
Appl. Phys. B 54, 407419 (1992) Applied "P, 
Physics B and I#i 

-w 
Q Springer-Verlag 1992 

Trapping Atoms in a Gravitational Cavity 
H. Waiiis*, J. Dalibard, and C. Cohen-Tannoudji 

Laboratoire de Spectroscopie Hertzienne de l'E.N.S. ** and Collège de France, 24, rue Lhomond, 
F-75231 Paris Cedex 05, France 

Received 18 October 1991JAccepted 18 December 1991 

Abstract. This paper is devoted to the study of a new atomic cavity consisting of a single 
horizontal concave mirror placed in the earth gravitational field. Gravity, by bending the atomic 
trajectories, plays the role of a second mirror closing the cavity. We first discuss the stability 
criterion for this cavity, assuming that the mirror has a parabolic shape. We then derive the 
quantum mechanical modes of such a configuration, with particular emphasis on the paraxial (i.e., 
close to vertical) motion. Finally, we discuss the possibility of populating those modes from an 
initial cold atomic cloud dropped above the mirror. 

PACS: 32.80.Pj 

Besides the elimination of the Doppler effect, laser cooling 
of free neutral atoms [ i l  has enhanced by orders of 
magnitudes the time available for probing atomic part- 
icles. Ultraslow atoms have been used to realize Za- 
charias' proposa1 of atomic fountains for Ramsey-type 
microwave spectroscopy [2,3]. In addition, the capability 
of storing atoms for a long time paves the way for 
achieving high densities in atomic traps. The maximal 
density of laser cooled atoms is now mainly limited bp 
light assisted atomic collision processes [4]. 

One interest in studying ultracold gases at high 
densities is the possibility of observing quantum statistical 
effects. When the extension of the center-of-mass wave 
packet equals the mean inter-atomic distance, the indis- 
cernability of the particles strongly modifies their collec- 
tive behavior. For Bosons, an example of such pheno- 
mena is the long sought Bose-Einstein condensation of 
spin-polarized hydrogen [5, 61. 

Besides the Bose-Einstein condensation there exist 
other possibilities for populating discrete quantum states 
by an average of more than one particle per state. A very 
prominent one is the state of a laser cavity pumped above 
threshold, containing more than one, usually a huge 
number of photons in one or a few modes. It is therefore 
very appealing to try to duplicate this scheme for atomic 
particles, by constructing an atomic cavity which would 
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provide discrete levels, long storage times and the possi- 
bility of populating a small number of modes (not 
necessarily the ground one) by more than one atom per 
mode. 

To build such an atomic cavity, it has been recently 
proposed [7] to use atomic mirrors formed by an 
evanescent laser wave [8,9] '. This provides a potential 
step which rises nearly instantaneously, i.e., with a length 
scale small compared to the cavity length. The caJities 
considered in [7] are a direct duplication of cavities for 
light. The atomic velocities are assumed to be large 
enough so that gravity plays a little role in the atomic 
d ynamics. 

In contrast, we study in this paper a single mirror 
cavity in which gravity plays an essential role: it replaces 
the second missing mirror by bending the atomic trajec- 
tories so that the atoms always bounce on the mirror as if 
on a trampoline (see Fig. 1). A first experiment on such a 
reflection of falling atoms has been realized recently [il]. 
Since a plane mirror was used, the confinement time was 
mainly limited by the transverse motion out of the 
reflecting spot. Here, we study the case of a concave 
parabolic mirror which leads to a stable atomic motion 
and to well defined three-dimensional modes. The main 
advantage of a gravitational cavity is that it can operate 
with atoms that are slower (O, = 30 cm/s) than for the two- 
mirror cavity ( v , z 2  m/s). The required laser intensity 

Another type of mirror has been demonstrated recently for 
hydrogen atoms using a film of liquid helium as a reflecting surface 
1101 
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Fig. 1. Pnnciple of trapping atoms in the gravitational field using an 
atomic mirror. The reflection potential is provided by an evanescent 
laser wave. Atoms are released above the mirror from an optical 
molasses or a magnetooptical trap 

used for the evanescent waves reflecting the atoms is then 
much smaller [by a factor (v,/v,)~]. 

For a two-mirror cavity the calculation of the mode 
structure directly follows from the one done for an optical 
cavity: one just has to replace the optical wavelength by 
the atomic de Broglie wavelength which remains nearly 
constant if the velocity changes due to gravity are small 
enough. In a one-dimensional gravitational cavity, the 
direct application of the formalism developped for optical 
cavities is no longer possible. In this paper we give a 
quantum mechanical description of the 3D-center-of- 
mass motion [12], in order to find the eigenfunctions or 
modes of the cavity, the distribution of its energy levels, 
and the factor of overlap of the cavity modes with initial 
atomic wavepackets released from a source of cold atoms. 
We put special emphasis on this last point since the 
ultimate goal is to accumulate more than one atom per 
cavity mode. On the other hand, we shall not discuss here 
the factors of losses out of the cavity. Indeed these losses, 
that can be due to momentum diffusion, diffraction losses 
or collisions, have been studied in detail in [7] and this 
discussion remains valid for the cavity of interest here. 

The paper is organized as follows: In Sect. 1 we recall 
the solutions for the one-dimensional modes of atoms in 
an idealized wedge-shaped potential. In Sect. 2 the general 
three-dimensional problem is treated both classically and 
quantum mechanically using the separability of this 
particular problem in parabolic coordinates. The limiting 
case of the paraxial motion is investigated in detail and 
Gaussian modes, in analogy to optical cavities, are then re- 
derived. Finally, in Sect. 3 the overlap of the modes with 
an initial atomic distribution is calculated and the results 
are discussed. The critical density of atoms confined in 
the cavity is compared to the critical density of Bose-Ein- 
stein condensation. 

