
At low temperature Quantum Physics can manifest itself at the
macroscopic scale in many spectacular ways. Some of its most

remarkable features occur when a fluid is stirred. Indeed, as a con-
sequence of the existence of a macroscopic wave-function
describing the system, a quantum fluid cannot sustain rigid body
rotation by contrast with a classical fluid. Rather, the stirring gen-
erates quantized vortices. The recent observation of novel quantum
fluids formed by ultra-cold atomic gases allows us to revisit the
properties of vortex systems, and to address pending questions of
condensed matter physics.

Quantum physics tells us that particles can be classified into two
families called respectively bosons and fermions. The fermions like
the electrons have a half-integer spin and obey the Pauli Principle,
according to which no two identical fermions can occupy the same
quantum state. By contrast, bosons have an integer spin and they
can occupy the same state. Following the work of S.N. Bose on
blackbody radiation, A. Einstein showed in 1924 that this gregari-
ous bosonic trend leads at low temperature to a phase transition for
a gas of independent particles, the Bose-Einstein condensation.
The condensation threshold is reached when the quantum statis-
tics effects start to be prominent, i.e. when the interatomic
distance is of the order of the coherence length of the matter waves.
The Bose-Einstein condensate which forms below a critical tem-
perature contains a macroscopic number of particles, all occupying
the same quantum state. These particles are thus described by the
same macroscopic wave function and the system constitutes a so-
called quantum fluid. Quantitatively the Bose Einstein
condensation in an ideal gas occurs when the temperature T and
the atomic density ρ satisfy the relation

(1) ρΛ3
dB ~_ 2.6

where ΛdB = h- √
—
2π / √

—
mkBT is the thermal wavelength, h- and kB   are

the Planck and Boltzmann constants, and m is the mass of a particle.

Einstein’s prediction for a phase transition in a non interacting
gas was first considered dubious by some physicists, and it
remained unproved experimentally for more than ten years. Final-
ly in 1938, Kapitza,Allen and Misener showed that the viscosity of
liquid helium vanishes suddenly below 2.17 K. London immedi-
ately related this superfluid behaviour with Einstein’s prediction.
This discovery constitutes a milestone in the history of statistical
physics. It marked the beginning of a fruitful research, in which
many of the greatest physicists of the middle of the 20th century,
such as L. Landau or R.P. Feynman, were involved. Despite some
major successes, the theoretical understanding of superfluid heli-
um remained however severely hindered by the strength of the
atomic interactions in a liquid phase. The physics of liquid helium
is indeed very far from the ideal gas situation considered by Ein-
stein, which makes any ab initio prediction very difficult.

Gaseous Bose-Einstein Condensates.
A recent breakthrough in the history of quantum fluids was the
observation in 1995 of the first gaseous Bose-Einstein condensates
[1,2]. This major finding was achieved by the groups of E. Cornell
and C.Wieman at Boulder, and a few months later by W. Ketterle at
MIT, using rubidium and sodium atoms, respectively. These three
physicists were awarded the 2001 Nobel Prize in physics for this
discovery.With these systems it became possible to study Einstein’s
prediction in a regime of low density, thus very close to the situa-
tion addressed in the 1924 article [3-5].

These experiments have now been reproduced using several
other atomic species. A few different recipes to achieve quantum
degeneracy exist, but they are all based on the same basic tool
called evaporative cooling. The atoms are trapped in a potential
well, created either by a magnetic field or a focused laser beam, that
one deliberately truncates at energy Ut. Consider an elastic collision
between two trapped atoms: if the final energy of one of the two

partners is larger than Ut, it can escape from
the trap. Thanks to the repetition of such
processes, the energy of the remaining parti-
cles decreases and the gas thermalizes at a
temperature of the order of a fraction of
Ut /kB. The sample is cooled even further by
decreasing slowly the value of Ut . When the
elastic collision rate between trapped atoms is
large enough, the ratio T/Ut stays constant as
Ut decreases, and the condensation threshold
can be reached.

