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Résumé. - Les processus physiques responsables de l'évolution d'un petit système S faiblement couplé à un grand 
réservoir R sont analysés a partir des équations de Heisenberg Les contributions respectives des fluctuations du 
réservoir (R fluctue et polarise S) et de la self-réaction (S fluctue et polarise R qui réagit en retour sur S) sont iden- 
tifiées en suivant une méthode générale exposée dans un précédent article à propos de l'étude des processus radiatifs 
(contributions des fluctuations du vide et de la réaction de rayonnement). Les parties hamiltonienne et non hamil- 
tonienne de l'évolution de S sont explicitées et reliées aux fonctions de corrélation et polarisabilités de S et R. 
La limite ou S est un système quasi-classique est étudiée. On démontre que l'évolution de la fonction de distribu- 
tion de l'énergie de S est décrite par une équation de Fokker-Planck dont les termes de dérive et de diffusion sont 
respectivement associés à la self-réaction et aux fluctuations du réservoir. Ces résultats généraux sont enfin appli- 
qués au problème de l'émission spontanée d'un grand moment cinétique (modèle de Dicke pour la superradiance). 

Abstract. - The physical processes responsible for the evolution of a small system S weakly coupled to a large 
reservoir R are analysed through the coupled Heisenberg equations of the problem. The respective contributions 
of reservoir fluctuations (R fluctuates and polarizes S) and self-reaction (S fluctuates and polarizes R which reacts 
back on S) are identified with a general method developed in a previous paper dealing with radiative processes 
(contributions of vacuum fluctuations and radiation reaction). The Hamiltonian and non Hamiltonian parts of 
the evolution of S are made explicit and related to correlation functions and polarizabilities of S and R. The limit 
where S is a quasi-classical system is investigated, and the evolution of the energy distribution function ofS is shown 
to be described by a Fokker-Planck equation, the drift and diffusion terms of which are respectively associated 
with self-reaction and reservoir fluctuations. These results are finally applied to the problem of ,the spontaneous 
emission of a large angular momentum (Dicke's mode1 of superradiance). 

1. Introduction. 

In a previous paper [Il, referred to as 1 in the following, we have considered the problem of the physical inter- 
pretation of radiative processes (radiative corrections such as the Lamb-shift or the spin anomaly g - 2, spon- 
taneous emission rates). It is generally considered [2-51 that, in radiation theory, there exists an inde- 
termination in the separation of the respective effects of ((vacuum fluctuations » (interaction of the electron 
with the quantized vacuum field) and « radiation reaction » (interaction of the electron with its own field). 
We have shown in 1 that such an indetermination can be removed by irnposing to the corresponding two rates - 
of variation to be Hermitian (this is necessary if we want them to have a physical meaning), and we have thus 
obtained results in* complete agreement with the usual pictures associated with the two types of physical pro- 
cesses. 
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Actually, the problem considered in 1 is very general and can be set for any small system S (generalizing 
the atom) coupled to a large reservoir % (generalizing the field). 1s the evolution of 5 due to the « reservoir 
fluctuations » acting upon 5, or should we invoke a « self-reaction », S perturbing % which reacts back on S ? 
In this paper, we would like to discuss such a problem, to derive some general results which were just given in 
1 without demonstration, and to give some new physical insights obtained by considering the limit where S 
is a quasi-classical system. 

In this introduction, we shall first follow the same procedure as in 1 for identifjing the respective contri- 
butions of vacuum fluctuations and self-reaction This will allow us to summarize the method given in 1 and 
to introduce our notations. We start from the total Hamiltonian H of the combined system 

where Hs(HR) is the free system (reservoir) Hamiltonian, and V the coupling which can always be written as 

g being a coupling constant (analogous to the electric charge in electrodynamics) and &(Ri) system (reservoir) 
Hermitian operators. The rate of variation of an arbitrary system observable G (G = G +) is given by Heisenberg 
equations, and the contribution of the coupling V to this rate can be written as 

6) = - $ z [RW si(t), GO)] = g Ni(t) Rl(t), 
wupling h i  i 

where 

is an observable of the system S (Ni = N:). The respective contributions of reservoir fluctuations and self- 
reaction are then obtained by replacing in (1 .3) Ri(t) by 

where 

is the solution, to order O in g, of the Heisenberg equation for Ri, corresponding to afree evolution between 
the initial time to and t (analogous to thefreefield of electrodynamics), and R,"(t) the solution to order 1 and 
higher in g (analogous to the sourcefield in electrodynamics). But we are then faced with the following problem. 
In (1.3), Nl(t) and &(t) are commuting system and reservoir operators which can be taken in any order, so 
that (1.3) can be written as 

with A. arbitrary. When Ri(t) is replaced by (1 .5) in (1 .?), we get the following two rates of variation respectively 
due to reservoir fluctuations and self reaction 

The problem is that R:(t) and q ( t )  do not commute separately with Ni(t), as their sum does. ($Id and ($lu . . . . 
seem therefore to depend on an arbitrary parameter A. [2-51. 

