Cavity QED with Rydberg Atoms

Serge Haroche,
Collège de France & Ecole Normale Supérieure, Paris

Lecture 3:
Quantum feedback and field state reconstruction in Cavity QED experiments. Introduction to Circuit QED.
III-A
Quantum feedback in Cavity QED experiments

How to combine measurements and actuator actions on a quantum system to drive it towards a target state and protect it against decoherence.

A game analogous to « classical » juggling with the added difficulty that observing the photons has an unavoidable back action which must be taken into account...
Back action of single atom detection
(see Lecture 2)

\[(j = e, g) \quad \rho_{\text{proj}} = \frac{M_j \rho M_j^\dagger}{\text{Tr}(M_j \rho M_j^\dagger)} \]

Initial state

State after projection

Atomic detection changes the photon number distribution

\[M_e = \sin \left(\frac{\phi_r + \phi(N)}{2} \right) \]

2 operators corresponding to the 2 possible outcomes

\[M_g = \cos \left(\frac{\phi_r + \phi(N)}{2} \right) \]

Phase of interferometer

Distribution \((n|\rho_{\text{proj}}|n)\)

atom in \(|e\rangle\)

atom in \(|g\rangle\)
Applying quantum feedback to the stabilization of Fock states?

Fock states are interesting examples of non-classical states. They are fragile and lose their non-classicality in time scaling as $1/n$.

The preparation by projective measurement is random. Is it possible to prepare them in a deterministic way by using quantum feedback procedures?

Can these procedures protect them against quantum jumps (loss or gain of photons)?

An ideal sensor for these experiments: QND probe atoms measuring photon number by Ramsey interferometry. Back action is suppressed when target is reached!

What kind of actuator? Classical or quantum?
Quantum feedback with classical actuator

Experiment performed with the theoretical collaboration of Pierre Rouchon’s group at Ecole des Mines
Principle of quantum feedback in Cavity Quantum electrodynamics

Feedback protocol:

- Send atoms one by one in Ramsey interferometer
- Detect each atom, projecting field density operator ρ in new state estimated by computer
- Compute displacement α which minimises distance D between target and new state
- Close feedback loop by injecting a coherent field with amplitude α in C
- Repeat loop until reaching $D \sim 0$.

Components of feedback loop

- **Sensor** (quantum “eye”):
 - atoms and QND measurements
- **Controller** ("brain"):
 - computer
- **Actuator** (classical “hand”):
 - microwave injection
Probe: weak measurement

Fixing the parameters of experiment

\[M_c = \sin\left(\frac{\phi_r + \phi(N)}{2}\right) \quad M_g = \cos\left(\frac{\phi_r + \phi(N)}{2}\right) \]

- Phaseshift per photon: \(\phi_0 = \pi/4 \) \(\phi(n) = n\phi_0 \)

- Ramsey phase: \(\phi_r = \pi/2 - \phi(n_c) \)

Three well distinct sets

\(n < n_c \)

\(n = n_c \)

\(n > n_c \)
Probe: weak measurement

Fixing the parameters of experiment

\[M_c = \sin \left(\frac{\phi_r + \phi(N)}{2} \right) \quad M_g = \cos \left(\frac{\phi_r + \phi(N)}{2} \right) \]

- Phaseshift per photon: \[\phi_0 = \pi/4 \quad (\phi(n) = n\phi_0) \]
- Ramsey phase: \[\phi_r = \pi/2 - \phi(n_c) \]

Quantum jumps well detected
- \[|n_c\rangle \leftrightarrow |n_c - 1\rangle \]
- \[|n_c\rangle \leftrightarrow |n_c + 1\rangle \]
Before weak measurement, field described by density matrix ρ

- **Weak measurement**

 Detected atom: outcome $|j = e, g\rangle$

 $\rho_{\text{proj}} = \frac{M_j \rho M_j^\dagger}{\text{Tr}(M_j \rho M_j^\dagger)}$

 « Ideal » situation: does not take into account the **imperfections** of experimental set-up!
Controler : field state estimation

