. Rev., vol. A33, pp. 2127-2130, 1986. 
A. Schenzle and R. G. Brewer, “Macroscopic quantum jumps in a 
single atom,” Phys. Rev., vol. A34, pp. 3127-3142, 1986. 
H. J .  Kimble, R. J.  Cook, and A. L. Wells, “Intermittent atomic 
fluorescence,” Phys. Rev. ,  vol. A34, pp. 3190-3195, 1986. 
P. A. Apanasevich and S .  J .  Kilin, “Photon bunching and antibunch- 
ing in resonance fluorescence,” J .  Phys., vol. B12, pp. L 83-L 86, 
1979. 
A. Aspect, G .  Roger, S .  Reynaud, J .  Dalibard, and C. Cohen-Tan- 
noudji, “Time correlations between the two sidebands of the reso- 

pp. 1199-1219, 1976. 

Phys. Rev., vol. A13, pp. 2123-2144, 1976. 

nance fluorescence triplet,” Phys. Rev. Lett., vol. 45, pp. 617-620, 
1980. 
G. Alzetta, A. Gozzini, L. Moi, and G. Orriols. “An experimental 
method for the observation of R.F. transitions and laser beat reso- 
nances in oriented Na vapour,” I 1  Nuovo Cimento, vol. 36B, pp. 5- 
20, 1976. 
J .  E. Thomas, P.  R .  Hemmer, S .  Ezekiel, C .  C. Leiby, R. H. Picard, 
and C. R. Willis, “Observation of Ramsey fringes using a stimulated 
resonance Raman transition in a sodium atomic beam,” Phys. Rev. 
Lett., vol. 48, pp. 867-870, 1982. 
G. Janik, W. Nagourney, and H. G .  Dehmelt, “Doppler-free optical 
spectroscopy on the Ba+ mono-ion oscillator,” J .  Opr. Soc. Amer., 
vol. B2, pp. 1251-1257, 1985. 
P. M. Radmore and P. L. Knight, “Population trapping and disper- 
sion in a three-level system,” J .  Phys., vol. B15, pp. 561-573, 1982. 
J. Dalibard, S .  Reynaud, and C .  Cohen-Tannoudji, “La cascade ra- 
diative de I’atome habillt, ” in Interaction of Radiation with Matter, 
a volume in honor of Adriano Gozzini, Scuola Normale Superiore, 
Pisa, Italy, 1987, pp. 29-48. 
P. L. Kelley and W. H. Kleiner, “Theory of electromagnetic field 
measurement and photoelectron counting,” Phys. Rev., vol. 136, pp. 

F. Davidson and L. Mandel, “Photoelectric correlation measure- 
ments with time to amplitude converter,” J .  Appl. Phys., vol. 39, pp. 
62-66. 1968. 

A 316-A 334, 1964. 

Serge Reynaud, photograph and biography not available at the time of 
publication. 

Jean Dalibard, photograph and biography not available at the time of pub- 
lication. 

Claude Cohen-Tannoudji, photograph and biography not available at the 
time of publication. 


