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ABSTRACT We show how to construct a reduced description of interacting genes in noisy, small regulatory networks using
coupled binary spin variables. Treating both the protein number and gene expression state variables stochastically and on equal
footing, we propose a mapping that connects the molecular level description of networks to the binary representation. We
construct a phase diagram indicating when genes can be considered to be independent and when the coupling between
them cannot be neglected, which can lead to synchrony or correlations. We find that an appropriately mapped Boolean descrip-
tion reproduces the probabilities of gene expression states of the full stochastic system very well, and can be transferred to exam-
ples of self-regulatory systems with a larger number of gene copies.

INTRODUCTION

Systems with multiple copies of the same type of gene inter-
acting in a single regulatory network are encountered both in
synthetic systems in the laboratory (1,2), and in natural
organisms, especially when sections of their genomes are
duplicated during evolution (3). The small numbers of the
molecules of a given type of protein or nucleic acid taking
part in gene regulation are a recognized source of stochastic-
ity in gene expression. The number of copies of transcription
factor proteins varies between 10 and 100 (for example, 0–25
b-galactosidase molecules were measured directly (4)). Gene
copy numbers change from one to a few, depending on
whether the genome has been replicated before cell division
and on the initial gene copy number in the cell, which can be
artificially regulated (e.g., by plasmids (5)). In elegant work,
deliberately increasing the number of copies of genes ex-
pressing proteins has been used to decrease noise (1,2,6).
The inducer concentration in such experiments (6) was
changed from 0 to 100 mM, and constructs with two to six
promoters were made. It has also been experimentally shown
(7) that, to ensure cell division, certain genes (i.e., CtrA)
must exist in two copies. Introducing multiple gene copies
should, at first sight, decrease the fluctuations in the gene
expression state. Yet the genes’ promoter sites must also
compete for binding of the transcription factor molecules
in the system. In this way, the limited copies of regulatory
proteins may introduce a new source of noise. In this article,
we discuss the steady states of systems of genes with protein-
mediated interactions and show how the stochastic effects
can result in additional cooperativity between genes.

Gene regulatory systems can be described at varying
levels of detail. Genes in large-scale networks are usually
described as either being expressed (8), or not expressed,
in given experimental conditions. A more-quantitative
understanding of small gene regulatory systems usually

requires explicitly keeping track of the number of regulatory
proteins, which in turn control the gene expression levels
(9–12). Such a detailed molecular description can be formu-
lated in terms of the underlying stochastic processes (13–16).
Buchler et al. (17) have argued that transcriptional regulatory
systems can be described as Boltzmann machines. Guided by
the example of small networks with multiple gene copies, we
propose a mapping between a reduced description of a gene
network in terms of binary on-off variables and a full
stochastic molecular description of regulatory gene-protein
systems accounting for protein numbers. This effective
two-state description links expression states of genes to
magnetic networks, which are reminiscent of Boltzmann
machines. In this way, the present framework connects the
description of gene expression states used commonly by
cell biologists with the stochastic treatment of the molecular
kinetic system.

For illustration, we explicitly investigate a set of toy
systems, in which we have only one species of protein and
multiple gene copies regulated by the given type of transcrip-
tion factor protein. We consider examples that have known
regulatory feedback functions that could be subunits of
a larger network—small networks of self-activated and
self-repressed genes producing and being regulated by one
type of protein. We choose the example of a system with
regulatory feedback induced by only one type of protein to
study interactions in a maximally coupled network as a func-
tion of the parameters of this network. We view such toy
systems as a first step toward studying interactions in more
realistic networks. The copies of the gene can be precisely
identical copies (that is, we model them as having exactly
the same chemical parameters); or they can be thought of
as mutated versions of the same gene with different parame-
ters, modeling a system caught in a missing-link state of
molecular evolution. We treat both proteomic atmosphere
and gene expression states stochastically. We then use a joint
probability distribution, which describes the number of
protein molecules in the system (considered to be well
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mixed) and the gene expression state to describe each gene
(3).