Difficulty : atomic source is not deterministic

Poisson law for atom number per sample with average : $n_a \approx 0.6$ atom

$$P_a(n) = e^{-n_a} \frac{n^{n_a}}{n!}$$

Most probable : no atom in sample

Two atoms possible

New Kraus operators when 2 atoms detected

$$M_{ee} = M_e \times M_e$$
$$M_{gg} = M_g \times M_g$$
$$M_{eg} = \sqrt{2} M_e \times M_g$$
Controler : field state estimation

Difficulty : imperfect apparatus

- Detection efficiency : $\epsilon_d \approx 35\%$ of atoms are counted

Unread measurement

\[
\rho_{\text{proj}} = M_e \rho M_c^\dagger + M_g \rho M_g^\dagger
\]

proportion of atoms in $|e\rangle$
detected in $|g\rangle$

- Limited interferometer contrast

Detection errors

\[
1 - \eta_g = 88.5\% + \eta_e = 11.5\%
\]

Detection efficiency : 35% of atoms are counted

Limited interferometer contrast

Unread measurement
Controler : field state estimation

Difficulty : imperfect apparatus

- Poisson statistics
- Detection efficiency
- Detection errors

Assume 1 atom detected in state $|e\rangle$

- Was really the atom in this state? $|e\rangle$ or $|g\rangle$?

- Was a second atom missed?

- If so, in which state was it? $|e\rangle$ or $|g\rangle$?

$$\rho_{\text{proj}} = \frac{M_e \rho M_e^\dagger}{\text{Tr}(M_e \rho M_e^\dagger)} \equiv \rho_e$$

$$\rho_{\text{proj}} = p(e|e^d) \rho_e$$

All conditional probabilities given by Bayes law, knowing calibrated imperfections

Actuator: field displacement

Change photon number distribution via field displacement

Displacement operator \(D(\alpha) = \exp(\alpha a^\dagger - \alpha^* a) \) : injection of coherent field in cavity

\[
\rho_{\text{disp}} = D(\alpha) \rho D(-\alpha) \equiv D_{\alpha} \rho
\]

amplitude of displacement: complex amplitude of microwave pulse

In experiment:

- \(\alpha \) real only

- phase is chosen to be 0 or \(\pi \), with respect to initial field (fixing sign of displacement)

- Modulus \(|\alpha|\) is controlled via duration of microwave pulse

\[\begin{align*}
\alpha_{\text{max}} &= 0, 1 \\
\alpha_{\text{min}} &= 0, 001 \\
t_{\text{max}} &= 60 \mu s \\
t_{\text{min}} &= 0, 6 \mu s
\end{align*}\]
Controller: computing optimal displacement

Choosing displacement amplitude: moving field closer to target

Minimise proper distance to desired number state

- A straightforward definition:

\[d_F(\rho, \rho_c) = 1 - \langle n_c | \rho | n_c \rangle \]

Fidelity with respect to target

Drawback: Other Fock states are undistinguishable

\[d_F(|n\rangle\langle n|, \rho_c) = 1 \quad \text{for} \quad n \neq n_c \quad (n = n_c \pm 1, n \gg n_c, \ldots) \]

- A better definition:

\[d(\rho, \rho_c) = \sum_n \Gamma^n_{n_c} \langle n | \rho | n \rangle \]
Controller: computing optimal displacement

Choosing displacement amplitude: moving field closer to target

Minimise proper distance to desired number state

❖ A straightforward definition:

\[d_{\Gamma}(\rho, \rho_c) = 1 - \langle n_c | \rho | n_c \rangle \]

❖ A better definition:

\[d(\rho, \rho_c) = \sum_n \Gamma_{n_c}^{(n)} \langle n | \rho | n \rangle \]

The further \(n \) is from \(n_c \), the larger the distance to the target!

\[\Gamma_{n_c}^{(n_c)} = 0 \]
Controller : computing optimal displacement

• Minimisation :

\[\alpha = \arg \min_{\alpha \in \mathbb{R}} d(D_\alpha \rho, \rho_c) \]

\[\rightarrow \quad \text{Very costly in computing time!} \]

