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Abstract 

We investigate theoretically a trap formed by two laser evanescent waves propagating at the surface of a dielectric pnsm, 
which confine the atoms in a Morse potential along the direction perpendicular to the pnsm. We consider a loading process 
based on the Sisyphus effect, in which a single spontaneous Raman transition is involved. We show that it is possible to 
achieve in this way an efficient loading of the ground state of the Morse potential, and to get thus a quasi-bi-dimensional 
atomic gas at the surface of the dielectric. 

PACS: 32.80.Pj; 42.50.Vk; 05.30.Jp 

l 
I 1. Intmduction 

i Using laser cooling techniques, it is now possible 
to prepare atomic samples cooled at the recoil limit, 
or even below, i.e. with a rms momentum of the or- 
der or smaller than the photon momentum hk [ 1-31. 
These techniques have allowed recently a major break- 
through in the physics of quantum degenerate gas, i.e. 

I the observation of Bose-Einstein condensation. [4- 
61. One of the key elements for this realization is the 
possibility to confine the atomic gas without heating, 

, which was achieved in Refs. [4-61 using a magnetic 
trap. This allows a further cooling of the atoms using 
evaporation, leading to a spectacular increase of the 
phase space density of the gas. 

1 Another way for confining an atomic gas without 
1 heating is to use a laser dipole trap [7]. In this case, 

the confining potential is the light-shift, or AC Stark 
shift, of the atomic intemal ground state [SI. Con- 
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sequently, depending on the sign of the detuning be- 
tween the laser frequency and the atomic resonance 
frequency, the atoms are stored in locations where the 
light intensity is maximal [9-111 or minimal [ 12- 
141. This detuning is in any case chosen large enough 
so that photon scattering processes, which cause some 
heating of the trapped atoms, occur only with a small 
rate. 

In the present paper, we focus on a particular type 
of laser dipole trap, which provides a strong confine- 
ment of the atoms dong the vertical direction z,  while 
the atoms remain quasi-free in the horizontal plane. 
We show that it is possible, using Sisyphus cooling, to 
prepare an appreciable fraction of atoms in the ground 
state of the motion dong the z direction. The resulting 
atomic sample is a 2D gas; as it is well known from 
statistical physics, this gas should have remarkable 
properties, quite different from 3D ensembles, when 
the quantum degeneracy factor hD = reaches 
unity [ 15-19]. We have introduced here the surfacic 
density of the gas a and the de Broglie thermal wave- 
length hB = h/pd%, where jj is the rms momentum 
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Fig. 1 .  Geometncal configuration studied in this paper. (a) Atoms 
are confined in the z direction by a Morse potential realized using 
two evanescent waves A and B propagating at the surface of a 
dielectnc, with decay lengths K;' = 2~;' .  (b)  The waves A and 
B are detuned respectively below and above the atomic resonance 
transition 6-e. 

along a given axis of the transverse motion. 
The trap that we investigate is formed with two 

evanescent waves A and B, obtained from the to- 
tal internal reflection of two incident Gaussian laser 
waves at the surface of a dielectric prism with index 
n (Fig. 1). This surface is supposed to be plane and 
horizontal. The wavelengths AA and AB of the two 
waves are of the same order and we put k = 2r/AA = 
2r/AB. The incidence angles Oi ( i  = A,  B) are dif- 
ferent so that the decay lengths KI' of the evanescent 
electric fields ( ~ i  = k(n2 sin2 Oi - 1)'/') are also dif- 
ferent. We choose OA < OB so that KA' > K;'; in 
addition the wave A has a negative detuning with re- 
spect to the atomic transition of interest b-e, so that 
it attracts towards the prism the atoms in the ground 
state b, while the wave B has a positive detuning and 
repels those atoms from the prism. Consequently the 
total light force acting on the atoms is attractive at the 
long range and repulsive at the short range. There ex- 
ists a plane parallel to the surface of the prism, where 
the force is zero, and which is located a fraction of an 
optical wavelength above it. 

The principle of this trap using a double evanescent 
wave has been first proposed in Ref. [20]; in that 
work, the authors have analyzed classically the motion 
of the atoms in the trap. Here, in Section 2, we focus on 
the quantum aspect of the vertical motion of the atoms. 
We consider the particuiar case KB =  KA, for which 
the potential created by the light is a Morse potential; 
analytical results can then be obtained concerning the 
number and the position of the bound states. 