The phenomena described in this article are examples of
collective behavior. We ask how a switching event in one
gene influences the switching behavior of another gene, to
which it is coupled by a mutual protein environment
(Fig. 1). For a two-body system, the influence of one
subsystem on the other may be characterized as a coupling
parameter. Strongly interacting elements of a many-body
system may lose their individual properties and take on the
characteristics of a group acting as a unit in synchrony.
For example, magnetic spins may couple either directly
(i.e., through space), or indirectly (i.e., through atomic
bonds) to form domains of magnetization. It is interesting
to ask whether genes in cells that have a common task—
such as, for example, producing the same type of protein—
actually demonstrate such collective behavior. We investi-
gate the effects of noise arising from the small numbers of
protein molecules and slow gene expression state changes
on the strength of cooperativity between genes induced by
interaction between the genes and mediating transcription
factor molecules.

Using a maximum entropy technique, we map the
marginal gene expression state probabilities onto those for
coupled binary variables in an effective gene field. The
sign and magnitude of the effective gene field describes
the given gene’s tendency to be in a particular expression
state. The predicted expression state of the gene can be modi-

fied by protein-mediated gene-gene interactions that are
quantified by the coupling constant. This approach allows
us to describe the parameter regimes, in which effective
gene expression units can be treated as independent and
the parameter regimes, where, in contrast, genes form
a strongly coupled unit in the steady state.

We find that for parameter regimes, in which all the genes
individually can maintain their own proteomic field and be
expressed at an enhanced level, these genes can be treated
as independent units. Genes are said to cooperate when at
least one of the genes alone could not sustain a proteomic
field needed by that gene to produce protein molecules at
an enhanced level. In this case, both genes use the mutual
reservoir of proteins, and accordingly modify their expres-
sion levels. The coupling between the genes results in
steady-state probability distribution that could not be
observed in an effective single gene system. The parameter
regime in which genes can be treated as independent is anal-
ogous to the case of dressed effective particles in traditional
many-body condensed-matter systems. The properties such
as mass of the particle can be modified, but the effective
particles can still be treated as independent. In this analogy,
the cooperative region is akin to that of strongly correlated
electron systems. For potentially bistable systems, we show
that the parameter regimes in which the genes cooperate
correspond to bimodal probability distributions. In the limit
of strongly nonadiabatic binding of transcription function
proteins, the gene field clearly depends on the binding and

FIGURE 1 A schematic diagram of the mapping of

a molecular regulatory gene network onto a two-state

system. The up and down arrows indicate genes that are
respectively found in the on- and off-states. The influence

of the proteomic field on the gene states is described using

local h fields, which describe the genes’ tendency to be
found in a given expression state, and J couplings, which

account for gene-gene interactions.
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unbinding rates of the gene, whereas the coupling constant is
linked to the number of molecules in the proteomic field.

We test the validity of the transferability of the deduced
Boolean approximation on a four-gene system by comparing
the marginal probabilities based on the maximum entropy
model with probabilities from simulation studies. We show
that even though there are several gene copies, concatenating
the two-gene interactions accounts for a majority of the corre-
lation in such a system and the resulting description is capable
of accurately reproducing the exact marginal probabilities.

THE MAPPING

To stochastically describe a set of N genes regulated by
binding and unbinding of the same protein, we consider
the set of equations for the joint probability distribution
Pj1.jN ðn; tÞ. This 2N state function describes the state of
probability of finding each given gene i is a state ji ¼ on,off
and the number of regulating protein molecules present in the
cell. Since we are only considering one type of protein in
these problems, there is a single protein number variable in
the master equation. The state of the gene switches from
one for which there is only basal production (the gene is
off) to another state of activated production (the gene is
on) by binding/unbinding of activator/repressor proteins.
To be explicit: for example, a two-gene system is described
by a four-state probability vector: [Pon,on(n), Poff,on(n),
Pon,off(n), Poff,off(n)]. The number of protein molecules in
each state can change because of the production of proteins
by a given gene i in a given regulatory state with a constant
rate gi, on, gi, off, and degradation, with a rate proportional to
the concentration kn. Proteins bind as dimers to the operator
sites on genes with a bimolecular rate coefficient hbi and
unbind with a fixed rate fi. The processes considered in the
problem are depicted in Fig. 2. The evolution of the whole
system is described by a 2N dimensional matrix coupled
master equation. The gene expression states are coupled by
binding and unbinding of proteins. We present detailed
forms of the master equation for two activated genes in
Appendix A. We solve the full stochastic steady-state master
equation both by exact numerical methods and by simulating
with a random time Monte Carlo (Gillespie) algorithm (18).