1 Plane Mirror Modes 

We start from a simplified potential corresponding to an 
instantaneous 100% reflection off a plane atomic mirror 
and write the Hamilton operator in one dimension as: 

p2 mgz for zzO,  H=-+V(z); V(z)= 
2m co for z<0.  

By setting the potential to infinity at z = 0 we idealize the 
actual reflecting potential step which may be realized by 
an evanescent light wave whose extension is typically in 
the pn-range. Such an approximation could be treated in 
more detail by ascribing a quantum defect to the atomic 
eigenstates that would account for the real short-range 
repulsive potential and that would Vary slowly in the 
small energy range of interest. We also neglect here the 
interna1 evolution due to the interaction with the mirror. 

The corresponding stationary Schrodinger-equation is 
scaled in a convenient way by 

thus reading 

where [ = z/zo, [, = z,Jzo, and z, = Elmg. 
The normalizable solutions of this equation are ob- 

tained by an appropriate displacement of the Airy- 
function Ai([) [13] 

such that the displacement [, of. the n-th eigenvector 
coincides with the n-th zero of the Airy-function 
(Ai(-[,)=O) and ensures the boundary condition 
vn(0)=O at the origin. The eigenenergies are 
correspondingiy 

En = mgz, . 
The potential and the first eigenfunctions are depicted in 
Fig. 2. 

The dependence of the essential physical features on n 
becomes more transparent if we turn to the semiclassical 
quantization of the problem. Using the quasi-classical 
wavevector 

one obtains as quasi-classical wave-function in the al- 
lowed region z < z,: 

Fig. 2. Eigenfunctions and eigenenergies (quantum number n) of a 
particle with mass m in a gravitational potential V(z) =mgz with an 
infinite step at the ongin. z0 =(h2/2m2g)'13 is the quantum length 
scale 
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Table 1. Parameters of the gravitational cavity for 3 typical ele- 
ments for which laser cooling has been achieved. zo and wo are the 
length and frequency scales of the longitudinal quantum motion 
(2, 12). Considering atoms released at an altitude 5 mm above the 
mirror, we get an average quantum number iï for the excitation of 
the longitudinal motion (Sect. 1). Assuming a radius of curvature 
Ru = 2 cm for the mirror, a cloud of transverse extension xi = 1 mm, 
and a velocity spread vx,=3u,,,, where u,,, is the recoil velocity 
associated with the cooling transition, we get the classical size 
of the spot on the mirror Q, (38). w(z=O) is the waist of the 
ground state mode for the transverse motion with the same longi- 
tudinal energy (80) 

He* Na Cs 

The WKB quantization condition now reads 

where z, is the turning point of the classical motion with 
energy En. Noting that 

we get 

The quantity (37c/2)z13zo determines the spatial scale of the 
modes. The distance between neighbouring allowed turn- 
ing points scales for large n as 

The eigenenergies are given in the WKB-approximation 
by 

with 

The splitting between two adjacent energy levels is 

where T,,,,,=2(2z Jg)'l2 is the period of the classical 
motion of energy En. This splitting decreases as n-'13 for 
large n. Finally, we indicate in Table 1 the numerical 
values of those relevant parameters for a few atoms for 
which laser cooling has been demonstrated and which 
therefore are good candidates for populating such a trap: 

metastable helium in the 3S state, sodium, and cesium. To 
estimate the average quantum number, we have assumed 
in Table 1 that the atoms are dropped from a height 
z, = 5 mm above the mirror (l/T,,,,; = 15.7 Hz): 

2 Parabolic Mirror Modes 

To confine the motion in the cavity, it is necessary to 
compensate for the transverse escape of the bouncing 
particles. A concave parabolic mirror, corresponding to a 
potential V such as 

where R, is the radius of curvature of the mirror at its 
center, serves this purpose very well. This parabolic 
mirror is assumed to be infinite so that the gravitational 
potential provides a stable trapping of the,atoms for any 
initial condition. 

The aim of this section is to give a quantum mechan- 
ical description of the problem, i.e., to derive eigenvalues 
and eigenstates of the Hamiltonian. However, it is 
instructive to start with a classical analysis of the 
trajectories. This is done first in a paraxial approximation 
and second for the general case. Here we use parabolic 
coordinates for which the equations of motion, including 
the reflection off the mirror, are separable. We then study 
the quantum problem also in parabolic coordinates and 
focus ont0 paraxial States. Finally, we conclude this 
section by pointing out the similarities and the differences 
between Our treatment and the Gaussian beam approach 
for the study of optical cavities in the paraxial regime. 

2.1 Simplijied Stability Consideration 

We are interested here in a configuration where the 
classical trajectories of a particle bouncing off the mirror 
are stably confined to a small, paraxial region of the 
mirror. This paraxial domain is more precisely character- 
ized by a small ratio between horizontal and longitudinal 
velocity components and by a transverse position spread 
on the mirror that is small compared to the height of the 
trajectories. For simplicity we consider here a motion in 
the x-z-plane, i.e., with no angular momentum along the 
z-axis. 