In the experiments described below,
we start with a rubidium vapour at room
temperature. Using standard laser trapping
techniques, we confine and cool 109 atoms in
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b Fig. 1: Absorption imaging scheme. The
trapping potential is switched off abruptly,
letting the cloud fall and expand. We measure
the absorption of two beams propagating in
directions parallel and perpendicular to the
symmetry axis of the trap. The laser beams are
resonant with the atomic resonance transition
and the density profile of the cloud is obtained
from the absorption of light by the atoms.



a magneto-optical trap, and we trans-
fer them in an elongated, cylindrically
symmetric magnetic trap. The longi-
tudinal and transverse frequencies of
the trap are typically νII = 10 Hz and
ν⊥ = 100 Hz, and the initial tempera-
ture of the atom cloud is 200
microkelvins, corresponding to a
phase space density ρΛ3

dB of 10- 6.
After a 20 second evaporation phase,
we reach the threshold (1) of
Bose-Einstein condensation at a tem-
perature Tc ~500 nK. By pushing the
evaporation a bit further, we produce
a quasi-pure condensate with Nc~3 105 atoms. The cloud is cigar
shaped, with a 100 µm length and a 10 µm diameter. The atoms
are observed by measuring the absorption of a resonant probe laser
beam: we image the shadow imprinted by the atoms on this probe
beam onto a CCD camera. In order to obtain a good spatial reso-
lution, we switch off the trap abruptly and let the cloud expand
freely for 25 ms before shining it with the probe laser. During this
free fall, the transverse dimensions of the cloud are scaled by a fac-
tor 15, while the longitudinal dimension changes only weakly 1.
Using two orthogonal probe beams we have access to the column
density of the atom gas both in the longitudinal and transverse
directions (Fig. 1).

Quantized vortices        
One of the most spectacular manifestations of the existence of a
macroscopic wave function describing a Bose-Einstein condensate
is the nucleation of quantized vortices when the system is set in
rotation [6,7]. To understand why these vortices emerge, we write
the condensate wave-function as ψ(r) = √

—ρ(r) e iθ(r). The quantity
ρ(r) = Iψ(r)I 2 is the particle density in the condensate and the
phase θ is defined everywhere that the density is non zero. The
“conservation of probability” yields the following relationship
between the phase and the macroscopic velocity field v

(2)v = h-—m ∇θ.

This equation leads to a paradox when one tries to predict the
behaviour of a superfluid that is set into rotation at an angular
velocity Ω0, for instance when the fluid is kept in a rotating buck-
et. In the case of a classical fluid, the viscous drag between the walls
of the vessel and the fluid generates a velocity field analogous to the
one of a rotating solid, that is v = Ω0 x r. The vorticity Ω = curl(v)/2
is uniform and equal to Ω0. A well known effect of this rotation is
the characteristic parabolic shape of the free surface of the liquid.
However, this scenario is incompatible with equation (2) that yields
a curl free velocity field. Therefore, one could expect naively that a

rotating bucket experiment performed on a superfluid should leave
its free surface undisturbed. This prediction is however contradic-
tory with experimental observations that show without any doubt
that the free surface of a superfluid held in a fast rotating vessel is
close to a parabola!

This non-intuitive result was explained by Onsager and Feyn-
man, who showed that equation (2) allows the vorticity to enter a
Bose-Einstein condensate along phase singularity lines. Noting that
the phase of a wave function is defined within 2π only, equation (2)
implies that the circulation of the velocity field along a closed con-
tour must be quantified in units of h/m, that is

(3)Γ = ∫o v.dl = p h—m .

p is an integer number called the topological charge of the flow, and
it corresponds to the winding number of the phase along the con-
tour. In order to get a non-zero circulation, it is necessary that the
contour winds around a line of zero density, along which the phase,
and hence the velocity field, is no longer defined. Otherwise, Stokes
theorem implies the cancellation of Γ. These zero density lines
carry the vorticity of the flow and are called quantized vortices.

The nucleation of such quantized vortices is an experimental
proof of the existence of the macroscopic wave function charac-
terizing a Bose-Einstein condensate. Their observation was quite
difficult in the case of superfluid liquid helium due to the smallness
of the size of the vortex core.As shown by L. Pitaevskii in 1961, this
size is of the order of the so called healing length 

(4)ξ = h-—mc
where c is the sound velocity in the fluid. In the case of helium 4,
this length is of the order of a few angstroms. Vortices were
observed in this system by Packard and his group in 1979. They
were visualized by means of electrons trapped in the vortex cores
and accelerated on a phosphorescent screen. By contrast the quan-
tization of the circulation was demonstrated as soon as 1958 by
Vinen, who studied the vibration modes of a quartz wire immersed
in rotating superfluid helium. Let us also mention the experiment
performed in 1985 by Avenel and Varoquaux, which proved the
2π phase slip between two superfluid helium buckets coupled by a
capillary tube, when a vortex crosses the tube.
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c Fig. 2: Principle of the atom spoon.
We shine two laser beams (red) on the
trapped atoms (yellow cigar sitting at
the center of the white and blue coils
that create the magnetic trapping
potential). The combination of the two
beams creates an optical potential
whose axes rotate along the z axis at
an angular velocity Ω0.