We then address the central point of thispaper which 
concerns the loading of the trap. The scheme that we 
investigate is based on a Sisyphus effect [21,221 and 

1 \Sr incident stan 

Fig. 2. Loading scheme based on a Sisyphus process. Incident 
atoms are prepared in state a. They are repelled by the two 
evanescent waves A and B which are both detuned blue from the 
resonance a-e. The atom-laser parameters are chosen such that 
the classical turning point is just located above the minimum of the 
Morse potential for state 6.  A Raman scattenng pmcess occumng 
in the vicinity of the turning point can transfer the atom to the 
ground state of this Morse potential. 

is represented in Fig. 2. We consider atoms with two 
internal ground states a and b, corresponding for in- 
stance to the two hyperfine states of an alkali atom. 
We assume that the frequencies UA and UB have been 
chosen such that atoms in level a see only a strong re- 
pulsive potential. On the contrary, atoms in b see the 
Morse potential and they can be trapped just above the 
surface of the prism. The loading procedure that we 
study theoretically works as follows. Atoms are pre- 
pared in state a, and they are dropped ont0 the prism 
on which they bounce if the repulsive potential barrier 
created by the lasers is larger than their initial energy. 
The tuming point zo in the repulsive potential is ad- 
justed to be at the same altitude as the minimum of the 
Morse potential. Around this turning point, a Raman 
process from a to b can occur, involving the absorp- 
tion of a laser photon, and a spontaneous emission. 
This happens to be an efficient way for populating the 
ground state of the Morse potential. 

We analyze this process using two different theoret- 
ical approaches. The first one is based on the Born ap- 
proximation (Section 3). The second approach, pre- 
sented in Section 4, consists in a numencal integration 
of the Schrodinger equation describing the atomic mo- 
tion, the spontaneous emission processes being taken 
into account using the Monte Car10 wave function ap- 
proach [23-251. The two approaches are found to be 
in good agreement within their validity domain. They 
indicate that an appreciable trapping probability into 
the ground state of the Morse potential is achievable 
using this Sisyphus process. 

To end this presentation, we note that other schemes 
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have been proposed andlor demonstrated to take ad- 
vantage of the short spatial scale of an evanescent laser 
field and to achieve an efficient cooling process. A 
simple Sisyphus cooling process can occur in a sin- 
gle evanescent wave for three-level atoms a ,  b, e such 
as those considered here. The evanescent wave has to 
be blue detuned with respect to both transitions a-e 
and b-e, and the repulsive potential is then stronger 
for atoms in level b, since the detuning for the b-e 
transition is smaller than for the a-e transition. Atoms 
incident in level b may undergo a spontaneous Raman 
transition towards level a close to the tuming point 
zo; they loose in this case an appreciable fraction of 
their initial kinetic energy, although the final motion 
is still aSymptotically free, contrary to the situation 
considered in the present paper. This process has been 
studied both theoretically [26,27] and experimentally 
[28,29] .  It has also been proposed to achieve a trap 
with a Morse potential sirnilar to the one considered 
here, and to load it directly from a magneto-optical 
trap located at the contact of the dielectric prism [ 3 0 ] .  
Finally, it has been suggested recently [ 3  1 1 to use an 
evanescent wave to decelerate incident atoms. which 
are then transferred through a spontaneous Raman 
transition at the antinode of a laser standing wave lo- 
cated in the vicinity of the dielectric, achieving there- 
fore a quasi-bi-dimensional gas similar to the one con- 
sidered here. 

2. Trapping in the Morse potential 

In this section, we derive the potential created by 
the pair of evanescent waves shown in Fig. 2  ont0 
the atoms, depending on their intemal state a or b. 
For state b, this corresponds to a Morse potential, 
and we briefly recall the number and position of 
the corresponding bound states. We assume that the 
evanescent laser fields Ei exp( - K ~ Z  ) ( i  = A, B )  do 
not saturate the atomic transitions, i.e. the maximal 
Rabi frequency dong an atomic trajectory O i ( a )  = 
dEi exp( - K ~ Z ~ )  / 2h  is small compared to the detun- 
ing of the wave i with respect to the transitions a-e 
and b-e. We suppose for simplicity that the reduced 
atomic dipole d is the sarne for both transitions. This 
is the case for alkali atoms provided the evanescent 
field is linearly polarized and provided the detun- 
ings are large compared to the hypefine excited state 

structure. The action of the lasers ont0 the atomic 
motion can then be described by a potential equal to 
the total light-shift of the occupied level q = a ,  b [ 8 ]  : 

where wi is the frequency of the wave i  = A, B. and 
o,, is the frequency of the atomic transition e ct q = 
a ,  b. 