To study the stability of a multiply reflected trajectory 
one can use a simple approach analogous to the study of 
stability of an optical cavity [14]. The time evolution of 
the transverse atomic coordinate is modeled by the 
iteration of a 2 x 2 propagation matrix for the position xn 
and the velocity v,, of the particle at the mirror. Assuming 
that both the modulus vz of the vertical velocity compo- 
nent on the mirror and the time of flight 2vJg between 
two successive bounces remain nearly constant, we obtain 
the iterated map 
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with 

The iteration of the unimodular 2 x 2 matrix M is stable 
for the condition ITr(M)I <2. This is fulfilled if 

Introducing the apex h = vZ/2g of the trajectory we can 
rewrite this as 

Thus, stable paraxial motion is possible if the apex stays 
below the focus F of the mirror. 

2.2 The Classical Motion in Parabolic Coordinates 

We now turn to the study of the classical motion .in the 
general case, where the horizontal velocity components 
are comparable in magnitude with the vertical compo- 
nents. The apparent complexity of the classical motion 
under multiple reflections can be considerably reduced by 
finding the constants of the motion. Two of them are 
obvious: the energy E and the z-component of the angular 
momentum due to the rotational symmetry around the 
z-axis. Both of them are also conserved after reflection 
from the mirror. 

For a linear potential such as V=mgz there exists, as 
for the Kepler-problem, a third independent quantity 

which remains constant during free motion. The existence 
of this constant of the motion is analogous to the 
conservation of the Runge-Lentz vector of the Kepler- 
problem [15]. Note that in (19) we have shifted the origin 
of the z-axis into the focus F by setting 

and that we have defined the angular momentum L with 
respect to F. 

The important property of the parabolic mirror which 
we show in the following is that b is also conserved after 
reflection off the mirror, and is thus a constant of the 
entire motion [16]. To take advantage of this symmetry 
we now turn to the formulation of the problem in 
parabolic coordinates. This will allow us to separate the 
3D problem into three I D  problems, both for the classical 
and the quantum case. 

The parabolic coordinates 5,q,4 are defined with 
respect to the focus as: 

The surfaces of constant parabolic coordinates 5 and q are 
paraboloids around the z-axis, having a comrnon focus F 
and radii of curvature 5 and q on axis: 

t x2+y2 z=--- 
2 25 

q x2+y2 
(22) 

z"=--+-- 
2 2tl . 

In particular, the surface of the mirror is described by 
q=RM. 

The parabolic momenta are now position dependent 
and defined by 

. 5+v  
p5=m5- 

5+? 
45 

and p,=mfi-. 
4tl 

They are related to the cartesian momenta by 

where r = (x2 + y2 + Z2)* and where the + ( -) sign stands 
for t (respectively q). 

The three constants of motion can be calculated in 
parabolic coordinates 

and 

The potential energy U = mg(5 - q)/2 and the energy ,? are 
measured with respect to the focus. For the I D  motion 
along the z-axis, E" is related to the energy E introduced in 

I 
Sect. 1 by E"= E - m g ~ d 2 .  

The transformation of the canonical momenta in a 
reflection on the parabolic mirror is particularly simple in 
parabolic coordinates 

As a consequence of (28) al1 three constants of the motion 
are conserved under reflection. 

Combining (25) and (27) to form the quantities &+ b/q 
and E-b/t, we now get two independent equations for 
the momenta ps and p,: 
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Fig. 3a-f. Classical motion in a gravitational 
cavity using a parabolic mirror with radius of 
curvature R,. a and d: atomic trajectories in 
the x-z-plane. b, c, and e, f show the effective 
potentials for the parabolic coordinates ( and 
11, corresponding to a and d, respectively. The 
value of the constant of the motion b is 
negative for a-c, and positive for d-f, with 
equal modulus (b 1 = 0 . 1 6 4 m g ~ i .  In both cases 
E= 0.25mgRM 

with effective potentials U, and U2 that depend on the On the other hand, for positive b (and still L,=O), 
constants L, and b: Ul(t)+ + co if ( +O so that the equation E- Ul(() = O has 

two positive roots tmin = (- and lm,, = ( + given by 
mgt b L2 

VI(()= - + - + -- 
2  ( 2mt2' (31) t*=(Ek1/=)/mg (33) 

mg? b L3 U2(q)= -- -- +- 
2  q 2mq2' (32) 

In addition to the gravity and centrifuga1 potentials, one 
thus obtains apparent "Coulomb terms" b/( and 611. 

The separability of the problem in parabolic coordi- 
nates plays an essential role for the analysis of the motion. 
Suppose that we start with atoms on the z-axis (x = y =O) 
with o,=O, at an altitude h above the mirror, and with a 
velocity o, along the x-axis. Such a two-dimensional 
situation corresponds to L,=O. Then the sign of b, as 
calculated from (19), is directly related to the position of 
the launching point with respect to the focus; if the atom 
starts from below the focus (ZcO), b is negative, if it starts 
from above (?>O), b is positive. As a consequence, for 
negative b the potential VI(() tends to - co for (-+O and 
the trajectory in (-space is confined between ( = 0 (corre- 
sponding to the negative Z-axis) and an outer turning 
point t,,, (Fig. 3b). As can be seen from Fig. 3c, the 
q-motion is confined between a parabola qmin and q = RM. 
A corresponding trajectory in the x-z-plane is shown in 
Fig. 3 a. 

if E"> 1/2mbg; the (-motion is then confined between an 
inner and an outer turning point (Fig. 3e). The q-motion is 
confined between O and RM (Fig. 3f) and the correspond- 
ing x-z-motion is therefore bounded by the three 
parabolas ( = (,in, ( = lm,,, and q =  RM (Fig. 3d). 