• To speed up the process : restrict to small displacement amplitudes

\[\rightarrow \quad \text{Define a maximum amplitude : } \alpha_{\text{max}} = 0,1 \]

\[\rightarrow \quad \text{Behaviour of } d(D_\alpha \rho, \rho_c) \text{ around } \alpha = 0 ? \]

\[d(D_\alpha \rho, \rho_c) = d(\rho, \rho_c) - a_1(\rho) \alpha - a_2(\rho) \frac{\alpha^2}{2} \]

Coefficients \(\Gamma_{n}^{(n_c)} \) chosen so that :

• If \(\rho = |n_c\rangle \langle n_c| = \rho_c \) \(\rightarrow \) \(d(D_\alpha \rho, \rho_c) \text{ is minimum at } \alpha=0 \)

\[(a_1(\rho_c) = 0 \quad a_2(\rho_c) < 0) \]

• If \(\rho = |n \rangle \langle n| \neq n_c \rangle \langle n_c| \rightarrow \) \(d(D_\alpha \rho, \rho_c) \text{ is maximum at } \alpha=0 \)

\[(a_1(|n\rangle \langle n|) = 0 \quad a_2(|n\rangle \langle n|) > 0) \]
Controler: computing optimal displacement

\[d(D_\alpha \rho, \rho_c) = d(\rho, \rho_c) - a_1(\rho) \alpha - a_2(\rho) \frac{\alpha^2}{2} \]

• Control law: studying the function

It has a local minimum on \([-\alpha_{\text{max}}, +\alpha_{\text{max}}]\)

\[\alpha = \alpha_0 \leq \alpha_{\text{max}} \]
Controller: computing optimal displacement

\[d(D_{\alpha_0, \rho}, \rho_c) = d(\rho, \rho_c) - a_1(\rho)\alpha - a_2(\rho) \frac{\alpha^2}{2} \]

- **Control law**: studying the function

If local minimum on \([-\alpha_{\text{max}}, +\alpha_{\text{max}}]\]

If Local minimum outside \([-\alpha_{\text{max}}, +\alpha_{\text{max}}]\)
Controller : computing optimal displacement

If local minimum on \([-\alpha_{\text{max}}, + \alpha_{\text{max}}]\)

\[d(D_{\alpha}, \rho, \rho_c) = d(\rho, \rho_c) - a_1(\rho)\alpha - a_2(\rho)\frac{\alpha^2}{2}\]

\[\alpha = \alpha_0 \leq \alpha_{\text{max}}\]

• Control law : studying the function

If Local maximum on \([-\alpha_{\text{max}}, + \alpha_{\text{max}}]\)

\[\alpha \mapsto d(D_{\alpha}, \rho, \rho_c)\]
Summing it up: the feedback loop

- Detection of atomic sample
- Computing optimal displacement
- Injecting control field
- Accounting for relaxation

<table>
<thead>
<tr>
<th>Atomic detection</th>
<th>Computing optimal displacement</th>
<th>Relaxation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_1^k \rho_j^k$</td>
<td>$\rho_{proj}^k = M_j \rho^k$</td>
<td>$D(\alpha) = D_\alpha \rho_{proj}^k$</td>
</tr>
<tr>
<td>$</td>
<td>j\rangle$</td>
<td>$\alpha = \alpha_{optimum}$</td>
</tr>
</tbody>
</table>
Summing it up: the feedback loop

- Detection of atomic sample
- Computing optimal displacement
- Injecting control field
- Accounting for relaxation

Speed requirement: next atom follows after 82 µs!
Computation & actuation must take < 80 µs

\[
\begin{align*}
\rho^{k+1} &\quad \text{Atomic detection} \quad |j\rangle = M_j \rho^k \\
\rho^k_{\text{proj}} &\quad \text{Computing optimal displacement} \quad \alpha = \alpha_{\text{optimum}} \\
D(\alpha) &\quad \text{Relaxation} \quad T_a = 82 \, \mu s
\end{align*}
\]
$n_t=3$ target