We choose here 

Wae < U A  < o b e  and Wae < Obe < W B .  ( 2 )  

Therefore both waves tend to repell the atoms in state 
a. We assume that the effect of the wave A is dominant 
for those atoms so that: 

For level b, the two waves A and B have opposite ef- 
fects, A attracts the atoms towards the prism and B re- 
pels them. For K B  = 2K.4, U b ( z )  is a Morse potential. 
With a prism of index n = 1.5, this is achieved taking 
for instance f3A = 48" and OB = 70"; we get in this 
case K B  = 2K.4 = k. The depth Uo and the position of 
the minimum ZQ of the Morse potential are given by: 

where we have put K = KA. 
The number of bound states in the Morse potential 

is given by the integer part of J m ~ o l ( 2 h ~ ~ ~ )  + 112, 
where m is the atomic mass [ 3 2 ] .  We choose in the 
following: 

which corresponds to 5 bound states. Each eigenstate 
In) ( n  = 0,1, . . .) of the Harniltonian describing the 
motion in the Morse potential corresponds to a wave 
function fi, ( K ( Z  - Z Q )  ), which can be expressed 
in terms of the degenerate hypergeometric function. 
The energies associated with these bound states are 
given by [ 3 2 ]  
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Using ( 5 )  and K = k / 2  = 3.7 x 106 m-l for ce- 
sium atoms, we find that the positions E,/h of the five 
bound states are -41.6 kHz, -25.1 kHz, - 12.8 kHz, 
-4.6 kHz and -0.5 kHz. 

The choice (5) associated with relations (4) de- 
termines the two ratios f 2 $ ( a ) / ( w b e  - U A )  and 
f 2 i ( a ) / ( w ~  - wbe).  The final constraint on our 
parameters originates from the requirement that the 
turning point of the trajectories in Ua ( z  ) , for a given 
asymptotic momentum pi, should coincide with ZO.  

This determines the values of O A ( a )  and U A ,  in 
terms of the two frequency scales of the problem, 
fwc2/m and A = wb, - wae. For instance, for a typical 
incident momentum pi = 2 5 h ~ ,  we get: 

For sodium and cesium atoms, this value for pi cor- 
responds to atoms dropped respectively from a height 
of 7 mm and 100 Pm. 

We have neglected in the present reasoning the ef- 
fect of the van der Waals interaction between the atoms 
and the dielectric prism, varying as 1 / z  3 .  This approx- 
imation is valid provided the minimum of the Morse 
potential zo is far enough from the dielectric surface. 
This is illustrated in Fig. 3 where we have taken K ~ O  = 
2 and plotted the potential for cesium atoms, with and 
without the van der Waals interaction [ 3 3 ] .  We have 
also neglected in our analysis the effect of gravity. 
This is valid since the variation of the gravitational 
potential mgz is small compared to that of the Morse 

U 

Fig. 3. Spatial variations of the potential Ub(z) without (continu- 
ous line) and with (dashed line) the van der Waals interaction be- 
tween the atoms and the dielectric prism. This figure corresponds 
to the case of cesium atoms, with a refractive index n = 1.5 for 
the dielectcic material. 

potential on the length scale K - ' .  The modification of 
the position of the bound states of the Morse potential 
can therefore be neglected. One should keep in mind 
however that the atoms are not completely free when 
they emerge from the evanescent wave region and that 
they will eventually slow down and turn back towards 
the dielectric prism. 

3. The trapping probability in the Born 
approximation 

We now turn to the calculation of the probability for 
an atom incident in state a, with asymptotic momen- 
tum pi, to be transferred into a bound state 1 b, n). The 
incident state Ipi) corresponds to the eigenfunction 
of the Hamiltonian H = ( p 2 / 2 m )  + Ua exp ( - 2 ~ z  ) 
[ 3 4 ]  : 

2Pi 112 
- sinh(TP,)) Kipi (p i  e-K(z-m)) , ( 8 )  

= ( T L  

where Pi = p i / f i ~  and where Kip is the Bessel K- 
function of the imaginary parameter iP .  These wave 
functions are normalized in a box between z = O and 
Z = L » K-' .  