Using the above analysis, we can rederive the stability 
condition (18) as a consequence of the sign of b. If b is 
negative (particle dropped on the z-axis above the focus), 
the motion excludes the negative z-axis and is never 
paraxial. On the other hand, if b is negative with a small 
absolute value (particle dropped below the focus with a 
small transverse velocity O,), the (-motion is confined 
between O and (,,, 4 Rh(, which corresponds to a paraxial 
motion along the negative z-axis. 

The knowledge of the constants of the motion also 
allows us to determine the area on the mirror that is hit 
during the multiple reflections occurring for a given clas- 
sical trajectory. This is an important quantity in practice 
since it determines the size of the spot over which one 
has to ensure a good reflectivity. As an example, we con- 
sider again an atom dropped at a height h < R d 2  above 
the mirror with v,=O. We assume here that both the 
initial displacement xi and the initial velocity oXi along the 
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x-axis are non-zero. The three constants of the motion 
take the values: 

b and E are assumed to be negative so that the motion is of 
the type sketched in Fig. 3a. From the relation 
x2 + y2 = <q ("th y = O in our particular example) we can 
determine the extension Q of the transverse motion. Close 
to the upper turning point the maximal radius, corre- 
sponding to the intersection of the two boundary para- 
bolas, is given by QS = 5maxqmi,, and reads (without any 
approximation) as 

Similarly, the spot size on the mirror (q =RM) is given by 
dl= S r n a x R ~ :  

which, in the paraxial limit vX,/2g, xi 6 (R J2) - h, can be 
simplified into 

To give a short numerical example we consider the three 
atoms mentioned above (He*, Na, Cs) each cooled at an 
rms velocity equal to 3 times the recoil velocity v,,, = hklm, 
which is known to be of the order of the minimal velocity 
dispersion achievable with optical molasses [17-191. We 
take a parabolic mirror with RM = 2 cm (OF = 1 cm), and 
we assume that the initial atomic cloud is dropped from a 
height h = 5 mm above the mirror surface with a spatial 
extension x i = l  mm. The values for v,,, and Q, are 
indicated in Table 1. We note that for He* and Na the 
initial conditions do not fulfill the requirement for a 
paraxial motion. However, the exact result from (38) is 
found to be close to the approximate one (39). The leading 
term in Q, comes from the x? term for Cs, and from the vXi 
term for He* and Na. 

Note finally, that classically x? and vii  can both be 
arbitrarily small, so that there is no lower bound to Q, and 
e,, the bouncjng motion remaining in this limit even 
linear along the z-axis. Quantum mechanically, the 
Heisenberg uncertainty relation mxivXi2 h/2 imposes a 
lower bound for Q, and Q, which is found to be 

and 

Later on we will confirm these heuristic estimates by a full 
quantum mechanical treatment, es and Q, appearing as 
the beam waists of the fundamental transverse mode at 
the turning point and at the mirror (79,80). 

2.3 Quantum Mechanics 
of Atoms Bouncing off a Parabolic Mirror 

We now turn to the quantum mechanical description of 
the motion. We assume that the mirror is infinite and that 
the motion is bound in three dimensions, so that the entire 
spectrum is discrete. In practice the mirror will be finite 
and there will still exist a continuous part of the energy 
spectrum; also unavoidable losses will limit the lifetirne of 
the trapped particles and will give a width to the levels. 
However, these effects will be neglected here. 

We have seen in the previous section that in the 
classical regime there are three constants of the motion, E, 
L,, and b. The corresponding quantum mechanical pro- 
perty is the existence of three operators which commute 
and can have a common basis set of eigenvectors. The 
operator corresponding to b is obtained by symmetrizing 
p x L in the well known manner yielding (p x L - L x p)/2 
= p x L - ihp. The eigenfunctions of the Hamiltonian can 
thus be labelled YE, ,, corresponding to the eigenvalues 
E, hM, and b. Here M is integer (M and -M are 
degenerate) whereas E and b are real numbers. 

When determining the solutions of the stationary 
Schrodinger equation, we also take advantage of the 
separability of the problem in parabolic coordinates. 
Therefore, we seek the solution in the form 

The eigenvalues E, M, and b appear as separation 
constants and can be used to label F and G as well. In the 
parabolic coordinate system the boundary condition 
introduced by the mirror simply reads 

G(q)=O for q r R M .  (43) 

We now express fi and 6 in position representation in 
parabolic coordinates. After a tedious, but straightfor- 
ward calculation we obtain: 

In (44) thezero of the potential energy is taken at the focus 
of the mirror as in (25). We now consider the two - 
eigenvalue equations (1):  fi^^,,, , = E YB,,, , and (II): 
GyË, ,,, = bYË, ,,,. Forming the two quantities (1) +(II)/? 
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and (1)-(II)/& we obtain two independent equations for 
F(5) and G(q): 

where we have used (2) and where we have put 

and 

Equations (46, 47) are eigenvalue equations for F and G 
with eigenvalues Rd8z:. The boundary condition (43), 
associated with F( + co) = O, guarantees the existence of 
non-zero-solutions to (46,47). The allowed values of /3 are 
then determined from the condition that both (46) and (47) 
must have simultaneous eigenvalues Rd8z:. We note that 
(46, 47) are similar to the Schrodinger equation for the 
hydrogen atom in an electric field [20], with the difference 
that the fractional charges +/3 and -/3 are required to 
add up to O instead of 1 as in the Coulomb case. 

The simultaneous solution of (46) and (47) requires in 
general a numerical treatment. In the following, we 
restrict ourselves to the paraxial regime which seems the 
most interesting practically. Furthemore, we will be able 
to get in this case approximate analytical solutions. A 
complementary regime, where the motion is limited to a 
region near a ballistic parabola between two points on the 
mirror, can be treated in a similar fashion. 