We have removed in 1 this apparent indetermination by the following argument. G being a physical obser- 
vable, represented by a Hermitian operator, we want to split the total rate dG/dt, which is also Hermitian, 
into two distinct rates associated with two distinct physical processes, reservoir fluctuations and self-reaction. 
These two rates should separately have a physical meaning, and consequently should be separately Hermitian. 
This condition imposes A. = 112 in (1 .8) (') and, consequently, the completely syrnmetrical order in (1 .7). Using 

(') Note that A is implicitly taken real in (l.7), (1 .8) and (1 .9) [6]. Such a choice can be actually justified by time reversal 
' symmetry arguments [see Appendix CJ; . 
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the expression (1.4) of Ni(t), we thus get 

The next step is to compute the average of the two rates (1.9) in the resemoir state. Such a calculation 
is not trivial. First, Rf(t) does not cornmute with Si(t) and G(t). Secondly, the system observables Si(t) and 
G(t) also operate on resemoir states since they have been « contaminated » by resemoir operators during the 
evolution between t, and t. When the coupling constant g is small enough (more precisely when the motional 
narrowing condition of relaxation theory [7, 81 is fulfilled), a perturbative calculation of the two rates (1.9), 
up to order 2 in g, is sufficient. In 1, we have just given the results of this perturbative calculation and discussed 
their structure. 

A first motivation of this new paper is to give the details of the pertu~bative calculation of the resemoir 
averages of the two rates (1 .9), and to discuss the various approximations allowing to express these averaged 
rates in terms of important statistical functions of the two intera'cting systems : correlation functions and linear 
susceptibilities. We also show how it is possible to decompose the various rates of variation in a Hamiltonian 
part, describing how the energy levels of S are shifted by the coupling with %, and a non-Hamiltonian part 
describing dissipative effects, such as energy transfers between S and R. These calculations are presented in 
sections 2 and 3. 

A second motivation of this paper is to present a new application of the general procedure leading to the 
two rates (1 .9). We consider, in section 4, the case when S is a quasi-classical system. The equation giving the 
rate of variation of the populations of S can be, in this case, transformed into a Fokker-Planck equation. We 
show that the separation between self-reaction effects and resemoir fluctuation effects is particularly transparent 
in this equation. The two effects are respectively associated with the «drift » and diffusion » terms of the 
Fokker-Planck equation. Applying these results to the spontaneous emission of a large angular momentum 
(section 5) gives some insight to the superradiance problem. 

As in the previous paper, we are concemed here with physical interpretation of equations, trying to identify 
in these equations what corresponds to the usual pictures of fluctuations and reaction. Whether it is possible 
to experimentally dissociate these two mechanisms is another interesting problem which is outside the scope 
of this paper. 

2 Reservoir averaged rates of variation : perhubative calculation 

2.1 INTRODUCTION. - In this section. we first calculate a perturbative expansion of the two rates of varia- 
tion (1 .9~)  and (1 .9b), up to order 2 in g [$2.2 and 2.31. We then take the average, in the resemoir state, of 
these two perturbative rates [§ 2.41. 

We shall suppose here that, at the initial time t,, the density operator p(t,) is factorized into a system part 
os(to) and a resemoir part oR(t0) : 

In other words, we « put together » the system and the resemoir at time t, and let them interact. Our problem 
is to evaluate the subsequent rates of variation of S, respectively due to resemoir fluctuations and self-reaction, 
and averaged over the state oR(to) of the resemoir. 

The more general case of a non factorized initial state is examined in appendix C. 

2.2 PERTURBATIVE RESOLUTION OF HEISENBERG EQUATIONS. - Any operator O( t )  evolves in time according to 
the Heisenberg equation 

We want to calculate here the solution of this equation as a power series of g, in the case where O is a system 
or resemoir operator. 
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The first term of (2.2), which describes the fiee,evolution of O(t), is not in general proportional to O(t), 
since several Bohr fiequencies appear in the free motion of O(t). It is therefore useful to introduce a basis of 
operators for S and 5t having each a single fiee evolution fiequency : 

Q,, = 1 A ) ( B 1 for operators of 5t 

qab = 1 a ) ( b 1 for operators of 8 

where 1 A), 1 B ) (resp. ( a ), 1 b )) are eigenstates of H, (resp. Ha, with energies EA, E, (resp. E,, E~) .  
The Heisenberg equation for QAB reads 

where 

is the unperturbed Bohr frequency associated with ( A ) and ( B ). This equation can be formally integrated 
to give 

where 

is the « free » part of QAB(t), of order zero in the coupling constant g (i.e. the value of QAB if there was no coupling), 
and where 

is the solution of (2.4) to order one and higher in g, which we shall cal1 the « source » part of QAB(t), by analogy 
with the atom-field problem. 

The coupling constant g explicitly appears in (2.8). If we want to calculate QAB(t) up to order one in g, 
we can replace the three operators appearing in the integral of (2.8) by their free parts. 

This gives 

which can also be written, according to (2.7) 

For the small system qab operators, the same algebra can be done, leading to : 

with 

These results can be generalized to any reservoir operator R (resp. system operator S), using the expansion 
of this operator on the QAB (resp. qab) basis. One gets 
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where the free and source parts of R(t) are 

The source part Ryt) can also be written, according to (2.10) 

ln the same way, one gets for a system operator 

S(t) = Sf(t) + S6(t), 
with 

Remark : Validity of thisperturbative expansion. 
The order of magnitude of ( QA, ) is, using (2.10) 

whereJ(v2) represents the root mean square value of the coupling V. The following tenn in the perturbative 
expansion (2.10) of ( QAB(t) ) would be of the order of 

1 

r J, J dt" ( V(tl) V(ttf) ) ( Qi,(tf) ) . 
I o  

lntroducing the correlation time r, of the reservoir, the integral over t" can be evaluated [8] 

( V2)( t '  - t,) if t '  - t, < r, 1; dtu ( V(tf) V(tv) > = 
( v2 > Tc if t f - t , > r ,  

The neglected term (2.19) is then certainly less than 

Our approximation is valid as long as this term is small compared to both ( Qi, ) and the first-order value (2.18) 
of ( QAdt) ). 