This calculation is done using the second order time 
dependent perturbation theory and dividing the tran- 
sition rate by the incident flux pi/2ML, which corre- 
sponds to the Born approximation for this problem. 
The transition rate for the absorption of a laser photon 
and the spontaneous emission of a Raman photon with 
wave vector kf and polarization c f ,  can be written in 
this approximation: 

The operator V describes the atom-field coupling, re- 
sponsible for absorption, spontaneous and stimulated 
emission processes; p ( E f )  corresponds to the final 
density of states for the fluorescence photon. 

The sum ( 9 )  mns over al1 possible excited states 
e, with energy E,. In the following, we assume that 
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WA is chosen sufficiently close to an atomic resonant 
frequency so that only a single excited state e con- 
tributes ' . After summation over k and cf, Eq. (9) 
can then be simplified to give: 

where reb is the decay rate from e to b, 6.4 = WA -w,,, 
and where On(pi) describes the overlap between the 
incident wave function and the final one, taking into 
account the exponential variation of the field: 

~ i i i d i n ~  the transition rate W,, by the incident flux 
~ ~ / 2 m L ,  we obtain the trapping probability P,,: 

where T = 2 m / ~ p ~  is the typical bouncing time, i.e. 
the time spent by an atom with velocity pi/m in the 
region of extension K-' where the evanescent field 
is significant. As expected, this probability does not 
depend of the length L of the quantization box. 

The result ( 12) can also be written: 

where 

is the mean number of photons which would be scat- 
tered per bounce for a closed a-e transition and with 
a decay rate for e equal to reb [35,12]. Actually in 
the situation considered here, the number of photons 
emitted on the e-b transition by a given atom cannot 
exceed 1, and the result ( 13) is meaningful only when 
nXat is small compared to 1. Otherwise, the atom has 
a large probability to decay to b before it reaches the 
location of the Morse potential well. In the next sec- 
tion, we will show how to overcome this hypothesis 
using the Monte Car10 wave function analysis. 

' For the specific case of an alkali atom, cesium for instance, 
this means that the detuning between U A  and the D2 (or Dl) 
resonance line is smail compared to the fine structure splitting, 
but large compared to the hyperfine structure of the P312 (or PI12 
multiplet. 

Fig. 4. (a) Spatial variations of the eigenstates of the Hamilto- 
nian H, corresponding to an asymptotic momentum 2 5 t i ~ .  (b) 
Spatial variations of the two lower states of the Morse potential 
,y0 (continuous line) and ,y1 (dashed line), adjusted such that 
the minimum of the Morse potentiai coincides with the classical 
tuming point for state a. 

For a given nXat « 1, we now consider the over- 
lap factor O,, (pi). In Fig. 4, we have plotted the spa- 
tial variations of the function Yi(z) for pi = 2 5 h ~  
(Fig. 4a). We have also plotted (Fig. 4b) the spatial 
variations of the two lower states of the Morse poten- 
tial ( n  = O and l ) ,  adjusted as explained in Section 
1 so that the minimum of the Morse potential coin- 
cides with the turning point M. Since the first lobe of 
the function Yi has a size similar to the extension of 
the ground state of the Morse potential, this leads to a 
large overlap factor Oo(pi) = 0.55. The overlap with 
the state XI is smaller O1 (pi) = -0.25. The varia- 
tions of the square of the overlap factor Oo(pi) with 
the incident momentum pi are given in Fig. 5. 

In a real experiment the atoms are not necessar- 
ily prepared with a well defined momentum pi. This 
causes a variation of the position of the turning point 
a. which does not coincide anymore with the bottom 
of the Morse potential. To estimate the corresponding 
reduction of the transfer efficienc we have plotted in ? Fig. 6 the variations of JOo(p) 1 , when the incident 
momentum p is varied around 2 % ~ .  This shows that 
a dispersion of a few tuc, which is typical of a laser 
cooled atomic source, does not dramatically change 
the conclusions drawn above concerning the trapping 
probability. 
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Fig. 5. Square of the overlap factor O o ( p i )  between the incident 
wave function (Yi corresponding to the asymptotic momentum pi 
and the ground state of the Morse potential XO.  The minimum 
of the Morse potential is adjusted in order to coincide with the 
classical tuming point for pi. The trapping probability derived 
from the Bom approximation is equal to this quantity times the 
average number of scattered photons nxat. 

initial momentum pi 

Fig. 6. Variations of the trapping probability with the incident 
momentum p.  when the Morse potentid has been adjusted such 
that its minimum coincides with the classical turning point for 
state a and for incident momentum pi = 2 5 A ~ .  