In parallel with the full description, we can introduce
a reduced description of the gene expression states specifying

only probabilities of the genes being on, regardless of the
number of proteins in the system Cj1j2.jN ¼

P
n Pj1j2.jN ðnÞ.

The relation is easily generalized to a system with K
types of proteins to Cj1j2.jN ¼

P
n1
::
P

nK
Pj1j2.jN ðn1; ::nKÞ.

Mapping the state of each gene onto a discrete spinlike
variable si¼ 0, 1, these reduced probabilities can be rewritten
in terms of an Ising model with site specific fields hi and
coupling constants Jij, as depicted in Fig. 1,

Cs1s2.sN ¼ 1

Z
exp

" 
X

i

hisi þ
X

i<j

Jijsisj

!#

; (1)

where Z ¼
P

fsig exp½ð
P

i hisi þ
P

i<j JijsisjÞ&. Although we
focus here on a reduced description using marginal probabil-
ities of the gene states and protein molecule-number inde-
pendent parameters (hi and Jij), in general the same relations
hold for n-dependent fields hi(n) and coupling constants
Jij(n). The marginal probabilities Cij are replaced by the
full protein-dependent probabilities Pij(n) in the expressions
for the parameters, and the fields and couplings must be
evaluated for each protein number state separately.

We have chosen to use the nonsymmetric from of the Ising
model Hamiltonian having spins si ¼ {0, 1}, as opposed to
the more usual choice in solid-state physics that employs
a symmetric model with si ¼ {–1, þ1}. This choice is moti-
vated by the lack of symmetry in the interactions between the
on- and off-states. The genes communicate with each other
by protein-mediated interactions, which increase with the
protein concentration. When both genes are in the off-state,
the protein concentration is low, so it is not natural to regard
the genes as interacting to stabilize the off,off-state, as the
symmetric Ising model would imply. In an intuitive sense,
only the on,on-state can be stabilized by the protein field
(or destabilized in the case of a repressor), hence it requires
an interaction term. When one gene is on and the other off,
the protein field in which both genes function is not strong
enough to stabilize the on,on-state, again the genes effec-
tively do not interact. We can see that the biochemical details
of the interplay of the binding processes make it more conve-
nient to use the nonsymmetric formulation of the Ising
model. For concreteness, we summarize the mapping onto
a symmetric model along with the main differences in the
interpretation of the fields and interactions in the symmetric
and nonsymmetric representations in Appendix B.

For a two-gene system, there is a direct mapping between
the marginal probabilities of the genes and the Ising model
parameters. Explicitly,

h1 ¼ log
Con;off

Coff;off

h2 ¼ log
Coff;on

Coff;off
;

(2)

J12 ¼ log
Con;onCoff;off

Coff;onCon;off
: (3)FIGURE 2 A schematic diagram of an interacting gene network with one

type of protein and the considered reactions.
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The external field hi describes each gene’s tendency to be
in the on-state (or off-state for negative values) by comparing
its probability to be on when all the other genes are off, with
the case when all genes are off. Positive values of hi indicate
the gene is more likely to be in the activated state. The
coupling constant expresses, quantitatively, the cooperativity
of two genes in the system (i.e., whether they will be simul-
taneously found to be active). Large absolute values of the
coupling constant indicate a high probability for two genes
to be simultaneously on compared with the genes being on
independently in an uncorrelated fashion. Positive couplings
reinforce the proteomic field. Negative couplings inhibit the
effect of the proteomic field. For cooperative genes, the
actual states of the genes in a given region of parameter space
that are observed depend on the coupling constants.

A key quantity compares the rate of fluctuations in the
gene’s occupancy state with the rate at which the protein
number changes by synthesis or degradation.We call this ratio
the adiabaticity parameter, which compares the characteristic
timescales for the two processes. To estimate the timescale
associated with the change of the gene expression state we

compare the binding time with the protein lifetime ki ¼
hbi g

2
ion

k3 .