(i) The comparison of (2.21) with (2.18) leads to 

This is the well known « motional narrowing condition » : The 3l-S coupling can be treated perturbatively if the 
effect of this coupling during a correlation time rc is smal:l[8]. 

(ii) The comparison of (2.21) with ( Q h  ) leads to the condition 

If we note that V2 rc/fi2 is the inverse of the relaxation time T ,  of the system S under the action of 3, we can 
transform (2.23) into 

t - to 4 T , .  (2.24) 
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The approximate expressions (2.15) and (2.17b) for the source parts of R and S are then valid as long as t - to 
is small compared to the relaxation tirne. (Note that, as long as the motional narrowing condition (2.22) is ful- 
filled, the relaxation time TR is much longer than the correlation time r,.) 

2 . 3  PERTURBA~VE RATES OF VARIATION. - We can now use the results of the previous section 2.2 for evaluating 
the two rates of variation (1 .9a) and (1.9b) up to order 2 in g. 

We split the system operators Si(t) and G(t) appearing in (1.9) into their free and source parts and we use 
the approximate expression (2.17b) for the source parts. We also use the approximate expression (2.15) for the 
source part R;(t) of Ri(t). This allows us, after a straightforward algebra, to get expressions for the two rates (1 .9), 
valid up to order 2 in g and containing only free operators of 3 and S 

we note that the self-reaction rate (2.25b) is of order 2 whereas the reservoir fluctuations part contains terms 
of order 1 (first line of 2.25a) and 2 (second line of 2.25a). Actually, the term of order 1 appeqs to be the first 
order term of the Langevin force » acting upon G. (For the exact expression of this Langevin force, see for 
instance [7, 9, 101.) 

The great interest of expressions (2.25) is that they can easily be averaged on the reservoir state since they 
.only involve « free » operators. Their validity is the same as that of the expansions of $2.2. The motional narrow- 
ing condition (2.22) k ing  fulfilled, these expressions are valid as long as t - to is small compared to the relaxa- 
tion time T,. 
2.4 RESERVOIR AVERAGED RATES. - AS explained in the introduction of this section, we take a factorized initial 
state (2.1). The averages of the two rates (2.25) in the reservoir state oR(to) are therefore 

We can always suppose that the average value of ~ f ( t , )  is equal to zero, possibly by writing 

and by reincluding - g 1 ( Rf(to) ), Si(t) in the system Hamiltonian H,. It follows that the reservoir average 

of the first line of(2.25a) is equal to zero (as is expected for a Langevin force). 
Since the two rates (2.25) contain only free operators, their average value in the reservoir state is easily 

calculated. We get 

g2 ( ( g )  ( 1  ) = - 
; 1: dl' C ~ ( L  t') [S;(tl). [S:(t), Gf(t)I] 

where we have put 

8 k i n g  the Heaviside function (8(x) = 1 if x > 0,8(x) = O if x < O). The two functions Ci;) and xi:) are real, 
and they depend only on r = t - t '  if oR(to) commutes with HR (other properties of these functions are listed in 
appendix A). Cf) and xi:' are actually two important statistical functions of the reservoir [Il]. CF) is the symme- 
fric correlation function, describing the dynamics of the fluctuations of Ri and Rj in the stationary state oR(tO). 
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It is a satisfactory result to see that CF'appears in the « reservoir fluctuations )) term (2.28a). XI;) is the linear 
susceptibility of the reservoir, determining the linear response of the averaged observable ( R,(t) ) when the 
reservoir is acted upon by a perturbation proportional to Ri. It is also an interesting result to see that XI:) cha- 
racterizes the « response )) of the reservoir in the self reaction rate (2.28b). 

The width of the two functions C$) and XII) is of the order of 5,. If we restrict ourselves to time t such as 
t - t, B r, (and t - t, g T ,  so that the perturbative calculation remains valid (see 2.24)), the expressions 
(2.28) can be simplified and written as 

where 

Note that the expressions (2.31) of the rates remain valid to order 2 in g, if we replace in the right member the 
free operator [ ~ f ( t ) ,  [Sf(t), Gf(t)]] by the reservoir average ( [Yi(t), [S,(t), G(t)]] ), (from (2.1 1) and (2.12), the 
differencq is at least of order 1 in g) : 

Each rate of variation of G(t) is now expressed as a function of G(t) itself rather than G '(t), and this will be more 
convenient for the calculations of section 3. 

Remark : Our assumption concerning the factorization (2.1) of the initial state may seem questionable. 
Usually, the system S and the reservoir 3t are always interacting, and S and 3t cannot be considered as being 
« put together » at some initial time to. It follows that, at any time t,, the total density matrix p(t,) should rather 
be written 

POO) = o~(to). os(to) + A dto) 9 (2.34) 
where 

CR(~O) = Trs (&O)) ; os(to) = T ~ R  (~(to)) 9 (2.35) 

and where Ao(t,) describes correlations which exist at time t, between S and 3t as a result of their previous 
interaction. In the presence of such correlations, the calculations presented in this section must be modified. We 
show, in appendix B, that, if 3t is a large reservoir, expressions (2.33) remain valid provided that the two rates 
of variation are considered as « coarse grained )) rates of variation, i.e. as rates of variation averaged over a time 
interval At large compared to the correlation time r,, but small compared to the relaxation time T,. 