2.4 The Quantum Motion in the Paraxial Regime 

Paraxial motion takes place near the z-axis below the 
focus of the mirror, i.e., for E<O corresponding to .the 
classical stability criterion (1 8). In this region (2" <O), we 
can derive the approximate expressions 

for 5 4q.  Therefore, q corresponds predominantly to the 
longitudinal motion, whereas 5 corresponds to the trans- 
verse motion, as we have already noticed when studying 
the classical trajectories. 

The paraxial eigenstates can now be defined more 
precisely by the following requirements: 

(i) They are located well below the focus of the 
mirror; more precisely, the distance between the turning 
point and the focus of the mirror is large compared to z,, 
i.e., RE % z,. 

(ii) They are highly excited with respect to the longi- 
tudinal coordinate q; E = E" + mgR J2 % hw,, where w, is 
given in (12). 

(iii) They correspond to low excitation of the trans- 
verse motion, i.e., according to (37) and (49) to small 
absolute values of /3 (fi< 0); later on we will see that the 
precise requirement is IBI 4 Rdz;. 

a) The Transverse Motion. We consider the transverse 
motion in the limit of low quantum numbers and for small 
transverse extension of the wavefunction. For small 5, we 
can approximate (46) by neglecting the linear term in 
5/8z:. We will check at the end of this calculation that this 
assumption is consistent with Our result. We also change 
to the new variable 

so that (46) becomes 

This is formally identical to the radial Schrodinger 
equation for a two-dimensional hamonic oscillator with 
a mass m, an azimuthal quantum number M, a frequency 

and an energy E = - Zt2/3/2mRE = - b/R,. It is well known 
that (52) has normalizable solutions only if the following 
relation holds between E, M, and 8: 

The integer n r 2 0  denotes the number of nodes of the 
radial function, whereas n, is the quantum number 
characterizing the total excitation of the transverse 
motion. This relation gives us an important connection 
between the allowed quantized values b and RE 

We will derive a second relation between b and RE. by 
studying the longitudinal motion [see (64, 67)] which, 
combined with (59, determines the allowed values of E 
and b. 

Let us focus here on the ground state of (52), corre- 
sponding to M = n, = n, = O. It is a Gaussian distribution 
in Q: 

with a transverse extension given by: 

The excited states of (52) can be expressed by the well 
known Laguerre polynomials [13]. We can now check 
that it is justiîïed to neglect the gravitational term. Had we 
kept this linear part, we would have obtained a quartic 
potential in (52) through the replacement 
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This additional term is thus of the order of eg/Rg 
= which is indeed small due to assumption (i): 
RE%zo. This condition also expresses the requirement 
that the typical transverse energy h2/meg is small com- 
pared to the energy scale h2/mzg of the longitudinal 
motion (see Sect. l), since zo -4 e0 is equivalent to RE % zo 
according to (57). 

b) The Longitudinal Motion. We now turn to the study of 
the longitudinal motion in order to determine the allowed 
quantized values of RE and thereby the complete set of 
quantum numbers E, b, and M which characterize an 
eigenstate of the paraxial motion. 

In order to solve (47), it is convenient to transform it 
into a Schrodinger type equation by the change of 
variables q=ep [21, 221. We then obtain 

with the wave-vector 

The WKB-solution in the allowed region is given by 

1 
GO = 1/- sin (pjin ep'K(ep')dp' + :) . 

ep K(ep) 
(61) 

This can be reexpressed in terms of q by 

The lower bound qmin = qmin(RE, fi, M) is the turning point 
of the q-motion (see Fig. 3c). The WKB quantization 
condition then reads as 

Let us now discuss the importance of the three terms 
contributing to K(q) in (60). The first term (q - RE)/8zi is 
the leading term. If this term was alone, we would recover 
exactly the same quantization condition as in (7,9). In this 
case the wave function would mirror the wave-function (6) 
yet with parabolic wave fronts q=const replacing the 
plane wave fronts of the plane mirror modes. The second 
term in (60) describes the correction due to the transverse 
motion; it is much smaller than the first one, if q -RE is of 
the order of or larger than zo which is the case by virtue of 
condition (iii). Finally, as long as M2 is not too large, the 
last term in K(q) is small compared to the two first ones 
and it will be neglected in the following. We therefore 
write: 

Sirnilarly, the position of the turning point q, is 
approximately 

We can now evaluate the phase integral (63) and then 
derive the quantization condition. We get after some 
algebra 

+ (&)'If arctan ( F ) ' l 2 ,  (67) 

where terms small compared to 1 have been neglected. 
This result plugged into (64) and associated with (55) 
allows us to determine E and fi for a given set of quantum 
numbers n, and nt for the longitudinal and transverse 
motions. As an example, we now use these two equations 
for deriving the frequency spacing between the various 
modes. 

c) Mode Frequency Spacing. In order to calculate the 
frequency spacing between two adjacent modes (either 
longitudinal or transverse), we differentiate (55) and (64) 
to obtain a 2 x 2 linear system: 

An,=AARE+ BAB, (68) 

nAn, = CAR, + DA/?, (69) 

where the coefficients A, B, C, D are functions of RM, RE, fi, 
and z,. Keeping only the leading terms in the paraxial 
approximation, we get 