Small adiabaticity parameters (k%1) describe gene-occu-
pancy states, which change on long timescales, compared
with the shorter timescales on which protein numbers change.
Large values of the adiabaticity parameter (kR10) indicate
that the gene occupancy equilibrates before the protein
numbers reach a steady state. This is the limit usually consid-
ered in the so-called thermodynamic framework, such as the
one originally proposed by Ackers et al. (19) and utilized by
Buchler et al. (17) in their Boltzmann machine analogy.

The adiabaticity parameter is an effective measure for
comparing two characteristic timescales of the problem: the
timescale on which the gene expression state changes and
the timescale on which the number of protein copies changes.
In our effective model, the change in the gene expression state
is associated with the binding and unbinding of transcription
factors. In vivo, even in prokaryotes there are many other
factors, such as the forming of the open transcription complex
and binding of the RNA polymerase (RNAP), contributing to
the rate of transcription initiation. Furthermore, RNAP can
stall during transcription. Experimental observations show
that gene expression can occur in bursts (20–24), even in
prokaryotes (4,12,25,26). Bursting has often been modeled
by two discrete gene expression states (22,26,27). Because
of the abundance of RNAP, the concentration-dependent
binding of transcription factors is often the rate-limiting step
for the change of the gene expression state from basal to
enhanced (or vice versa). Since our interest in this article is
in the study of feedback, we choose to model the change of
gene expression state as binding and unbinding of transcrip-
tion factors, and scan a broad range of parameters.

To develop an intuitive feeling for the relevant adiabaticity
parameter range, in light of the currently available experi-

mental data, we compare the time for the gene to be on,
with the lifetime of the protein. Results based on measure-
ments of fluorescent MS2 mRNA fused to GFP molecules
in single cells in Escherichia coli (26) estimate the mean
time for the gene to be on, as 360 s. Taking the mean protein
lifetime as the division time 1800 s, results in an estimate of
the adiabaticity parameter of k~5.Within ourmodel, to obtain
the types of experimentally observed expression patterns and
bimodal probability distributions, both for this system (26),
and for b-galactosidase (4) and the lac repressor at interme-
diate concentrations (25), the adiabaticity parameters should
be set to k % 1. The results of experiments (28) that directly
measured the binding rate of a GFP-lac repressor fusion
protein to the LacI operator sites in E. coli reveal search times
for the lac repressor for finding one of the binding sites to be
354 s—which, assuming a concentration of ~10 dimers,
results in k ~100. DNA-CI binding experiments performed
on arrays (29) measure binding rates of 10'3 s'1, which result
in k ~ 1. Recent experiments in the yeast Saccharomyces
cerevisiae (24) point out that both single independent tran-
scription-initiation events that are clearly separated in time
(observed in theMDN1 gene), as well as transcriptional bursts
(in the PDR5 gene), are used as regulatory modes. Based on
the observed distributions in eukaryotes, adiabaticity param-
eters can also vary from thosewhich, within ourmodel, repro-
duce behavior characteristic of the adiabatic (large k) and
nonadiabatic limit (small k).

We emphasize that we choose to study the effects in
a wide range of parameters, as the experimental determina-
tion of adiabaticity parameters is an active area of interest.
Little is known about the rates of transcription regulation
and protein lifetime even in species such as E. coli in the
wild, where the bacteria may have much longer lifetimes.

To summarize, we choose to consider adiabaticity param-
eters between 0.1 (4,25,26) and 100 (24,28), because these
parameters correspond to the experimentally observed
patterns of protein expression and probability distributions.
In eukaryotes, the gene expression state changes on much
slower timescales than the degradation rate in proteins,
leading to the recently studied bursting phenomena
(20–24,30). Although prokaryotes were believed to function
in the strongly adiabatic limit, recent experiments also reveal
transcriptional bursting phenomena (4,25,26), which suggest
lower adiabaticity parameters.

We expect the external field hi, better termed the internal
field as it describes the gene’s tendency to be in the on-state,
to be related to the equilibrium binding constant of the gene
site, and to the protein concentration. Despite a general
complicated nonlinear expression for the hi field of each
gene, the leading order term is dominated by hi ¼
logð2ðhni

ny
i

Þ2Þ ¼ logðh
b
i hni

2

fi
Þ, where nyi ¼

ffiffiffiffi
2fi
hb
i

q
. In the adiabatic

limit, the mean protein number n can be determined from
the deterministic equations of motion, n ¼

P
i
gi1hbi n

2þgi0fi
hb
i
þfi

,
for a set of activated genes. In the nonadiabatic limit, the
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mean number of proteins is determined by the sum of the
production rates of the genes in the state with the largest
marginal probability. We will discuss the two limits in
greater detail throughout the article.