4. Quantum Monte Carlo analysis of the Sisyphus 
process 

The Born approximation presented in the previous 
section is valid only when the predicted number of 
scattered Raman photons per bounce nscat (Eq. ( 14) ) 
is small compared to 1. Actually, we expect that the 
loading of the Morse trap is optimum when n,,, is 
above 1, so that most atoms "are given a chance" to 
decay during their bounce. On the other hand, for an 
efficient loading of the ,y0 state, the decay should not 
occur before the atom has reached the turning point 
region, which imposes that nscat should not be too large 
compared to 1. In order to determine the optimal value 
for this number, we have developed a Monte Carlo 
wave function analysis of the bouncing process [23- 
251. 

We consider incident atoms prepared in state a far 

from the surface. The initial state is a  aussia an waVe 
packet, with an average momentum p; = 2 5 h ~ ,  an av- 
erage position z; = 12.5~- '  and a momentum disper- 
sion O.5h~. This wave packet is propagated according 
to the Schrodinger equation with the non-Hermitian 
Hamiltonian: 

where the jump operator C is defined by 

c = Jreb fiA (O) e-KZ 

 SA lb) (al - 

The non-Hermitian part describes the dissipation oc- 
curring because of photon scattering processes. We 
consider here only Raman processes, which pump the 
atoms from a to b, and we neglect the atomic recoil. 
To be rigorous, one should also take into account the 
Rayleigh processes, in which the atom ends up in state 
a after the scattering event. However we do not ex- 
pect that those processes will play a significant role, 
except for a slight heating due to photon recoil. 

The wave function ly is propagated using a 4th order 
Runge-Kutta algorithm. At each time step, we evalu- 
ate the decrease d P  of the nom of the wave function 
( d P  « l ) ,  which gives the probability for a scatter- 
ing event. We compare d P  with a random number 6 

equally distributed between O and 1. If no scattering 
occurs ( E  > dP) ,  the wave function is just renormal- 
ized and the evolution continues. If a scattering oc- 
curs, we apply ont0 the wave function the jump op- 
erator C, we renormalize the result and we project it 
ont0 the States In). We store the coefficients 1 (nlly) 12, 
which give the probability for the atom to end up in 
the nth bound state of the Morse potential. 

This time evolution of the wave function is illus- 
trated in Fig. 7. As long as the atom is localized far 
from the evacescent wave region ( Fig. 7a), the prob- 
ability for a Raman scattering process is very low, be- 
cause of the exponential factor exp( - KZ ) appearing 
in the jump operator C. When the wave function is lo- 
calized close to the classical turning point (Fig. 7b), 
a scattering event may occur (Fig. 7c) projecting the 
atom in the b interna1 state. If no scattering occurs, the 
atom is reflected back (Fig. 7d); we then stop the time 
evolution when the center of the wave packet reaches 
the starting point of the evolution. 
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Fig. 7. Time evolution of the atomic density probability, obtained 
using a Monte Carlo wave function appmach. (a) Incident Gaus- 
sian wave packet (internal state a ) ,  (b) wave packet around the 
classical turning point (internal state a),  (c) wave packet after 
a spontaneous Raman process (internal state b), (d) outcoming 
wave packet if no spontaneous Raman process has occurred during 
the bounce. The potential U,(z) is ploned by a dashed line. 

"scat 

Fig. 8. Variations of the trapping probabity in state xo (a)  and 
X I  (O) ,  for an incident momentum pi = 2 5 h ~ ,  calculated from a 
Monte Carlo wave function analysis. The error bars indicate the 
statistical fluctuations of the results. The dashed lines represent 
the prediction of the approach based on the Born approximation. 

