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Abstract. - We present a quantum treatment of laser cooling of neutral atorns. The cooling 
mechanism studied is the ~Sisyphus~ process for l-dimensional optical molasses. We Grat derive 
the energy eigenstates for the atom moving in the potential associated with the light-shifts due 
to the laser. Then, taking into account optical pumping, we calculate the steady-state 
populations of these quantum levels in the secular approximation. This approach allows us to 
determine the atomic eigenfrequencies in the optical wells, as well as momentum and position 
distributions. In particular, the minimum r.m.s. atomic momentum is -6 single-photon 
momenta; this result wae not accessible to previous semi-classical treatments. 

Laser cooling of free atoms in *optical molasses* has led in the recent years to extremely 
low atomic kinetic temperatures, in the micro-Kelvin range [l-31. We present here a 
theoretical approach to this cooling; it is based on a quantum treatment of the e x t e d  
atomic motion for the case of ldimensional optical molasses, formed by the superposition of 
two opposing travelling waves. Our approach is in some ways similar to the one developed - for trapped ions [41, although in our case the trapping potential is created by the laser light 
itself. Therefore this potential depends on the atomic internai state and is periodic, so that 
the energy spectrum consista of bands. From the steady-state populations of these energy 
levels, we then obtain the position and momentum distributions of the atoms inside the 
molasses. We also discuss various ways for measuring this energy spectrum. 

We study here the simple case of ~Sisyphus* cooling for an atom with a transition 
between a J, = 112 ground state and a Je = 312 excited state (fig. la)) [5]. The laser field is 
formed by the superposition of two plane waves, with a wavelength A = 2zk, travelling 
dong the + z and - z directions, and respectively polarized dong 0% and Oy. The resulting 
polarization of the light presenta a spatially periodic gradient of ellipticity: for a convenient 
choice of phases, it is u- at z = O, linear at z = U8, u+ at z = Al4, ... . 

(*) Laboratoire associt? au CNRS et A 1'Universitk Pierre et  Marie Curie. 
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Fig. 1. - a) Atomic-level scheme and intensity factors (square of the Clebsch-Gordan coefficients) for a 
J,  = 112 t, Je = 312 transition. b) Semiclassical description of Sisyphus cooling, with a ~typical* random 
path showing a decrease of the total atomic energy (kinetic + potential) as the atom moves in the 
optical bipotential U,(z). c) Quantum description of Sisyphus cooling, showing the energy jumps 
sketched in b) as transition between eigenstates of the total atom-laser Hamiltonian. The energy 
spectrum corresponds to Uo = 100ER. In the steady state, atoms are mostly localized in the wells, i.e. 
more than half of the population is on the two lowest bands. 

We restrict ourselves to the low saturation dornain: 

which is known experimentally to lead to the lowest temperatures. When (1) is fulfilled, the 
atoms remah mainly in their intemal ground-state sublevels. In (l), = - 2dEo/h is the 
Rabi hquency characterizing the coupling between the atomic dipole d and the field 
amplitude Eo in each travelling wave, r is the natural width of the atomic excited state, and 
d'= OL - OA is the detuning between the laser (wL) and the atomic ( 0 3  bquencies. 

We also limit our treatment to situations where the average Doppler shifts can be 
neglected compared to r. This means that we do not take into account here «Doppler 
cooling~ [4], and that we are left only with upolarization gradient cooling* [5,6]. The effect of . 
the atom-field coupling on the atomic dynamics can then be split into two parts [fl. 

First, the reactive part of this coupling (light-shift) consists in a periodic potential U,(z), 
depending on the atomic ground-state sublevel g,: I 

uo 2 U,(z) = - (- 2 f cos (2kz)) with Uo = - - hho. 
2 3 (2) 

For instance, at z = O where the light is CL, the sublevel g- is three times more light-shifted 
(- 3Uo/2) than the level g+ (- Uo/2) because of the intensity factors sketched in fig. la); this 
is reversed at z = Al4 where the light is cr+. 

Second, the atom-field coupling also has a dissipative part because of processes involving 
the absorption of a laser photon and the emission of a spontaneous photon. This dissipative 
coupling causes in particular real transitions to occur, via optical pumping, between g+ and 
g- and thus gives the states f i te  lifetimes. 