TWO COPIES OF THE SAME GENE

The adiabatic regime

Two activated genes

We first consider the case where the gene expression state
can safely be taken to be in equilibrium with the proteomic
atmosphere. Using deterministic rate equations, a system
of two copies of an identical gene (with identical equilibrium
constants) can be described as a composite one-gene system

having hni ¼ ðgeffonh
bn2 þ geffoff f Þ=ðhbn2 þ f Þ, with a doubled

production rate geffon ¼ 2gon; geffoff ¼ 2goff . A more detailed
full stochastic analysis reveals differences in the probability
distributions of the composite single effective gene and the
actual two-gene system in certain areas of parameter space.
Through their correlations, two identical copies of the genes
interact and their cooperativity modifies the mean number of
protein molecules actually found in the system.

To understand the interplay between the two genes, it
helps to consider a phase diagram for the parameters of the
reduced description in terms of on/off gene expression state
variables. Fig. 3, A and B, shows a phase diagram for the
gene h field and coupling constant J12 of the two genes,
with different equilibrium parameters as a function of the
effective production rate of the whole system (neff ¼
(gon(1) þ gon(2))/k) and the threshold number of proteins
at which each gene alone would be equally likely to be on
and off. The positiveness of the h field describes each gene’s
specific tendency to be found in the on-state, in a certain
parameter regime. As ny increases, more proteins are needed

to turn on each of the genes. For larger ny, the genes are more
likely to be off for larger production rates, which is quanti-
fied by an increasing negative h field. The h fields of the
genes describe effective independent genes dressed by the
proteomic field. Whether the genes actually will be on,
depends on the coupling quantifying the correlations
between the two genes. If the h field is large and positive,
each of the genes produces a proteomic field that sustains
its own on-state. For smaller values of the h field, the tenden-
cies of the gene to be on and off are similar and the observed
gene states depend on the genes’ cooperativity—described
by the coupling constant. For a system having only activated
genes leading to interactions, the Jij coupling is always posi-
tive. It is favorable for both gene copies to be in the on-state,
since they change their state by responding to a mutually
available proteomic field. The positive Jij coupling, stabilizes
the on,on-state and increases the probability of a given gene
to be on. Therefore, genes cooperate when they have
a slightly higher probability to be on, rather than off.

The cooperation results in a sharper transition as a function
of average protein molecule numbers n from the on- to off-
state, than if the genes could be assumed strictly independent
in their binding events. Such a cooperativity between genes
is a result of coupled genes and is a second-order effect
compared with the direct response to the available proteomic
field. The genes cooperate to sustain a collective proteomic
field. From the study of a single activated gene, we know
that self-activated genes become bistable when the proba-
bility to be on is similar to that for the gene to be off. We
can see that, for systems with two identical activated genes,
the region of interacting genes (J> 0 in Fig. 3 B) correspond
to regions of bistability (Fig. 3 C) of the solutions of the two-
gene system. Therefore, when studying the attractor structure
of large networks, we are intrinsically focused on the regions
of phase space when genes are strongly interacting.

A B C

D E

FIGURE 3 The gene h fields (A),
couplings J12 (B), and number of peaks

(C) in the distribution for a system with

two symmetric adiabatic activated genes

as a function of the effective production
rate in the on-state ðgonð1Þ þ gonð2ÞÞ=k
and the threshold number of protein

molecules ny. The parameter of both

genes are varied. The fixed parameters
are: k ¼ 2, goff(2) ¼ 2, and k ¼ 720.