1 This inversion of the ellipticity is a consequence of the repulsive interac-
tions between rubidium atoms. The transverse directions being the most
compressed explode faster when the trap is switched off.



A spoon for an atomic gas
In the case of a gaseous Bose-Einstein condensate, the sound veloc-
ity is of the order of a few cm/s (to be compared with hundreds of
m/s in helium), yielding a healing length in the micrometer range.
The vortices are then directly detectable by optical means and were
actively sought as soon as the first alkali Bose-Einstein condensates
were obtained. Two strategies have been developed. The first one is
based on a direct imprinting of the 2π phase shift on the macro-
scopic wave function and was successfully implemented by the
group of E. Cornell in Boulder [8]. The second method that we
developed in Laboratoire Kastler Brossel, in collaboration with V.
Bretin,K.W.Madison,P.Rosenbusch and S.Stock [9] is an adaptation
of the rotating bucket experiment to a gas of trapped bosons. We
confine the atoms in the magnetic trap described above, and we
superimpose in the transverse plane an anisotropic potential creat-
ed by two laser beams propagating along the axis of the trap (Fig. 2).
The axes of the anisotropic potential rotate at an angular velocity Ω0,
and this potential acts like a spoon in a cup of coffee. This strirring

method has been used later at MIT (W.Ketterle’s group [10]),Oxford
(C. Foot’s group [11]) and Boulder (E. Cornell’s group [12]).

Above a certain critical angular velocity of the spoon, a first vor-
tex is nucleated and is detected as a depression in the density
profile (Fig. 3). The contrast of the density dip is however not
100%. This can be understood when looking at the transverse den-
sity profiles which clearly reveal that the vortex line is bent. This
bending is a spontaneous symmetry breaking of the system; it orig-
inates from the atom interactions, which introduce a non-linear
term in the Schrödinger equation satisfied by the macroscopic
wave function ψ(r).

Vortex lattices and semi-classical approximation
When one increases the rotation frequency above the threshold for
the appearance of the first vortex, new vortices enter the conden-
sate and form a regular lattice known as the Abrikosov lattice in the
physics of superconductors (see figure 4). The equilibrium shape of
this lattice results from the competition between trapping and
Magnus forces. The role of the trapping force is to attract the vor-
tices to the center of the magnetic trap (see for example figure 3 for
the case of a single vortex). The Magnus force, which is well known
in classical hydrodynamics, induces a repulsion between two co-
rotating vortices.

When the number of vortices is large compared to unity, the
parameters of the vortex lattice can be deduced from the corre-
spondence principle, as first explained by Feynman. The vortices
arrange themselves to form a lattice with a uniform surface densi-
ty nv, so that the coarse-grain average of the velocity field mimics
the rigid body rotation for an angular frequency Ω. More precise-
ly, although the local velocity field remains highly singular at the
core of a vortex, the average velocity field has a uniform vorticity
equal to 2Ω. Since each vortex corresponds to a single quantum of
circulation h/m, one can deduce the relation between Ω and nv :

(5)2Ω = h—m nv

This relation is nicely confirmed by experimental observations.
In the regime where many vortices are present inside the

trapped condensate, the analogue of the parabolic profile of the
free surface of a rotating liquid is the increase of the transverse
diameter of the cloud. The centrifugal force reduces the transverse
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m Fig. 3: Density profile of the vortex line. a) Longitudinal imaging.
The vortex core is identified by the density dip at the center of the
cloud. b) Transverse imaging. The vortex line (darker line in the density
profile) is bent, which explains the contrast reduction in longitudinal
imaging. c) Sketch of images b). 

m Fig. 4: Abrikosov lattice in a fast rotating Bose-Einstein condensate. The formation of this regular triangular pattern is a consequence of the
repulsive Magnus force between vortices. a) Vortex lattices (with 1 to 13 vortices) obtained at ENS. b) Giant vortex lattice observed at MIT [10]. 
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confinement of the cloud which occupies a larger volume than
when it is at rest.