If one treats dassically the motion of the atom in the bi-potential U,(z), the analysis of 
Sisyphus cooling is then straighfforward [51. Take a negative detuning d' so that Uo > 0, and 
suppose that the atom starts on level g- (see Q. lb)). As the atom moves in U-(z), it may 
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undergo a transition to g+. This transition occurs preferentially where the laser light is 
mostly u+ polarized, which corresponds to the tops of U-(2). The atom is then put in a valley 
for U+(z). This transition decreases the potential energy of the atom, while leaving its 
kinetic energy unchanged, if one neglects the momentum of the fluorescence photon 
involved in the process. From g+, the same sequence can be repeated so that, on the 
average, the atom ascends more hills than it descends, which damps its velocity. 

We now turn to the quantum treatment of Sisyphus cooling. We start with the master 
equation describing the tirne evolution of the atomic density matrix, including both internal 
and external degrees of freedom [8]. If (1) is fulfilled, we can adiabatically eliminate optical 

' coherences as well as the excited-state part of the density rnatrix. We then get an equation 
of motion involving only the ground-state part u of the density matrix and acting in the space 
generated by the vectors Ig,, p )  (atom in internal state g, and with momentum p) [91: . 

1 ' .(O = 7 [Ho, 411 + (.(t))- zh (3) 

with 

and 

(Adt) + dt)  A) + y. r d p '  2 N.@') B: exp [- iplZlh] d t )  exp [iPt Zlhl B.. (5) (.(t))& = - y 
-111: " 

M is the atomic mass, P and Z are the momentum and position operators of the atomic 
centre of mass and y. = Wso/9. The Hamiltonian Ho contains the atomic kinetic energy and 
the potential energy corresponding to the reactive part of the atom-field coupling. The 
relaxation term (5), corresponding to the dissipative part of this coupling, has two 
contributions: the first one describes the departure from a given level, for instance from 
Ig+ , pl) to other levels, either lg+ , pz) or Ig- , pz), via an absorption-spontaneous emission 
cycle. The second term in (5) describes the reverse process, e.g., the feeding of Ig+ , pl) from 
either lg+ , pz) or lg- , pz). The integrai is taken over the momentum p' of the spontaneous 
photon dong Oz; the index m represents the projection of the photon angular momentum 
h o  dong Oz and the functions Nm(pt) stand for the normalid distribution pattern for the 
spontaneous photon [8]. The operators A and B. can be written as 

Be = cos (kZ) 1 g+ ) (g- 1 + sin(kZ) I g- ) (g+ 1 , (6b) 

sin (kZ) cos (kZ) 
B1 = (3Ig+)(g+J+Ig-)(g-I); B-l= (19+)(9+1+3Ig-)(!J-I)- (64  * * 

We now look for the steady-state solution of (3). Here, we will restrict our analysis to the 
situation where the Hamiltonian part of (3) is predominant over the relaxation part. This 
requires that a typical Bohr frequency of the Hamiltonian Ho, i.e. the osdation angular 
frequency o, of the atom in the bottom of the wells of U,(z), be much larger than the typical 
darnping rate yo: 

7 7 
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where ER = h2k2/2M is the recoil energy. We see from (7) that our treatment is valid, for a 
given potential depth Uo, in the limit of large detunings. This is known experimentally to 
lead to the lowest temperatures [3]. Classically, this situation corresponds to the case of 
particles performing a large number of oscillations on a given potential U+(z) or U-(2) before 
jumping to the other one. 

When (7) is satisfied, the procedure is straightforward. We first look for the eigenstates 
and the energy spectrum of Ho. We fhd, as usual for periodic potentials, altemating bands 
of allowed and forbidden energies (fig. lc)). The eigenstates can be labeiled as In, q, E), 
where n is an integer 3 O labelling the band, and where E = f 1 stands for the intemal state 
g,. q is the Bloch index, chosen in the first Brillouin zone (- k < q <  k), and which takes ' 
discrete values since we use here standard periodic boundary conditions in a box with a size 
large compared to the spatial period hl2. We note that the two states ln, q, +) have the 
same energy En,, due to the symrpetry between U*. This eigenvalue problem can be cast 

' 

into a universal one (Mathieu equation) if one expresses both Uo and E, ,  in terms of the 
recoil energy ER (fig. 2a)) ('). For a ~typical* laser cooling situation, Uo = 100ER, obtained 
with cesium atoms for instance with 6= - 20r and D = 1.W, one fhds o,IZx- 40 kHz, 
with 6 bands corresponding to bound states (E, ,  < - Uo/2); the width of the lowest band, 
n = O, is extremely small (< 10-6ER). The number of such ~bound bands* increases as v m ,  as does the splitting ho, between two adjacent bands. 