The gene h fields (D) and couplings J12
(E) for a system with two weakly adia-
batic repressed genes as a function of

the effective production rate in the on-

state ðgonð1Þ þ gonð2ÞÞ=k and the

threshold number of protein molecules
ny. The parameter of both genes are

varied. The fixed parameters are k ¼ 2,

goff(2) ¼ 2, and k ¼ 1.
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Two repressed genes

The difference between the behavior of systems made up
purely of gene activators and those having purely repressors
can already be seen within the deterministic equations, where
the repressed gene system always exhibits only one stable
steady-state solution. This solution corresponds to amonosta-
ble probability distribution in the adiabatic regime. In the case
of an activated gene, if the effective production rate (neff) is
larger than the threshold number of proteins, the gene will
be on and the number of proteins is governed by the balance
of the production and degradation rates. In the case of a system
with a repressed gene, however, very high production rates in
the on state will result in repression of the gene.

A system of two symmetric genes with repressors in the
adiabatic regime can deterministically always be well
described by one effective repressed gene. As in the case
of two activated genes, the proteins produced by both genes
are shared by both genes as repressive transcription factors.
At the same time, unlike the case having symmetric activated
genes, the repressed genes are more strongly coupled
throughout all of the parameter range (Fig. 3 E). Much like
what is seen for the system with activators, however, the
couplings play a role when the h gene field changes sign.
In that region of parameter space, the genes have a slightly
larger probability to be on than off. Fig. 3, D and E, shows
an example of a symmetric system of two repressed genes
in the weakly adiabatic regime. Here the region correspond-
ing to significant correlation between the genes is larger than
that found in the strictly adiabatic regime. Increasing the
production rates in the on-state, destabilizes the on-state
(decreases the gene field h), by increasing the binding rates
of repressors. This in turn results in small numbers of protein
molecules in the system. The decrease in the gene field h
with the increase of the effective production rate is a result
of negative feedback in the repressed gene system, as
opposed to the positive feedback in the case of the activated
gene, which results in an increase of h. Since the genes are
coupled by proteins, and increasing protein numbers destabi-
lize the on-states, a gene found in the on-state induces the
other gene to be in the off-state. Therefore genes are hence
less likely to be found in the on,on-state compared with
the on,off- or off,on-states and the effective binary couplings
for repressed genes have negative signs. The probability of
a gene being in the on-state is reduced, compared with
a noninteracting system. Negative couplings reduce the
number of protein molecules, and effectively stabilize the
on-state. If the intrinsic preference of the genes to be on is
small (positive h gene fields close to zero), the negative
coupling destabilizes the on-states, and the genes are more
probable to be found in the off-state. When the thresholds
are small compared with protein molecule numbers produced
in the on-state, the gene is repressed regardless of the produc-
tion rate. In this region of parameter space, the number of
protein molecules is dominated by the effective production

rate in the off-state. Since for low threshold numbers and
high effective production rates, switching events are likely,
the couplings are large and depend mainly on the threshold
number of protein molecules, as those regulate the number
of protein molecules. Only for small effective production
rates and large threshold numbers is the average number of
protein molecules small, without additional feedback from
a repressed gene, and the coupling constant tends to zero.

Since the steady-state probability distribution for the adia-
batic repressed gene system has one peak, we can further
explore the analogy between the Poisson description of the
problem and the couplings of the pseudo-spin system. We
expect the probability of the number of protein molecules
for a system with a single adiabatic gene to be described by
a Poisson distribution. We can link negative J12 couplings
with a decrease in the width of the probability distribution
below that expected from the Poissonian case hn2i – hni2 <
hni. The decrease in the spread of the distribution compared
with the Poisson case also holds true when the system is
treated as an the effective one gene system, where the mean

number of proteins is given by hni ¼
goff ðeffÞðhn

2i
ny

Þ2þ gonðeffÞ

1þðhn
2i
ny

Þ2
.