This procedure is repeated 100 times, for a given 
value of nScat (Eq. ( 14) ) . The probabilities for ending 
into the two lower states of the Morse potential are 
given in Fig. 8 as a function of this number. The error 
bars indicate the fluctuations of the results due to the 
noise inherent in the Monte Carlo method. The max- 
imal loading probability of the ground state is 21%, 
obtained for nScat = 2.5.  At this value, the probabili- 
ties for ending in the low excited states of the Morse 

potential are 4.5% for n = 1 and 0.73% for n = 2 .  
We have also indicated in Fig. 8 the prediction de- 

rived using the Born approximation: n,,,, 1 O , ( p i )  l 2  for 
n = O and 1. As expected, we find a good agreement 
between the Monte Carlo method and this prediction 
for low values of n,,,, and we confirm that the opti- 
mal value for nSmt is outside the range of validity of 
the Born approximation. 

Finally we note that when f lA ( zo )  and W A  have 
been adjusted according to condition ( 7 ) ,  the param- 
eter n,,,, is fixed to the value 100reb /d .  For alkali 
atoms, this quantity is much smaller than the optimum 
nScat = 2.5. In practice, to circumvent this problem, 
one can mix with A another weak laser wave, resonant 
with the a-e transition, whose intensity is adjusted so 
that n,,, equals the desired value, without perturbing 
significantly the light-shift potential. 

5. Conclusion 

We have presented in this paper an efficient way for 
loading an atom trap which consists of two evanescent 
waves propagating at the surface of a dielectric and 
which confines the atoms via a Morse potential. We 
have shown that a noticeable fraction of the incident 
atoms (21% for pi = 2 5 t i ~ )  ends up into the ground 
state of the Morse potential. The loading probability 
of the excited states of the Morse potential is much 
smaller, which leads to a quasi-bi-dimensionnal gas. 

We have restricted our treatment to the atomic 
motion perpendicular to the plane of the evanescent 
waves. The confinement in this plane can be achieved 
using the dipole force resulting from the Gaussian 
character of the laser beams forming the evanescent 
waves. It can also be provided using an additional 
quadrupole static magnetic field. 

The lifetime of the trapped atoms may be limited by 
the off-resonant photon scattering from the evanescent 
fields. This scattering can be made arbitrarily low for 
the wave B, by choosing a large detuning 6~ = W B  - 
u b e ,  and an accordingly large intensity 0;. One then 
takes advantage of the fact that the photon scattering 
rate varies like flilC5; while the confining potential 
varies like J t2 , / 6~ .  For the wave A on the contrary, 
the detuning with respect to the transition b-e has 
to be chosen smaller than the splitting a-b. In the 
case of cesium atoms, this splitting corresponds to the 
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hyperfine structure of the ground level (9.2 GHz); to 
achieve the Morse potential studied in this paper (5 
bound states), one has to take an intensity for A which 
leads to a photon scattenng rate of - 500 photons 
per second 2 .  If needed one can reduce this rate by 
changing rapidly the parameters of A once the loading 
sequence is over. 

The detection of the trapped gas can be made us- 
ing a pump-probe technique, comparable to the one 
used to study optical lattices [36]. The pump and the 
probe should be directed along the z axis and ampli- 
fication or absorption of the probe should occur when 
its frequency differs from the pump frequency by an 
amount equal to 1 Eo - En 1, which is the range of a few 
tens of kHz for cesium atoms. 

As pointed out in the introduction, this scheme 
provides an efficient way to obtain a degenerate 
bi-dimensional gas, even when starting from a non- 
degenerate 3D source. Indeed the surface density us 
after loading is given by a, = pHPo where p is the 
volume density of the source, H its vertical size, and 
Po the trapping probability in the ground state of 
the Morse potential. Even if c$3D = << 1 (non- 
degenerate 3D gas), we can reach degeneracy for the 
2D gas ( ~ $ 2 ~  = 2 1) if HPOc$3D 2 AdB. This 
should be feasible if c$3D is not too small, since H is 
a macroscopic length, much larger than AdB. In this 
reasoning we have omitted the fact that when an atom 
is loaded into the 2D gas, a photon is emitted which 
can be reabsorbed by another atom already present in 
the gas; this second atom may then be ejected from 
the 2D gas. This problem of reabsorption, which puts 
a limit ont0 the achievable phase space density by 
radiative cooling techniques, is essential in a 3D ge- 
ometry [37] . For the present 2D geometry however, 
this problem is much less severe since most photons 
are emitted with an appreciable momentum dong the 
z axis, in a direction where no atom is present. 

These scattenng processes essentially heat the transverse atomic 
motion. The longitudinal motion on the contrary is much less 
affected: due to the Lamb Dicke effect [36], each scattenng event 
has a small probability to eject a trapped atom out of the n = O 
state. 
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