# Columbia University

MATHUN2010 LINEAR ALGEBRA SPRING 2017

## Midterm I

Instructor: Guillaume Barraquand

**Time**: February 15, 2017. 10:10am - 11:25am

| Your name: |  |  |  |
|------------|--|--|--|
|            |  |  |  |
|            |  |  |  |
| IINI       |  |  |  |

| Exercise: | 1  | 2 | 3  | 4  | 5 | Total |
|-----------|----|---|----|----|---|-------|
| Points:   | 10 | 6 | 18 | 10 | 6 | 50    |
| Score:    |    |   |    |    |   |       |

#### **Instructions:**

- Please write your UNI on every page.
- Unless stated otherwise, your intermediate computations and reasoning must be readable and will be graded.
- Please write neatly, and put your final answer in a box.
- Books, notes, calculators, smartphones or any other electronic devices are **not** allowed.

(a) \_\_\_\_ For two invertible matrices A and B of size  $n \times n$ , we have

$$(ABA^{-1})^3 = AB^3A^{-1}.$$

(b) \_\_\_\_ For two matrices A and B of size  $n \times n$ , we have

$$(A+B)^2 = A^2 + 2AB + B^2.$$

- (c) \_\_\_\_ If  $A^2 = I_2$ , then A must be either  $I_2$  or  $-I_2$ .
- (d) \_\_\_  $\operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{pmatrix} = 3$
- (e) \_\_\_ There exists a  $3 \times 4$  matrix with rank 4.

Exercise 3

Let

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

In this exercise, we will show that for a nonnegative integer n,

$$A^n = \begin{pmatrix} 1 & n & u_n \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix},$$

where  $u_n$  is a certain sequence to be determined. Let B be the matrix

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

(a) (2 points) Find ker(B).

- (b) (1 point) Is B invertible?  $\bigcirc$  Yes  $\bigcirc$  No
- (c) (2 points) Compute  $B^2$ .

(d) (2 points) Compute  $B^3$ .

(e) (2 points) Show that for all  $n \ge 4$ ,  $B^n = 0$ .

(f) (2 points) Using the fact that  $A = I_3 + B$ , Compute  $A^n$  for a positive integer n.

Hint: You may use without justification that for two  $n \times n$  square matrices M and N such that MN = NM,

$$(M+N)^n = \sum_{i=0}^n \binom{n}{i} M^i N^{n-i},$$

with the understanding that  $M^0 = N^0 = I_n$ .

(g) (2 points) To help you, we suggest possible choices for the value of  $u_n$  (tick the correct one):  $\bigcirc \frac{n(n^2+3n+5)}{6} \bigcirc n \bigcirc \frac{n(n-1)}{2} \bigcirc \frac{n(n+1)}{2}$   $\bigcirc \frac{6-8n+12n^2-n^3}{6} \bigcirc \frac{n^3+14n-6}{6} \bigcirc n^2-n+1$ 

| <b>T</b> 7 | TINIT |
|------------|-------|
| Volur      | 1     |
| I OUI      | CINI. |

(h) (3 points) Find the inverse of A.

- (i) (2 points) Is the formula for  $A^n$  also valid when n is negative?  $\bigcirc$  Yes  $\bigcirc$  No
- (j) (Bonus) Find a general formula for

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Exercise 4.....

For  $\theta \in \mathbb{R}$ , let

$$R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

(a) (4 points) For  $\alpha, \beta \in \mathbb{R}$ , compute and simplify the product  $R_{\alpha}R_{\beta}$ .

Hint: You can do the computation using the usual product rule and simplify. Otherwise you can use block matrices and guess the product using an appropriate result from the course.

(b) (2 points) Let P be the subspace

$$P = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$$

Interpret geometrically the linear transformation of P defined by

$$\overrightarrow{x} \mapsto R_{\theta} \overrightarrow{x}$$

for  $\overrightarrow{x} \in P$ .

(c) (1 point) For any  $z \in \mathbb{R}$ , compute

$$R_{\theta} \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}$$
.

(d) (3 points) Interpret geometrically the linear transformation of  $\mathbb{R}^3$  defined by

$$\overrightarrow{x} \mapsto R_{\theta} \overrightarrow{x}$$
.

Hint: any  $\overrightarrow{x} \in \mathbb{R}^3$  can be decomposed as

$$\overrightarrow{x} = \overrightarrow{p} + \overrightarrow{p}^{\perp},$$

where 
$$\overrightarrow{p} \in P$$
 and  $\overrightarrow{p}^{\perp}$  is of the form  $\begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}$  for a certain  $z$ .

Extra space.