Therefore, these sub-Poissonian statistics are not associated
in a simple way with increasing the number of genes. The
observed statistics are a result of the constraining interactions
for self-repressing systems,which decrease the variance of the
protein molecules. However, in parameter regions where
couplings cannot be neglected, the variance is slightly smaller
for the two-gene case compared with that for the composite
one-gene description. Adding more gene copies enforces
the constraints on the spread of the number of protein mole-
cules, by introducing additional repression from the other
genes. The decrease in noise in amany-repressed gene system
is therefore not a result of averaging the gene occupancy
states. In the adiabatic limit, the gene occupancy state is equil-
ibrated, and adding more genes should not modify the gene
occupancy statistics. The decrease in the spread of the distri-
bution is a result of constraining protein molecule number
fluctuations by introducing additional control mechanisms
in the form of other repressed genes. This control is imple-
mented as the feedback of collective proteomic field. For
the activated system, the positive couplings can be related
to an increase of the variance compared with the mean for
protein molecule numbers hn2i – hni2 > hni. In this case,
however, the increase of the spread of the number of protein
molecules is not related to broadening of the peak of the distri-
bution, but to the emergence of two peaks and a bistable distri-
bution. The value of the coupling parameter, both for the
repressed and the activated systems, is a measure of departure
from Poisson statistics.

Two different activated genes

We now consider two similar genes that, although having
different binding rates, bind and produce the same protein.
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In this case, there is no composite single gene to reproduce the
steady-state distribution of protein molecules. In Fig. 4, A and
B, we compare the two-gene system with two separate one-
gene systems where each of the genes has the same effective
production rate as the two-gene system. The binding and
unbinding parameters in the one-gene systems are the same
as those of the individual genes in the two-gene systems.
We see that, in the two-gene system, the steady-state proba-
bility distributions reflect the cooperation between the two
genes. The gene with the weaker promoter, alone, does not
have the ability to stabilize a proteomic cloud that would
keep the gene in the on-state (activator bound) (dashed line
in Fig. 4 B). When the genes cooperate, the gene having the
weaker promoter makes use of the reservoir of proteins sus-
tained by the gene having the stronger promoter, and therefore
the weakly promoted gene is now more likely to be found in
the on-state (solid line in Fig. 4 B). Such a steady state could
not have been sustained by the weak promoter gene alone
without the external help of the more strongly promoted
gene. The cooperation between genes entails the genes
sharing their mutual proteomic reservoir. As a result of
sharing the available protein molecules, the gene with the
stronger promoter has access to a smaller number of activators
and its probability to be on, decreases (solid line in Fig. 4 A),
compared with what would be found for the effective one-
gene system (dashed line in Fig. 4 A). As can be seen from
the example in Fig. 4, A and B, the overall mean number of
proteins slightly decreases in this cooperative system, when
available resources are distributed between the two genes.
The example presented in Fig. 4, A and B, suggests that, in
a system with initially two identical copies of a gene with
strong promoters, under the wing of one gene which retains
a strong promoter and sustains the proteomic field, the other

copy could evolve to have completely different binding
characteristics than the two genes had originally.

In the example just described, the occupancy states of the
individual genes are regulated by the strengths of their
promoters, and are therefore different. The phase diagrams
presented in Fig. 5, A–C, show the gene h fields and coupling
constant J12 of the two genes with different equilibrium
parameters, as a function of the effective production rate of
the whole system and the threshold number of proteins at
which gene 1 alone would be equally likely to be on and
off. In these phase diagrams, we vary the parameters of the
first gene—the gene that was more probable to be found in
the on-state. As ny1 increases, more proteins are needed to
turn gene 1 on, and the gene has a tendency to be off for
larger production rates, which is reflected in an increased
negative h1 field. The other gene, which alone would be
off, reacts to any extra proteins coming from the first gene,
by increasing its tendency to be on, quantified by the positive
h2 field. However, as the threshold ny1 of gene 1 increases,
gene 1 becomes less probable to be on, and hence less able
to sustain a protein reservoir. As the number of proteins in
the proteomic reservoir decreases, the second gene decreases
its tendency to be on. Whether the genes actually will be on
depends upon the tendencies of both genes. If both of them
have positive h fields, they can easily produce a proteomic
field that sustains the two on-states. If one of the genes has
a negative h field, the observed gene states depend on the
gene cooperativity—the coupling constant. The positive Jij
coupling increases the probability of the weak promoter
gene to be on, and reinforces the on,on-state, as we saw in
the example in Fig. 4, A and B. From the phase diagram,
we see the genes interact when one gene has a positive h
gene field and the other a negative h gene field.