D = - - arctan y 
Bo \ RE- -=J 

with Bo= - l m .  Let us first consider the spacing 
between two longitudinal modes. In (68,69) we set An, = 1, 
An, =O. We get ARE=n(C-DA/B)-' =n/C, and we now 
use RE= -2E/mg to obtain 

which is equivalent to the result (13). 
We now set An, = O, An, = 1 to determine the frequency 

spacing between transverse modes. We obtain ARE 
=(A- BC/D)- ' = - D/BC so that 

This means that the splitting between transverse modes 
AE, may be of the same order as the splitting between 
longitudinal modes AE,, AE, = +A$ for RE = Rd2. 
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Fig. 4a, b. Density profile for the eigenmode 
corresponding to the 16th excited state of the longi- 
tudinal motion (R,/2 = 23z0, z, = 17 .67~~) .  a Ground 
state of the transverse motion; b excited state n,= 1, 
M =  1 of the transverse motion. F i s  the focus of the 
mirror 

2.5 Paraxial States in Cartesian Coordinates Q = 1/5RE and the approximation (50) we can rewrite the 
ground state Gaussian wave function exp(-e2/2~;) as 

We now write the expressions obtained for the paraxial 
states (56) and (62) in terms of cartesian coordinates. This q x ,  y, z) =exp 
will allow us in the next Sect. 2.6 to compare Our results 

(77) 

with the well known characteristics of an optical cavity. where the transverse ares of the wave function varies as 
We start with the longitudinal motion. Using (SI), the 

WKB phase (67) is approximately 
w2(z) = (Rh( - 22) (78) 

@WKB(X, Y, Z) - 
The waist of the mode at the turning point takes the value 

+ y2 ] + flZ), (73) WE = w(z&= [2z;(RM - 2zE)] Il4. (79) 

The maximum transverse extension is reached at the 
1, where mirror (z =O) and is equal to 

We have put z, = Elmg =(RM - RE)/2. As in Sect. 1, z, 
represents the maximal height reached classically by the 
atom moving with an energy E in the paraxial limit. We 
now introduce, as in Sect. 1, the local wave vectoi k(z) 
= i/m so that the function G(z) reads 

with 

R(z)=RM-22. 

This is the diffraction limited minimum spotsize of a 
de Broglie wave retroreflected into itself by a parabolic 
mirror on one side and by gravity on the other side. We 
'remark that this transverse size of the wave function 
ranges between the quantum scale z, and the macroscopic 
scales RM and RE. For a typical situation well inside the 
stability region z, = OF/2 = RJ4, we find from (79, 80) 
that the waist on the mirror is 1/S larger than the waist 
around the tuming point. Numerical values for this waist 
in the case RM = 2 cm, z, = 5 mm and for the three atoms 
He*, Na, Cs are indicated in Table 1. 

Figures 4a and 4b  give examples of atomic density 
plots for two paraxial modes calculated using the results 
of this section. 

We have thus separated a vertical (longitudinal) phase 1 variation involving both the varying de Broglie wave- 
I length and the additional phase )(z), and a transverse 2.6 Gaussian Beam Analogy 

phase variation corresponding to a spherical wave with a 
radius of curvature R(z). This radius of curvature matches The paraxial solution obtained above for the Schrodinger 
the radius of the mirror RM at z = 0  and decreases with equations (46, 47) describes essentially an atomic de 

I 
increasing z to take its minimal value RM-2zE at the Broglie wave propagating vertically up and down with 
tuming point. a small transverse diffraction. It is instructive to compare 

The transverse amplitude of the wave function is, on such a de Broglie wave with the solution obtained 
the other hand, determined by the function F(<). Using from a Gaussian beam approach, similar to the one used 
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in optics [12, 141, the gravitational potential playing 
here the role of a z-dependent index of refraction. 

Formally, the solution of the three-dimensional 
Schrodinger equation 

with k2(z) = (Z-z,)/z; is sought in analogy to the descrip- 
tion of optical wave propagation by the ansatz 

where 

contains the rapid phase variation in the direction of 
propagation (cf. Sect. 1) and where Y, contains the slowly 
varying amplitude and phase factors which determine the 
beam shape and the curvature of the wavefronts. Neglect- 
ing slowly varying terms, (81) leads to the approximate 
equation for Y, : 

This can be reduced to the standard form with a constant 
wave vector 

if we introduce the new longitudinal variable 8(z) 
= i/m which is proportional to the time of free fa11 
from z, to z. In (85), k,= zdz; is the maximum wave 
vector of the atom reache d/ at the position of the mirror. 

The general solution of (85) is well known. It corre- 
sponds to a Gaussian beam characterized by its focal 
plane and its waist. To determine such a solution one 
needs two boundary conditions. For the present problem, 
one of these conditions is obtained by requiring the radius 
of cumature of the beam to match the radius of curvature 
RM of the mirror in z = O  (8 = z,). It does not seem easy to 
find convincing arguments for specifying the second 
boundary condition, for example, the radius of curvature 
of the wave at the turning point z = z, (8 =O). 

We have thus found it necessary to start from the 
solution obtained in the parabolic coordinate treatment 
(75) and (77), to rewrite it in terms of x, y, and 8 and to 
check that it matches the usual Gaussian beam solutions 
of (85). 

Restricting ourselves to the ground state for the 
(-motion, we obtain for the function YË,,,? deduced from 
(75, 77): YE,O,b= YOI(~)Y1(~,  y, O)+C.C. ~ i t h  

This indeed corresponds to the TEM,, Gaussian beam 
solution of (85) with a focal plane located at 8=0, i.e., at 

the turning point z = z,, with a beam diameter of 

with a Rayleigh length OR= kEw22, and with a radius of 
curvature of 

Using the result (79) for w,pne can check that the radius 
of curvature on the mirror R(8 =z,) matches the radius of 
curvature of the mirror RM. 