3. Effective Hamiltonian and relaxation 

The two rates (2.33a) and (2.33b) only involve observables of the system S. Their expressions are more compli- 
cated than averaged Heisenberg rates, which are mere cornmutators of G(t) with another S operator.-~ever- 
theless, one can distinguish in these two rates a part which is of that kind, i.e., which is physically equivalent to 
the effect of an effective Hamiltonian He,,. The remaining non Hamiltonian part of the evolution of G(t) will 
simply be called relaxation. 

3.1 SEPARATION PROCEDURE. - Consider first (2.33. a). The double commutator can be developed into 

[Yi, [Si, G]] = Yi Si G + CSi Yi - Yi GSi - Si GY,. (3.1) 

The last two terms cannot contribute to a commutator such as [He,, G], (unless Si reduces to a number, but, in 
this case, it does not express a real coupling between 3t and 8). Thus, the last two terms only contribute to relaxa- 
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tion. The first two terms can be split in a unique way into the sum of a c'ompwtator and an anticommutator, so 
that equation (3.1) becomes : 

In the same way, the operator of (2.33b) is transfonned into : 

We introduce the two effective Hamiltonians (He,,),, and (He,,),, corresponding to the commutator part of 
(3.2) and(3.3) : 

The two rates (2.33a) and (2.33b) are then split into two parts using (3.2) and (3.3) : 

The first line of (3.6) (resp. (3.7)) describes the part of the evolution due to reservoir fluctuations (resp. due to 
self reaction) and which can be described by an effective Hamiltonian. The second line describes the non Hamil- 
tonian part of the evolution of G, which we have called relaxation, caused by reservoir fluctuations (resp. self 
reaction). We discuss now the physical content of these equations. 

3.2 EFFECTIVE HAEAILTONIANS. - The Hamiltonian part of the evolution of S is now described by H,(t) + 
(Hef,-(t)),, + (H,,,(t)),,. We calculate in this section the modification of the energy spectrum of S due to the two 
effective Hamiltonians. 

We have introduced above the unperturbed energy levels 1 a ) of S as the eigenstates of Hs(to). The energy 
shifts (6Ea),, and (6Ea),, produced respectively by reservoir fluctuations and self reaction are therefore 

(aEa)rf= < a 1 (He,f(to)), 1 a ) 

(6Ea)sr = < a 1 (Heff(to))sr 1 a ) . 
Using formula (3.4), (6Ea),, becomes : 

Noting that Si(to) is identical to S((to) and that Yi(to) can be transformed into 

P W  
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and introducing the susceptibility of the system S in the state 1 a ) 

i 
zIj"."'(~) = - ( a 1 [Sf(to), Sf(to - 41 1 a > O(T) , tr 

we transform (6E,,),, into : 

i.e., as a sum of time averaged products of susceptibilities of the system S by correlation functions of reservoir 
observables [12]. This expression has a simple physical meaning : the fluctuations of the reservoir observables 
polarize S and produce an additional motion of Si(t) given by 

The corresponding polarization energy is 
1 

- - 1 hSi(t) , 
2 i  

as for an atom in an electric field which gets a polarization energy - i xE2 = - 5 E.6D for an induced dipole 
6D = XE. Of course, equations (3.14) and (3.15) are only qualitative, since they do not take care of the operator 
nature of the quantities Ri and 6Si. But they explain physically the structure of the exact equation (3.13). Using 
the symmetry properties (A. 4) and (A. 22) of C and x (see appendix A), one finds that only the reactive part 
Xi?.a' contributes to (3.13) : 

Only the reactive part of the susceptibility contributes to the polarization energy of S. 
From the expression (3.5) of (He,,),,, and following steps similar to those which have led us from (3.8) 

to (3.16), we find that the shift of the energy level 1 a ) produced by self reaction is : 

where C,!jsqa'(r) is the symmetric correlation function of Si and Sj  for the system S in the state 1 a ) 

In the same way as in (3.16), only the reactive part of the susceptibility of 3 contributes to (bE,),,. Physically, 
it represents the polarization energy of the reservoir 3 due to the motion of the system S. 

Note that the physical interpretation of both (bE,),, and (bE,),, is in complete agreement with the physical 
pictures associated with their basic origin, reservoir fluctuations and self reaction. 

3.3 RELAXATION RATES OF ENERGY. - AS an illustration of the relaxation processes produced by both reservoir 
fluctuations and self reaction, we compute the variation rates of the mean energy of S initially in the state 1 a ). 
So, we replace in (3.6) and (3.7) the observable G by the Hamiltonian Hs of S and we take the diagonal matrix 
element of both members in the state 1 a ). To order two in g, al1 the operators appearing in the right side of 
these equations can be considered as free operators. In this approximation, the commutators of the first lines 
of (3.6) and (3.7) reduce to : 

since 1 a ) is an eigenstate of H:. The rates (3.6) and (3.7) reduce to their relaxation parts, where we can replace 
d 

[Sf(t), Hl( t ) ]  by ifi Sf(t), and similarly for YI(t) and Z:(t). 
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We get : 

(3.21) 

Replacing in (2.32a) and (2.32b) q,,(t) by q;,(t), one expresses Y :(t) and Z:(t) as a function of Sl(t - r). Since 
( a 1 Sf(t) S;(t - T) 1 a ) is independent of t, the time derivatives on Si(t) can be transferred with a minus sign 
to SJ(t - r), and written there as d/dr. We get in this way : 