Now we take into account the relaxation part of (3), which causes transitions between the 
various In, q, E) (fig. lc)). Since 70 is very small compared to o,, we can use a secular 
approximation and assume that a is diagonal in the basis ln, q, E)  in steady  tat te(^). 
Averaging (5) in a given ln, q, E), we find the foilowing relation between the steady-state 

Kg. 2. - a) Band structure of the energy spectrum of Ho, plotted as a fundion of the potential depth 
Uo. The shaded areas correspond to aiiowed energies. For a given Uo, the energies above - Uo/2 
corresponding to an above-bamer motion (see eq. (2)) are mostly allowed (quasi-free motion). On the 
opposite, energy bands corresponduig to a bound classicai motion (- 3Uo/2 < E < - Uo/2) are very 
narrow except in the immediate vicinity of - Uo/2. b) Steady-state population of the various energy 
bands, as a fundion of Uo. c) Steady-state kinetic energies EK = d.ms./2M and Ei( = 6p2,/2M (where 
Gp, is the halfwidth at 1 1 6  of the momentum distribution) as a fundion of Uo. These two quantities 
would be equal for Gaussian momentum distributions. 

(') A similar treatment has been applied to the case of a Blevel atom moving in a standing wave, in 
the absence of spontaneous emission 1101. 

(9 If u is a solution of (3) in steady state, then  TUT^, where T is the A/2 spatial translation operator, 
is also a solution. The uniqueness of steady state therefore irnplies u =  TUT^, so that any nondiagonal 
matrix element inside a band (n, ql,  E 1 uln, q2, o) is zero, although the secular approximation 
argument cannot be applied to it. On the other hand, one can show that the spatial coherence of u in 
stesdy state is restricted to a m i o n  of wavelength b u s e  of spontaneous ernission processes. 
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population II,,,,,,: 

0 =nn,9.r = - ~ n , ~ , r K , ~ , .  + 2 fin', q', cf + n, q, ~)17,1,,,,.#, 
u',,',s' 

(W 

 YU,^,. = YO(% q, E 1 A 1 n, q, E) , (8b) 

f i n f , < l ' , ~ ' + n , ~ , ~ ) = y o  ~dp'ZNm(p')~(n',q',r'~Bmexp~ip'Zlhl~n,q,r)~2. (8c) 
-hk m 

This expresses an equiiibrium between the population leaving ln, q, E) (first term of (8a)) 
* and the population arriving in In, q, E)  (second term of (84). By introducing a closure 

relation into (&), we can show that 7,,,,, calculated from (8b) is equal to the sum over the 
primed variables of the y(n, q, E+nl, q', E'). Equation (ûu) associated with the normalization 
condition allows one to completely determine the various populations 17,,,,. in equiiibrium, 
and therefore to characterize the steady &te completely. This steady state usually depends 
on two parameters, Rabi frequency D and detuning 8, or equivalently Uo and 70. We have 
already noticed that the energy spednun of Ho depends only on Uo. Now, we see that 70 can 
be factorized in eq. (ûu), which means that the steady-state populations II,,,,,, do not depend 
on 70 in the limit (7). In this limit, Uo is therefore the only important parameter to 
characterize the steady state. 