Let us finally point out a conceptual difference between 
the radius of curvature R(z) defined in (76) and the one 
introduced here, R(8). The first one corresponds to the 
local wave vector k(z) as it appears in (75). It gives the 
shape of the wavefronts in real space (x, y, z); in particular 
it is finite around the turning point, the corresponding 
nodal surface being a parabola ?=RE. The radius of 
cumature R(8), defined in the fictitious space (x,y,8) 
refers to a constant wave vector k, which coincides with 
the real one k(z) only on the surface of the mirror. This 
radius of curvature R(8), which is infinite around the 
turning point, has therefore no direct geometrical sig- 
nificance. 

3 Injecting Atoms in the Canty Modes 

We now come to the last part of this paper, which deals 
with the calculation of the number of modes which will be 
populated if one starts from an atomic cloud, produced 
for instance by a molasses or a magnetooptic trap. This 
problem is of particular interest if one wants to accumu- 
late several atoms in a few modes. in order to achieve hieh 
degeneracy factors and therefore to be in a situation wh&e 
collective effects due to quantum statistics may play a role. 

We will assume here that the initial atomic phase space 
distribution (Wigner distribution) is Gaussian bbth in the 
spatial and momentum variables x, y, z and p,, p,, pz. This 
distribution is supposed to be centered on the z-axis at a 
height z, above the surface of the mirror. We then have 

with, for instance, 

1 
WZ(zY pz) = exp [ - (z - Z,)~/~Z?]  

The position and momentum widths satisfy the Heisen- 
berg inequalities xipxi, y,pyi, zipZi 2 h/2. The situation 
xipXi = . . . = h/2 is of particular interest, since it corre- 
sponds to a pure state (Gaussian wave packet). 
However, it should be kept in mind that most of the 
atomic clouds produced in present experiments are far 
from this lirnit. For instance, a magnetooptic trap for 
Cesium atoms [23,24] leads, at best, to a radius ri = 50 pm 
with a rms momentum pi of pJmi2  cm/s; this leads to 
r,pi=2000h, far from a pure state! We also assume here 



Trapping Atoms in a Gravitational Cavity 

that al1 the relevant points of these phase space distri- 
butions are well inside the stability region, that is, 
z, < R d 2  and z, 4 R d 2  - z,. 

We first calculate the overlap of this initial distribution 
with the Gaussian ground state of the transverse motion. 
We then evaluate the number of longitudinal modes that 
are populated, and we finally briefly discuss the con- 
ditions under which high degeneracy factors can be 
achieved. 

3.1 The Population of the ïkansverse Ground State Mode 

We suppose here that the initial distribution is symmetric 
with respect to x and y and we put r i=xi= y, and 
pi=pXi=pyi. If we denote e, the initial atomic density 
matrix corresponding to the transverse x-y degrees of 
freedom, the population .no of the transverse ground state 
mode F(x, y, z) (77) is given by 

1 
.no z 7 1 dxdx'dydy' 

'=w, 

We have used here the fact that the z extension of the 
initial distributions is small so that the variation with z of 
the waist w(z) of F can be neglected. Strictly speaking, we 
should also incorporate in (91) the transverse phase 
variation of the cavity modes appearing in the expression 
(75) of G. However, the radii of curvature involved are 
much larger than the waist w, and the contribution of 
these terms is therefore negligible. 

The density matrix element (x, yle,lxl, y') is simply 
obtained by a Fourier transform of (89,90) 

(x,~Ie~lx', Y') = ~ ( x ,  xl)a(y, Y') 

with 

In the case of an initial distribution corresponding to a 
pure state vin&) (ripi = h/2) this factorizes in the product 
of two functions depending on x and x': a(x,xl) 
= vin(x)v2(x1), respectively. 

The integral (91) only involves Gaussian functions and 
can be calculated simply. In the limiting case ripi = h/2, we 
obtain 

which can be equal to 1 if the initial Gaussian distribution 
perfectly matches the Gaussian transverse mode 
(ri= w&. In the general case, we obtain 

&2 

This is always much smaller than 1 if ripi% fi. For the 
cesium magnetooptic trap considered above and for a 
typical cavity as the one described at the end of Sect. 2, we 
find 7 ~ ~ ~ 2 . 5  x This very small number could be 
increased by a further reduction of the momentum 
dispersion pi and by a better confinement of the atom 
using, for instance, a dipole laser trap consisting of a 
tightly focused laser beam with a beam waist smaller than 
w,. Those two features could be combined by using, just 
before releasing the atoms, an adiabatic opening of this 
confining trap so that the value of ri would increase up to 
w,, while, at the same time, pi would decrease due to the 
conservation of ripi in the adiabatic opening. 

3.2 The Population of the Longitudinal Modes 

The population of a given longitudinal mode could be 
calculated in the same way as we have done for the 
transverse case, by evaluating an integral similar to (91). 
However, Our purpose here is more to estimate the 
number An, of longitudinal modes that are excited rather 
than determining the population of a given one. In order 
to calculate An, we proceed in two steps. First, we estimate 
the energy spread AE of Our initial distribution and 
second, we use 

An, = 
AE 

(aqan), = , ' 
where (aE/at~),,~ is the density of modes around the 
average initial energy Ë [see (13)l. The energy spread AE 
is defined by 

with Hz =pz/2m+mgz. This quantity is easily calculated 
from the Wigner representation of the initial distribution 
(89, 90) 

where we have introduced the reduced de Broglie wave- 
length -Â,, = filp,,. Combining (98) with (13) gives 
the value of An, 

Let us discuss the two limiting cases zipzi = fil2 (pure 
state) and ripi%fi/2. For a pure case we find that AE is 
minimum when z ~ = ~ - ' / ~ z , .  In this case we get 

where f i  is the average longitudinal quantum number. We 
recall that a typical n is 1O5-IO6 (see Table 1) which gives 
for this optimal initial pure state about 30 excited modes. 
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This result has been confirmed by a direct calculation of 
the integral of overlap of the initial state with the Airy- 
functions (4). In the case where zipzi % h/2, e.g., if we again 
consider the cesiurn magnetooptic trap described above, 
the two terms of (98) are of the same order and lead to 
An, = 1 04. 