The regime of fast rotations
When the rotation frequency Ω is increased to a value close to the
transverse trapping frequency ω⊥, the transverse size of the con-
densate tends to infinity since the quadratic confinement potential
is nearly balanced by the centrifugal potential, which is also qua-
dratic. The atom density ρ drops down and the healing length
(which varies as c-1 ∝ ρ-1/2) can become arbitrarily large. Since the
vortex density increases with the rotation speed, there exists a rota-
tion frequency for which the size of a vortex core becomes
comparable to the vortex spacing. Above this rotation frequency,
the vortex lattice is tightly packed and the size of a vortex core is
not anymore related to the healing length. It saturates to a value
comparable with the distance between two adjacent vortices, which
is of the order of a0 = √

——
h- /(mω⊥).

In this fast rotation regime, the physics of a rotating Bose-Ein-
stein condensate is very reminiscent of that of a charged particle in
a magnetic field. Indeed the transverse force exerted on a single
atom located in →

r = (x, y) in the rotating frame is the sum of the
trapping, centrifugal and Coriolis terms:

F
→

= -mω 2
⊥

→
r +mΩ2 →

r +2mΩ
→

xν→.

For Ω = ω⊥, we are left only with the Coriolis term 2mΩ
→

xν→, which
is formally equivalent to the Lorentz force exerted by a uniform
magnetic field on a charged particle (the cyclotron frequency being
equal to 2ω⊥). In quantum terms, the energy eigenstates of a parti-
cle evolving in a uniform magnetic field are known as Landau levels.
The regime of fast rotation, in which the vortex core size saturates
to a0, corresponds to a situation where interactions and temperature
are so low that only the lowest Landau level (LLL) is populated.

The experimental investigation of this fast rotation regime is not
an easy task. The stirring method described above fails when  Ω ~_
ω⊥ because of a parametric instability of the center of mass of the
gas when it is stirred at a frequency close to the trapping frequen-
cy. To circumvent this problem two ways have been explored. At
ENS, we have added an extra confinement potential, described by
a small quartic term, which eliminates the center of mass instabil-
ity. We could thus explore the region of fast rotations up to Ω =
1.05 ω⊥ and investigate the structure of the vortex lattice in this
quadratic+quartic potential [13]. The Boulder group has kept a
purely harmonic potential and implemented an “evaporative spin
up” technique: the atoms with less angular momentum than aver-
age are evaporated so that the remaining atoms thermalize at a
faster rotation speed. The Boulder group could then reach rota-
tion speeds up to Ω ~ 0.99 ω⊥ and confirm the predictions made
for the size of the vortex core (figure 5 and ref. [14]).

The regime of fast rotation in a harmonically trapped gas is very
different from what is expected from an incompressible superfluid
in a rigid container, or from what is known for a type II supercon-

ductor placed in a large magnetic field. In the latter case, the regime
of overlapping vortices corresponds to a loss of superconductivity,
whereas the harmonically trapped Bose gas simply expands over a
large transverse area while keeping its coherence properties (at
least as long as the number of vortices remains smaller than the
number of atoms).

Perspectives
We have presented in this paper only a few illustrations of the fas-
cinating physics of rotating Bose Einstein condensates. The
experiments that we did not present include in particular the inter-
ferometric detection of the phase slip of the wave function around
the vortex core, or the full elucidation of the vortex nucleation
mechanism.

Very recently, the group of W. Ketterle (MIT) has observed a
vortex lattice in a rotating fermionic cloud [15]. This finding might
seem surprising at first sight. Indeed, as stated in the beginning of
this paper, fermions cannot occupy the same quantum state, hence
they should not be able to condense and form a vortex lattice. This
paradox is solved by considering the attractive van der Waals inter-
actions existing between atoms. It leads to the formation of pairs of
fermions, which can themselves condense in a macroscopic quan-
tum state. This state is very much akin to the many-body quantum
state introduced by Bardeen, Cooper and Schrieffer in the 1950’s to
explain the superconducting behaviour of electrons in metals at
low temperature. The observations of vortices in a cloud of fermi-
ons constitute a dramatic demonstration of the coherent nature of
this assembly of ultra cold gases of atom pairs.