On the other hand, the rates (8b) and (&) are proportional to 70, which indicates that the 
ucooling t h e .  varies as 7;'. Two types of transitions are involved in the relaxation process. 
Consider fkst a transition where there is a change of intemal state: g, -+ g-,. These are, as 
we have seen in the semi-classical approach, at the origin of the Sisyphus cooling (fig. lb, c)). 
The corresponding departure rate y,,,,, £rom a given level In, q, E) to all ln', q', - E) is found 
to be equai to the average in the state In, q, E) of the semi-classical rates of transfer 
70 cos2 kz (yo sin2 kz) h m  g+ to g- (9- to g+). If these transitions E + - E were the only ones, 
one would find a strong accumulation of the atoms in the lowest band n = O, where yn,,,, is 
very small. Actually, this strong accumulation in the lowest level is partially 
counterbalanced by transitions E +  E with different values of q and n. These transitions 
correspond to a heating, due for instance to the randomness of the momenta of the emitted 
fluorescence photons. 

In order to calculate numerically the steady-state populations, we have taken into 
account the first 80 bands, with 6 values for q in each band corresponding to the discrete 
values of q for our chosen boundary conditions. We have checked that a larger quantization 
volume makes no noticeable difierence. On the other hand, 80 bands, among which less than 
10 are bound, are required to get accurate values for steady-state r.m.s. momenta. The 
variations of the total populations x, of the first five bands us. Uo are shown in fig. 2b): for 
instance, i ~ g  is maximal around Uo = 60ER, and reaches 0.34; in this case, the total population 
of unbound bands (E, ,  3 - Uo/2) is 0.2, which suggesta a spatial localization of the atoms. 
This is confirmed by the calculation of the spatial distribution p(z) using the z representation 
of the ln, q, E). The modulation 7 = ma~(p)lmin(~) of these distributions follows the 
empirical law - (Uo/10ER)u4, h m  Uo = 20ER up to the largest Uo that we have considered, 
i.e. 1000ER. Such a locahation of atoms in 3D Na molasses has recently been observed [Ill. 
The set of &,,, also gives the momentum distribution in steady state. We have plotted in 
fig. 2c) the average kinetic energy, EK = $.,,I2M, as a function of Uo. It is minimal for 
Uo - 96ER, Pr.m.a. King then of the order of 5.5hk. We recall that one finds experimentally 
for 3D Na or Cs molasses a minimum p,,,. of 3 or 4hk [3,12] (9. 

(') Experimentai measurements are usually done by a determination of the width of momentum 
distributions, which is more in the spirit of the curve Ek of fig. 2.4). 
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These results can be compared with the ones given by usual semi-classical 
approaches [5,6]. We note that the validity condition (7) is the reverse of the one required 
for these approaches, where one assumes that the atoms move sufiïciently slowly so that 
their internal state can foilow nearly adiabatically their external motion; when (7) holds, it is 
not possible to describe the atomic motion in terms of a friction force linear in velocity and a 
constant momentum diffusion coefficient. Actually, in spite of these opposite conditions on 
w,lyo, both approaches predict a sirnilar hear  dependence of EK with Uo, for large Uo; the 
slopes are comparable, 0.14 here (fig. 2c)) instead of 0.19 semi-classically [5]. On the other 
hand, even when (7) holds, a semi-classical treatment is possible. I t  uses as a slow variable 
the total atomic energy instead of the atomic velocity and gives results close to the ones 

' 

obtained here [9]. 
In addition to momentum or position distributions, this approach gives other observable , 

quantities of laser-cooled atomic samples, more deeply connected to the quantization of 
atomic motion. The fluorescence spectrum of the atoms inside the molasses [Il] can give a 
way for observing this discrete structure of the energy spectrum. I t  requires that the 
induced radiative width -yo of the ground-state sublevels should be s m d e r  than the 
splitting between the bands, - w,, which just corresponds to the condition of validity of o u .  
treatment (7). One could also measure, inside the molasses, the absorption or the 
amplification of a weak probe laser with a frequency shiR from w~ of the order of + w,. 

Findy,  we note that ou .  treatment can be generalized to more complicated physical 
situations. We have recently extended it to the case of a J,  = 1 -Je  = 2 transition in the 
same laser configuration. The generalization of this treatment to 2 and 3 dimensions is also 
under way. The diagonalization of Ho is then much more complicated because the eigenvalue. 
problem is not factorizable into 2 or 3 1D problems. 

The authors are indebted to C. COHEN-TANNOUDJI for many helpful discussions. They 
also thank d their colleagues of the ENS laser cooling group for their comments. This work 
is partially supported by Collège de France and DRET. 
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