We recognize in (3.22) the dissipative part i~ iy" ) ( r )  of the susceptibility of the system S in t k  state 1 a ) (see 
formule (A. 21) of Appendix A) 

and in (3.23) the corresponding symmetric correlation function C ~ ) ( T ) ,  so that 

Since ~jT)(r) is zero for r < 0, the lower limit of the integral in (3.26) can be extended to - co. Using the sym- 
metry properties (A .4) of CiJ(r) and (A .22a, b) of xiJ(r), one easily sees that only the dissipative part ~ : ~ ) ( r )  
contributes to (3.26). Also, in (3.25), the integrand is an even function of r, so that twice the integral from O 
to co is just the integral from - co to + co. We finally obtain two simple fomulae of the same form (after an 
integration by parts in (3.25)), which may also be expressed by using the Fourier transfoms Ci,(o) and Xi,@) 
of the corresponding functions of r (see appendix A) : 

d 

( (t) ) = g2 6 1-+: " idR)($ 5 C p ( 4  

These expressions are familiar : when a system 8 is perturbed by a classical random field r(t) through the 
coupling - gr(t) S, the energy absorption rate is [13] : 

where e(0) is the spectral power of* r(t) and iX"(w) is the Fourier transform of the dissipative part of the sus- 
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ceptibility of the system. The formula (3.27) is the extension of (3.29) for a quantum perturbation of the form 
(1.2). The spectral power, which, for a classical stationary random function, is just the Fourier transform of 
the correlation function, is replaced here by the quantum symmetric correlation function [14]. The energy 
relaxation rate due to reservoir fluctuations is exactly what we would expect on a physical basis : it is the power 
absorbed by S when it is driven by reservoir fluctuations. 

Conversely, the relaxation rate of energy due to self reaction (3.28) represents the power dissipated in the 
reservoir by the free motion of the system S. The damping effect of the reservoir is expressed by the dissipative 
part of its susceptibility. 

dG 
It is clear on these examples (effective Hamiltonian, relaxation rate of energy), that the separation of - - dt 

into two parts (1 .9a) and (1 .9b), which was based on forma1 considerations, leads to results which have simple 
physical interpretations. The corresponding pictures are consistent with the initial assignment of the process 
involved, reservoir fluctuations or self reaction. This can be taken as an a posteriori proof of the validity of 
the criterion used for this separation. 

4 Quasi+lassical system S eoupled to a resemoir. 
4.1 MOTIVATION. - This section is devoted to the application of theprevious results to the case of a quasi- 
classical S system. We shall see that both self reaction and reservoir fluctuation terms take remarkably simple 
forms; reservoir fluctuations broaden the population distribution of S,,.without changing its average position, 
while, on the contrary, self reaction produces a drift of this distribution without deforming it. 

In ail this section, we assume that the following properties are fulfilled by the quasi-classical system S [15] : 
(i) S has a single degree of freedom (or several separable ones). 
(ii) The energy levels, labelled by the quantum number n, are locally equidistant : 

En - En. = (n - n') ho. (4.1) 

Actually, (4.1) holds as soon as the difference n - n' is smail compared to n, o king the frequency of the cor- 
responding classical motion of energy En. 

(iii) The matrix elements ( n' 1 G ( n ) of any physical quantity G decrease rapidly as a function of n - n', 
while king very smooth functions of n (for n - n' constant). 

The quasi-classical nature of S introduces interesting simplifications in the general results of section 3, 
mainly concerning dissipative terms. In the following, we shall then focus on the evolution of the populations 
ofS. More precisely, rather than working with the population Pn(t) of a unique level 1 n ), which has no classical 
limit, we shall study the evolution of the average population P(E, t) of an energy band of width 6E around E : 

The width 6E of cp is chosen small compared to E, but large compared to ho so that many energy levels contri- 
bute to the sum (4.2). We have thus replaced the discrete set of populations Pn(t) by the smoothed energy 
distribution function » P(E, t). 
4.2 RESERVOW F L U ~ A T I O N  CONTRIBUTION. - The rate of variation of P(E, t) under the effect of reservoir 
fluctuations is 

We first calculate the rate (dPn/dt), from the results of section 2. Putting G = 1 n ) ( n 1 in equation (2.33a) 
and taking the average on both 3 and S, one gets (') 

(the coupling V = - C gR, Si is replaced in this section by the simpler one V = - gRS). The matrix ele- 
1 

(') We have neglected non secular couplings between populations and « coherences ». 
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ment ( n' 1 Y  1 n  ) can be written, using (2.32a) and (4.1) : 

It is then convenient to put 

g2 A,=-((n + k l Y l n ) ( n l S l n +  k )  + ( n  + k l S l n ) ( n J Y l n  + k ) )  
h2 

Because of property (iii) of 5 4.1, A, is practically independent of n. Furthermore, parity properties of C 
imply that 

A, real and A, = A-, . (4.7) 

Introducing a closure relation in the first lipe of (4.4), - can then be written as 
( d l . ) r f  

We now cany this last expression into - (E, t) : (Z )rf ' 

We change the index of summation n  in n  - k  in the second sum to get 

The summations over k  concem both positive and negative values of k.  Using (4.7), this can be written 

We can now use the fact that the width of the function q as a function of k  (through E - En+, or E - En-,) 
is much larger than the width of A, (property (iii) of 5 4.1). The quantity q(E - En+,) + q(E - En-,) - 