For the future, one of the most promising perspectives of this
field of research deals with the regime of extremely fast rotations,
where the number of vortices becomes comparable with the num-
ber of atoms. It corresponds to rotation frequencies Ω even larger
than those required for reaching the lowest Landau level regime.
Several theoretical studies have been performed recently on these
systems, but no experimental result is yet available. In this ultra-fast
rotation regime, one leaves the domain of simple Bose-Einstein
condensation, where all atoms share the same macroscopic wave
function. The system is expected to reach a strongly correlated
state, similar to those appearing in the description of the fraction-
al quantum Hall effect.

To summarize, the rotations of ultracold bosonic and fermionic
gases have already been the subject of several studies, with topics of
interest that go much beyond the simple illustration of macro-
scopic quantum mechanics. In particular it is quite remarkable that
the investigation of vortex lattices can now be used as a tool to
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c Fig. 5: Fractional core area as a function of the LLL parameter. The
fractional core area is the ratio of the square of the core size (measured
using a Gaussian fit of the density dip at the vortex locations) and the
area of the unit cell of the vortex lattice. The LLL parameter is  the ratio
of the energy splitting between two Landau levels (2h- ω⊥) and the
interaction energy characterized by the chemical potential µ. The
entrance in the LLL occurs for an LLL parameter of order unity. The
broken line is the prediction obtained assuming that the vortex core
is proportional to the healing length ξ. The dotted line corresponds to
the expected limit for the LLL (figure obtained by the group of E.
Cornell at Boulder [14]).



Blue skies, blue seas
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For the sky, it’s simple. Most physicists know that the blue colour
of the sky is due to the 1/l4 dependence of Rayleigh scattering.

But what about the blue of the sea? Could it be simply reflection
of the blue skies by the water surface? That certainly cannot be the
main story: even if the sky is cloudy, clear water from mountain
lakes and seas can look distinctly blue. Moreover: those of us who
like to dive and explore life under water will have noticed that, a
few meters under the surface, bluish colours tend to dominate.
Indeed, if we use an underwater camera and take pictures of those
colourful fish, we notice that the nice red colours have almost com-
pletely disappeared. And – unlike our eyes - cameras don’t lie. We
need a flash to bring out the beautiful colours of underwater life. In
other words: absorption is the key: sunlight looses much of its
reddish components if it has to travel through several meters of
water. Or ice, for that matter: remember the bluish light from ice
caves or tunnels in glaciers. And even the light scattered back
from deep holes in fresh snow is primarily blue.

What causes the selective absorption of visible light by water?
Spectroscopists know that the fundamental vibrational bands of
H-atoms bound to a heavier atom, such as in H2O, are typically
around 3 µm. This is way too long to play a role in the visible
region. But wait: because of the large dipole moment of H2O also
overtone and combination bands give an appreciable absorption.
And they happen to cover part of the visible spectrum, up from
about 600 nm, as seen in the figure. The strong rise near 700 nm is
due to a combination of symmetric and asymmetric stretch (3ν1 +
ν3), slightly red shifted due to hydrogen bonding (see, e.g., C.L.
Braun and S.N. Smirnov, J. Chem. Edu., 1993, 70(8), 612).We notice

that the absorption coefficient in the red is appreciable: it rises to
about 1 m-1 around 700 nm, an attenuation of a factor of e at 1 m.
It is no wonder that our underwater pictures turn out so bluish.

It is interesting to note: the spectrum of D2O is red shifted by about
a factor 1.4, since the larger mass of the deuterons makes for much
more slow vibrations. It is therefore shifted out of the visible region.

But that is not the whole story about the ‘deep blue sea’. For the
water to look blue from above, we need backscattering. For shallow
water, this may be from a sand bottom or from white rock. In this
case the absorption length is twice the depth. For an infinitely deep
ocean, however, we have to rely on scattering by the water itself and
by possible contaminants. This even enhances the blue color by
Rayleigh scattering, as long as the contaminants are small.
If the water gets really dirty, things obviously become more com-
plex. Scattering from green algae and other suspended matter may
shift the spectrum towards green, or even brown.

But clear water is blue. Unless it’s heavy water, of course…

investigate pending outstanding questions of condensed matter
physics, either for strongly correlated fermions or bosonic frac-
tional Quantum Hall systems.
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