Raw detection

Distance to target

Actuator injection amplitudes

Estimated photon number probabilities: $P(n=n_t), P(n<n_t), P(n>n_t)$

Estimated density operator
Statistical analysis of an ensemble of trajectories

Quantum feedback on a 2-photon state

Photon number distribution, $P(n)$

Photon number, n
Quantum feedback on a 2-photon state

- Initial coherent field
- Open loop (after 160 ms)
Quantum feedback on a 2-photon state

- Initial coherent field
- Open loop (after 160ms)
- Closed feedback loop

Photon number distribution, $P(n)$

Photon number, n
Quantum feedback on a 2-photon state

- **Initial coherent field**
- **Open loop (after 160ms)**
- **Closed feedback loop**
- **Feedback trajectories converged to 80%**
 (according to quantum filter)

Similar results for n=1, 3 and 4...
Photon number probability distributions
(statistical average over large number of trajectories)

Initial field in red

Field after controller announces convergence in green

Steady state field in blue
Feedback with quantum actuator; atoms probe the field (dispersively), and also emit or absorb photons (resonantly)

X. Zhou, I. Dotsenko et al, PRL, June 2012
The three atom “modes”

The algorithm relies on three kind of actions:

Non-resonant sensor atoms, prepared in state superposition in R_1, perform QND measurements in Ramsey interferometer.

Resonant emitter atoms, prepared in state e in R_1, make the field jump up in Fock state ladder.

Resonant absorber atoms, prepared in state g, make field jump down in Fock state ladder.

Switching between these three modes is controlled by K via microwave pulses applied in R_1, R_2 by S_1 and S_2 and dc voltage V across C mirrors (Stark tuning of atomic transition in and out of resonance).
The quantum feedback loop with atomic sensors and actuators

12 QND sensor samples (0,1 or 2 atoms in each)

4 control samples (K decides which mode is best)

It requires several atoms to acquire info about photon number, but in principle only one atom to correct by ±1 photon: hence, many more sensors than emitter/absorbers

K estimates the field state by Baysian rules, computes the distance to target and decides what to do with the four control samples in each loop: emit, absorb or probe...
Locking the field to the $n=4$ Fock state.
Statistical analysis of 4000 trajectories for each target state

For comparison, Poisson distributions with mean photon numbers 1 to 7

Photon number distributions for the targets $n_t=1,2,3,4,5,6,7$ when quantum feedback is stopped at fixed time

Photon number distributions for same targets when quantum feedback is interrupted after K announces successful locking (with fidelity >0.8)
Programming a walk between Fock state by changing the target state (here the sequence $n=3,1,4,2,6,2,5$)
III-B
Field state reconstruction in CQED
QND photon counting and field state reconstruction

Repeated QND photon counting on copies of field determines the diagonal ρ_{nn} elements of the field density operator in Fock state basis, but leaves the off-diagonal coherences $\rho_{nn'}$ unknown.

Recipe to determine the off-diagonal elements and completely reconstruct ρ:
translate the field in phase space by homodyning it with coherent fields of different complex amplitudes and count (on many copies) the photon number in the translated fields.

Tomography of trapped light
Reconstructing field state by homodyning and QND photon counting

\[\rho \to \rho^{(\alpha)} = D(\alpha) \rho D(-\alpha) \]

Field translation operator (Glauber):
\[D(\alpha) = \exp(\alpha a^\dagger - \alpha^* a) \]

The homodyning translation in phase space admixes field coherences \(\rho_{nn''} \) into the diagonal matrix elements \(\rho^{(\alpha)}_{nn} \) of the translated field:

\[
\text{measured } \rho^{(\alpha)}_{nn} = \sum_{n'n''} D_{nn'}(\alpha) \rho_{n'n''} D_{n''n}(-\alpha)
\]

We determine \(\rho^{(\alpha)}_{nn} \) by QND photon counting on translated fields, for many \(\alpha \)'s, and get a set of linear equations constraining all the \(\rho_{n'n''} \) s. By inverting these equations, we get the full density operator of the field. This direct reconstruction method has its problems.