2 q(E - En) in (4.11) can then be approximated by (hb )2  d z d E  - En) 
dEZ 

Finally, the rate - (E, t) can be written as (5 

with 

(4.13) is a very simple diffusion equation, on the energy axis, with the dimision rate D. It follows that the only 
effect of reservoir fluctuations is a symmetrical broadening of the population distribution P(E, t), while its 
e n t r e  rem9ains constant. In particular, reservoir fluctuations do not change the average energy of the quasi 
classical system. This result can be understood in the framework of section 3 by noting that Our approximations 
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concerning the quasi classical nature of S imply that f"") is zero. Equation (3.27) thus gives 

The dimision coefficient D can be interpreted by simple semiclassical arguments. Reservoir fluctuations induce 
a random walk of the system on the energy axis with steps multiple of hw. The transition rate ïk from level 
n to levels n f k is 

i.e., the product of the square of the matrix element of S by the spectral density C ( h )  of the fluctuating field 
created by the resemoir at the fkequency ko. The difision coefficient Dk associated with a random walk of 
step hko is then equal to half the square of the energy step times the transition rate 

Dk = t ( h k ~ ) ~  rk . (4.17) 

Summing (4.17) over k > O gives (4.14). 

4.3 SELF REACTION CONTRIBUTION. - Self reaction terms can be calculated in the same way as reservoir fluc- 

tuations ones. One first determines the rate and then carries the result into 

From section 2 (see Eq. (2.33b)), one has : 

We now introduce the real coefficient Bk : 

Using (2.32b), Bk can be written as 

Since f'R'(- 62) = ?(")*(Cl), we get from (A. 19) 

g2 
Bk = 1 < n 1 S 1 n + k ) l 2  p"(")(ko), 

with the following property (compare with (4.7)) 

Bk real and Bk = - B-, . (4.23) 

As A, in the previous paragraph, Bk decreases rapidly when 1 k 1 increases, while king nearly independent of n. 
The rate (dP,/dt),, of (4.19) can be written 
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We now put this rate into - (E, t) ' x  )sr 

The first term is zero since, with (4.23) - (E, î) then becames : 
(al XI 

Because of the presence of Bk in (4.27), only small values of k contribute and the quantity p(E- En-&- 
p(E - En+,) can be approximated by 

We finally get 

with 

ap 
( E t )  =K.=(E, t )  ( 

Equation (4.29) is a propagation equation : the energy distribution function drifts along the energy axis with 
the « speed » K. Note that - K is equal to the energy lost per unit of time by the system S in the state n,.because 
of self reaction (see Eq. (3.28)) 

2 dl2 Ll~"(~)(l'2) 2)C 1 ( n ( S 1 n + k ) I Z  (6(62 - ko) + 6(a2 + kw)) 
k 

If we combine the results of this section, we find that the energy distribution function of a quasi classical 
system obeys a Fokker-Planck type equation 

ap ap a2p - (E, t) = K - (E, t) + D - (E, t) , 
at BE  BE^ 

The drift term K aP/aE describes the emission or absorption of energy by the system, resulting from self reaction 
effects, while the diffusion term D ùZP/ùEZ describes the broadening of the distribution function caused by 
resenoir fluctuations. 

5. Application to the spontaneous emission of a large angular momentnm 

5.1 INTRODUCTION. - This last section is devoted to the application of the previous results to a specific 
, example : we study the emission of energy by a large angular momentum coupled to the quantized radiation 

field in its vacuum state, which plays the rôle of a large resenoir. 
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The angular momentum is supposed to be put in a static magnetic field Bo so that its energy levels are 
equally spaced with a splitting ho,, where o, = - yB, is the Larmor frequency (y gyromagnetic ratio). We 
thus have 

Hs = JE. (5.1) 

The Hamiltonian of the reservoir is simply 

HR = C ho a& a,, , 
Lt 

where a,(a&) is the destruction (creation) operator of a photon in the mode kg. We take a magnetic dipole 
coupling between J and the radiation field 

where B is the magnetic field operator. 
At the initial time, the angular momentum is supposed to be in its upper level 1 J ,  m = J ). 
We want to study here the contribution of reservoir fluctuations (i.e. vacuum fluctuations) and self reaction 

to the evolution of the system : 
(i) in the early stage of the emission (i.e. : the transition 1 J, J ) -* 1 J, J - 1 >) (§ 5.2), 
(ii) in the following regime where the populated levels 1 J, m ) are such that J - m is large compared to 1. 

The angular momentum can then be treated as a quasi classical system (§ 5.3) and the resuits of § 4 apply: 
Our principal motivation for studying this problem lies in the fact that the spontaneous emission of a large 
angular momentum is a simple mode1 [ l a  for describing the superradiance of 2 J two level atoms put initiaiiy 
in their excited state. We shall see that vacuum fluctuations and self reaction equally contribute to the initiai 
stage of superradiance, but that self reaction becomes predominant in the following part of the process. 

5.2 EARLY STAGE OF THE EMISSION PROCESS. - If the angular momentum is put into its upper level 1 J, J ), 
vacuum fluctuations and self reaction will both induce transitions towards 1 J ,  J - 1 ). The easiest way to 

compare their contributions is to study the two rates ( ) and ( (%)Br ) for os = 1 J, J ) ( J, J 1. 

We shl l  not give here the explicit calculations of the statistical functions X"(R), and X"(S), Ce) involved 
in these rates; a similar algebra has already been performed in 1. We just indicate the final result 

where we have put 

We therefore find that vacuum fluctuations and self reaction equally contribute to the emission of energy 
in the early stage of superradiance (haif the total rate for each process). 