3.3 Comparison with the Two-Mirror Cavity 

We now briefly compare the previous results with those 
obtained for a linear two-mirror cavity [7] in which we 
neglect gravity. The calculation for the transverse modes 
is the same as for an optical cavity and leads to typical 
waists of the order of a few microns, for a cavity length 
L E  1 cm and a longitudinal velocity v =  1 m/s. The cal- 
culation of the population no of the ground transverse 
mode remains valid and leads to equations identical to 
(94) and (95). 

The number An, of populated longitudinal modes is 
still given by (96) but we must now use the relation 
E=n:n2h2/2mL2 between the energy E and the longi- 
tudinal quantum number n,. If we denote Ap the initial 
atomic momentum dispersion around the average mo- 
mentum p (p = n,nh/L), we find 

If the atoms are injected in the cavity using moving 
molasses, Ap is as above, of the order of a few recoil 
momenta. This gives, typically, An,= 105, larger by one 
order of magnitude than the one found for a gravitational 
gravit y. 

3.4 Achievement of High Degeneracy Factors 

Quantum statistical effects are expected to be important 
when the number N, of atoms in a given mode v is larger 
than 1. This degeneracy factor N, plays a role analogous 
to the one defined for Bose-Einstein condensation ng,, 
where n is the density of an ensemble of free atoms at 
temperature T and kdB is their de Broglie wavelength. In 
both cases the goal is to achieve degeneracy factors as high 
as possible (% l), while, at the same time, keeping the 
density low enough to avoid losses due to collision effects. 
In this section we show that it is possible to achieve, in a 
gravitational cavity, degeneracy factors higher than in the 
optical molasses used for filling the cavity if one combines 
repeated fillings with suitable mode selection. 

Consider an atomic cloud of N atoms with a phase 
space density (90) in the isotropic case. The degeneracy 

I factor is 

If this cloud is dropped in a gravitational cavity, the 
maximal population of a mode corresponding to the 
ground state of the transverse motion is, using (95) and 

(99), in the case ri > w,, pi > h/w, 

As expected, N, increases when kdB increases (colder 
atoms) and when ri decreases (smaller clouds). The lowest 
achievable 3D temperature achieved in laser cooling leads 
to a A,, of a fraction of an optical wavelength. The 
smallest present values of ri are of the order of a typical 
laser beam waist ( l e 5 0  pm). The values of kdB and ri 
being roughly the same for al1 laser cooled atoms, we now 
look for the value of zO, i.e., of the atomic mass, optimizing 
N,.  We find z:Pt=(#BrJ2)113z0.5 pm which is in the 
range of the values found for Na and Cs (see Table 1). 
Using these values of z;Pt, one gets 

which is smaller than (102) by a factor of I/r,lz,. 
To increase N:Pt, one can consider multiple fillings of 

the cavity (using for example hyperfine optical pumping 
for inserting new atoms in the cavity modes without 
blowing out atoms which are already present). Suppose, 
for example, that we repeat I/zElr, fillings so that we 
recover the initial degeneracy factor (102). We evaluate 
now the maximal spatial density in the cavity. Consider 
first a single filling. After a while, the atoms initially in an 
altitude range zi are distributed between z = O and z = 2,. 
From the WKB wave function, one knows that the 
maximum density is found around the turning point and 
is reduced by a factor of with respect to the initial 
density. Consequently, after I/zElr, fillings we also recover 
the initial density of the atomic cloud. To sum up these 
arguments, in such a free running cavity we cannot 
increase the degeneracy factor without increasing, at the 
same time, the density of the atomic cloud. 

An attractive solution for circumventing such a dif- 
ficulty is to insert some mode selective elements into the 
cavity which would remove the atoms from most modes, 
except a few, reducing then the density without changing 
N:Pt. One could then increase considerably the number of 
fillings, and therefore the degeneracy factor, without being 
limited again by collisional losses. 

4 Conclusion 

In this paper we have presented the quantum mechanical 
description of a parabolic gravitational cavity. The 
eigenmodes of such a cavity, corresponding to three- 
dimensional standing de Broglie waves for the center of 
mass, have been determined. In the limit of paraxial 
motion, which is stable if the apex of the classical 
trajectory is below the focus of the mirror, we have found 
simple eigenfunctions: they consist of Airy-functions 
along the vertical axis and of 2D harmonic oscillator 
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eigenfunctions in the transverse directions. The treatment 
presented in this paper can be extended outside the 
paraxial domain, using the separability of the problem in 
parabolic coordinates. 

Populating a small number of modes from a source of 
cold atoms and achieving high degeneracy factors is an 
important problem which has also been addressed. The. 
conclusion of Our analysis is that mode selection mech- 
anisms are required if one wants to achieve high degener- 
acy factors with densities low enough to avoid collisional 
losses. Such a mode selection could, for example, operate 
exploiting velocity selective Raman transitions between 
two atomic interna1 states [25] .  Note finally, that a direct 
observation of the mode structure analyzed here would 
represent the first observation of a multiple wave atomic 
interferometer. 
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