Requires many copies: quantum state is a statistical concept.
Reconstructing a coherent state

Two injections (preparing the state, then translating it)
A zoo of Fock states

n=0

n=1

n=2

n=3

n=4
How single atom prepares Schrödinger cat state of light

1. Coherent field is prepared in C

2. Single atom is prepared in R_1 in a superposition of e and g

3. Atom shifts the field phase in two opposite directions as it crosses C: superposition leads to entanglement in typical Schrödinger cat situation

4. Atomic states mixed again in R_2 maintains cat’s ambiguity:

$$|e> + |g> \rightarrow (|e> + |g>)|e> + (|e> - |g>)|g>$$

Detecting atom in e or g projects field into + or - cat state superposition!
Schrödinger cat state

\[|\alpha e^{i\varphi}\rangle + |\alpha e^{-i\varphi}\rangle \]

generated in C by single atom index effect
III-C

Cavity QED with artificial atoms
(an introduction to my talk at ICAP)
Simple description of an isolated junction

\[\delta_a - \delta_b = \delta \]
\[n_a - n_b = 2p \]

\[V = \frac{Q}{C} = \frac{2e p}{C} \]
\[C = \text{Capacitance of junction} \]

\[I_J = -2e \frac{dp}{dt} = I_0 \sin \delta \]
dc Josephson effect

\[\frac{d\delta}{dt} = \frac{2e V}{\hbar} = \frac{4e^2 p}{\hbar C} \]
ac Josephson effect

The 2 Josephson relations derive from an Hamiltonian \(H \):

\[\frac{dp}{dt} = -\frac{I_0}{2e} \sin \delta = -\frac{1}{\hbar} \frac{\partial H}{\partial \delta} \]
\[\frac{d\delta}{dt} = \frac{4e^2 p}{\hbar C} = \frac{1}{\hbar} \frac{\partial H}{\partial p} \]

\[H = \frac{2e^2}{C} p^2 - \frac{\hbar I_0}{2e} \cos \delta \]

Hamiltonian of a non-linear oscillator
Quantizing the isolated junction

The dimensionless conjugate quantities p and δ become operators (equivalent to momentum and position of a particle) satisfying:

$$[p, \delta] = i\hbar$$

Non-linearity because $\cos\delta \neq 1 - \delta^2/2$

Departure from parabolic potential lifts degeneracy of transitions and makes it possible to isolate a two-level system (qubit)

Shape of potential can be tailored by inserting junction in various circuits: a zoo of different qubits (quantronium, transmon, flux qubit, phase qubit etc.). Control qubit frequency and potential shape by magnetic flux.
Circuit QED

Josephson junctions coupled to coaxial resonator

Analogous to Cavity QED with larger coupling and faster dynamics: promising for quantum information.
A preview of ICAP talk

A Fock state Wigner function in Circuit QED
(J. Martinis Group, USBC)

n=7

Theory

Experiment
Synthesis and reconstruction of the states $|0\rangle + |n\rangle$ with $n=1,2,3,4$ et 5.

The theoretical (upper line) and experimental (lower line) Wigner functions $W(\#)$ are compared. The red zones correspond to negative W values.

The third line of frames shows the corresponding density matrices in Fock state basis (horizontal arrows: real numbers, vertical arrows: imaginary numbers).

Experimental values are in black, theoretical ones in grey.
Suggested readings

Cavity QED experiments:

Circuit QED experiments:

The CQED Group
S. H.
Jean-Michel Raimond
Michel Brune
Igor Dotsenko
Sebastien Gleyzes
C. Sayrin
Z. Xing-Xing
B. Peaudecerf
T. Rybarczyk

Exploring the Quantum
Atoms, cavities and Photons
S. Haroche and J-M. Raimond
Oxford University Press