Such a resuit also appears in the analysis of superradiance based on a Bloch vector (( J )) approach 1161, 
where the emission process is described in terms of a penduium starting from its metastable (upwards) equili- 
brium position. Without fluctuations, the penduium wouid remain indefinitely in this position. Actually, the 
quantum fluctuations of atomic dipole moment, and those of the quantum vacuum field play an essential rôle 
in the initial stage of the process by removing the penduium from its metastable position; they introduce a 
small « tipping angle » 8. The correct equation of motion for ( J ) is obtained if one takes [ l a  

2 ( e 2 ) = -  J ' (5.6) 

The tipping angle O,, due to self reaction can be obtained simply by remarking that, since J is a quantum 
operator, ( J: + J,Z ) is non zero. This gives 

Since the power radiated by the penduium is obviously proportional to 02, one finds that the emission rate 
due to self reaction is only haif of the total rate (compare (5.6) and (5.7)). The remaining part is due to vacuum 
fluctuations. 

J O ~ B N ~ ~  DE PHYUQUE. - T. 45. NO 4. AW 1984 43 
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Remark : This result is actually not specific of.the previous simple example. It also occurs for the sponta- 
neous emission of any excited atomic level by electric dipole coupling : the contributions of vacuum fluctuations 
and self reaction for transitions towards lower levels are the same and equal to half the total emission rate [Il. 
This explains the well known following result : if one tries to calculate the spontaneous emission rate of a two 
level atom by coupling it to a classical random field having an energy h l 2  per mode, one gets only half the 
emission rate. This is simply due to the fact that one calculates in this way only the vacuum fluctuations rate. 
The missing emission rate is simply that due to self reaction. 

5.3 FOLLOWING STAGE OF THE EMISSION PROCESS. - When the populated levels 1 J, m ) are such as J - m & 1, 
the results obtained for a quasi classical system (5 4) can be applied : the levels are equally spaced and a given 
level 1 J ,  m ) is only coupled to 1 J ,  m - 1 ) and J ,  m + 1 b the coupling V (5.3). Furthemore, matrix 
elements of V Vary very smoothly with m (as Y J ( J  + 1) - m(m + 1)). One therefore gets a Fokker-Planck 
type equation (4.32) for the evolution of the energy distribution function P(E, t) : 

with (3) 

As seen in 9 4, the emission of energy (term K aP/aE) is entirely due to self reaction, the only effect of vacuum 
fluctuations being to broaden the energy distribution (term D a2P/aE2). 

Moreover, the vacuum fluctuation term is in fact negligible in the present case; the order of magnitude of 
D a2p/aE2 is (D/SE), (aP/aE), where 6E is the width of &E, t), so that one gets from(5.10) : 

Since the width SE of P(E, t) has been taken much larger than ho, (see 9 4. l), we have 

The evolution of the system in this later stage appears then as beingpiainly due to self reaction. The energy 
distribution function drifts as a « quasi classical probability packet » [16] downward the energy axis. 

When the emission process is completed, the angular momenturn ends in the lower level 1 J, - J ). Vacuum 
fluctuation effects play again a very important rôle; they exactly balance the energy loss due to self reaction, 
ensuring the stability of the ground state [14]. 

Appendix k - Some properties of correlation functions and susceptibilities 

We illustrate these properties, for the reservoir 3 in a stationary state defined by the density matrix a, (a, 
commutes with the Hamiltonian H,). Similar results also hold for the system S in an eigenstate of H,. We use 
here the same definitions as in references [Il] and [13] for the Fourier transforms c(o) and X(o). The e(o) 
and X(o) of reference [l] are related to c and 2 by : 

Correlation functions : 

For a stationary state, Cij depends only on r = t - t '  

- - 

(') The simple relation between D-and K is actually a consequence of the fluctuation-dissipation theorem applied 
to the electromagnetic field in its ground state (reservoir at zero temperature). 
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Cii(r) is real. The expression (A .  2) being invariant in the exchange of (i, t )  * ( j ,  t '), we have the important 
property : 

CiAr) = cl,(- f) . (A.  4) 

Developing on the eigenstates of HR, one can write (A .  2) as 

The Fourier transform Cij is defined by : 

From the reality of Cl, it follows that 

Cii(0) = (GA- a))* . 

From the property (A.  3), we get 

Su.sceptibi1itie.s : 

i 
&rit, t ' )  = - TrR { uR[R:(t), R;(tr)] ) 8(t - t ' )  . 

h 

Stationarity makes zij depend only on r = t - t' 

i 
xiJ.1 = , TrR { oR[R:(to), Rj(t0 - rll } '('1 . (A .  10) 

zii(r) is real and is equal to zero for r < O. It is easily seen on formula ( A  .9) that exchanging (i, t )  and ( j ,  t ' )  
amounts to changing 8(t - t') into - 8(t - t'). Using the fact that 8(t - t') + 8(t1 - t )  = 1, we obtain the 
relation 

i 
~i i ( r )  - zji(- 3 = , < [R:(~o), R:(to - r)] ) (A .  1 1 )  

valid for r positive or negative. Using a development on the eigenstates of HR, one can put (A.  10) in the follow- 
ing form : 

(A .  12) 

Its Fourier transform is given by : 

The reality of ziJ(r) implies that 

&(w) = (Xii(-w))* . 

(A .  14) 

(A .  15) 
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One distinguishes the reactive pwt yii(w), corresponding to the principal parts, and the dissipative part )~;(w) 
involving the 6 functions : 

îii,(w) = îifj(w) + iXc(w) (A. 16) 

(A. 17b) 

For a symmetric susceptibility ( i  = j), X:i and Xyi correspond to the real and imaginary parts of Xii. This property 
is not true in general, but is replaced by the properties 

From (A. 15) and (A. 17), one easily gets 
i 

XI'j(w) = 3 ((Xji(w>)* - Xidw)) 

and then 
i 

~!I.(T) iJ = - (x..(- T) - xij(T)) 2 " 

(A. 18a) 

(A. 18b) 

(A. 19) 

(A. 20) 

by using (A. 10). 
The Fourier transform of (A. 18a and b) gives the symmetry relations : 

(A. 22a) 

(A. 22b) 

Appendix B. - Coarse grained rates of vanation. 

The reservoir averaged rates of variation (2.28) have been calculated in 4 2 with the assumption of a factorized 
initial state (2.1). We consider in this appendix the more general case of a non factorized initial state (2.34) 
(see remark at the end of (j 2). 

The fact that 3 is a large reservoir has interesting consequences [8] on the reservoir operator a,(t,) appear- 
ing in (2.34) and on the correlation term A o(t,) : 

(i) The state of the large reservoir is not perturbed by the small system. We can therefore neglect the t, 
dependence of oR(t0), which will be simply written a,. 

(ii) The correlations Ao(t,), which exist between S and 3 at time t,, contribute to the future evolution of S, 
but only within a correlation time T,, i.e. in the interval [t,, t, + T,]. After this interval, the effect of the correla- 
tions Ao(t,) washes out. 

We consider now the average of the two rates (2.25) in the state (2.34). The contribution of the factorized 
part of (2.34), as(to) o,, is the sarne as in (2.28). Since it is given by an integral from t, to t involving statistical 
functions of the reservoir C(R) and X(R), this contribution vanishes for t = t,, increases over an interval T, and 
then saturates (for t - t, 9 T,) to the value (2.3 1). On the other hand, the contribution of the correlation part 
Ao of (2.34) is non zero only for t - t, < T, because of the point (ii) mentioned above. It follows that, if we 
average the rates of variation over a time interval [t,, t, + At] such that 

T, 4 At 4 T u ,  (B. 1) 

we can ignore the contribution of Ao, and replace the contribution of os(to) o, by its asymptotic value (2.31) ; 
the relative error associated with these two approximations is of the order of r,/At. With such a « coarse grained 
average i) at time t,, we implicitly renounce,ta a det$led kn~wledge of the dynamics of S on a time scale T,. 
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Actually, the coarse grained average must be done on the .part of the tate of variation which is due to the 
coupling (and not to the system Hamiltonian Hs). Mathematically, it is therefore more convenient to use a set 
of operators ijab(t) having no free evolution and defined by : 

The coarse grained rate of variation is thus given by : 

dqab where - (t) is deduced from (2.25). We then make the two previously mentioned approximations, and replace 
dt 

(% (t) ) by its asymptotic value deduced from (2.31). After a straightfonvard algebra, one gets for example 

for the reservoir fluctuation term (compare with 2.33) : 

( % ) = $ (1 i < [yi(to), [si(to), qab(tO)]] >) SEC 

where the index « SEC » means that, in the expansion of the atomic operator [Yi(to), [Si(to), qab(to)]] in the basis 
q,(t,), only the secular terms qcd(to) with 1 o, - oab 1 4 At - ' are kept. This is due to the fact that non secular 
couplings 1 ocd - ou, 1 2 At - ' are washed out in the integral (B. 3) by a factor : 

Equations (2.33a) and (2.33b) can therefore be generalized to any time t,, provided that they are understood 
as secular equations for coarse grained rates of variation. 

Appendix C. - Time reversal properties of the two rates of variation due to self reaction and reservoir fluctuations 

In the splitting (1 .7) of 1 Ri(t) Ni(t), we have implicitly supposed A real, so that hermiticity of reservoir fluctua- 
i 

tion terms (1 .8a) and self reaction ones (1 .8b) implies A = 112. Actually, one could consider taking.1 cornplex, 
in which case hermiticity would only require A + A* = 1, i.e., A = 112 + i~ (K real). But it appears that K must 
be zero if we want that the two rates of variation respectively due to vacuum fluctuations and self reaction behave 
separately as « good velocities ». 

Consider a physical quantity G having a given signature in time reversal. If G is even, dGldt is odd. It seems 
reasonable to impose separately the same property to reservoir fluctuation terms and self reaction ones. Actually, 

since we calculate only coarse grained rates of variation at time t,, - (t,) and - (t,) (see appendix B), (z)rf (Tlsf 
it is sufficient to consider time reversa1 around t,. Furthermore, the total interaction amiltonian is even, so 
that Ri and Si can be chosen with a well defined parity. It then follows that Rf and Ri' have the same parity as Ri 
in time reversal around t, (see (2.7) and (2.8)) (4). Putting this result in (1 .8), one easily sees that (dGldt),, (t) 
and (dGldt),, (t) have the parity opposite to that of G in time reversa1 around t, if and only if K is equal to zero. 

Such a property remains valid for the coarse grained rates 
. . . . 

We have therefore shown that A has to be real in order that (g)rf (t,) and (g) (t,) behave as « good 
sr 

velocities D, i.e., that they have the opposite signature of G in a time reversa1 around t,. 

(4) ln equation (2.19b) of [Il, giving the source field (R:) in terms of the atomic velocity r / M  and acceleration k / M ,  
t - t, is implicitly supgosed to be positive. In the general case, the acceleration term is found to be multiplied by the sign 
of (t - t,), ensuring the good time reversa1 symmetry for R:. 
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