A B

C D

FIGURE 4 The probability distributions of the number

of protein molecules and the gene to be found in the
on-state for gene 1 (A) and gene 2 (B) in a system with

two asymmetric adiabatic activated genes (solid lines)
compared with the probability distributions of an effective
single gene with the same effective production rates as the

two-gene system. ConðiÞ ¼
P

n PonðiÞ is the probability of

gene i to be in the on-state. gon(1) ¼ 40, goff(1) ¼ 1,

gon(2) ¼ 17, goff(2) ¼ 1, ny1 ¼ 3, ny2 ¼ 8, and k ¼ 720.
The probability distributions of the number of protein

molecules and the gene to be found in the on-state for

gene 1 (C) and gene 2 (D) in a system with two asymmetric

adiabatic repressed genes compared with the probability
distributions of an effective single gene with the same

effective production rates as the two gene system. The

inset shows the probability distributions of the number of
protein molecules for the gene to be found in the off-state,

gon(1) ¼ 12, goff(1) ¼ 1, gon(2) ¼ 12, goff(2) ¼ 1, ny1 ¼ 30,

ny2 ¼ 10, and k ¼ 720.
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Compared with two copies of identical genes, we can
quantitatively see that different genes cooperate with each
other throughout a much greater region of parameter space.
In the cooperative region, the protein field produced by
one gene is not enough to sustain the enhanced production
by that gene. However, the cooperation of the identical genes
is stronger (larger values of J12). A system with two different
genes having only activators can be bistable, in a region of
parameter space where the individual genes with production
rates adjusted to mimic those of the two gene system would
be monostable. Hence, gene-gene interactions, encoded by
the coupling constant, not only have quantitative effects,
but can modify the attractor structure of a gene regulatory
system.

Two different repressed genes

We can also study a system of two genes that produce
proteins that act on both genes as repressive transcription
factors. In this case, the gene that has a higher threshold
number of proteins needed to change its occupancy (a gene
that will be repressed at larger concentrations, i.e., gene 1)
acts as a buffer (Fig. 4, C and D). The gene that provides
the buffer (i.e., gene 1) remains in the on-state throughout
those regions of parameter space where the gene with a lower
threshold number of proteins (gene 2) would have been more
likely to be found in the off-state. The gene with a lower
threshold number of proteins (gene 2) alone could reach
a steady state with an intermediate value of the probability
to be on. However, the buffer gene (gene 1) provides a reser-
voir of repressors, which stably represses the buffered gene
(gene 2). The insets explicitly show the probability distribu-
tions as a number of protein molecules of the two genes to be
found in the off-states, since the buffered gene (gene 2) has
a higher probability to be off than to be on. The couplings J

for the genes presented in this example are negative, indi-
cating that the variance of the two-gene distribution is
smaller than that of a Poisson distribution.

One repressed and one activated two-gene system

A system that consists of a single repressed gene and a single
activated gene will jointly show the characteristic behavior
of either an effective single weakly activated gene or an
effective weakly repressed gene, depending on the values
of chemical parameters. For large numbers of protein mole-
cules in the system the activated gene will be on, and the
repressed gene will be off. Conversely, for small numbers
of protein molecules, the repressed gene will be on, and
the activated gene off. For example, when the gene to be acti-
vated has a higher threshold, the activated gene is off, and the
repressed gene on. In most of the parameter range, a state
with one gene in the on-state and the other in the off-state
is the most probable. In the adiabatic regime, this system
will always be monostable, as the activated gene requires
strong differences between the on and off production rates
for bistability. If we consider a tug-of-war symmetric
repressed-activated two-gene system (results not shown),
we find it practically does not cooperate (close to zero nega-
tive coupling constant), as both h fields completely cancel
each other in the on,on-state, giving a natural advantage to
the on,off-states. In such a case, the close-to-zero couplings
in an adiabatic system describe effective independent genes
and, hence, result in close-to-Poissonian probability distribu-
tions.

Fig. 5, D–F, shows a phase diagram for a repressed-
activated nonsymmetric two-gene system. We modify the
parameters of the activated gene (gene 2), and keep the
repressed gene (gene 1) in the off-state. When the h field
of the activated gene balances the h field of the repressed

A B C

D E F

FIGURE 5 The gene h fields for the

activated gene 1 (A) and the activated

gene2 (B) and couplings (C) as a function
of the effective production rate of the sys-
tem in the on-state ðgonð1Þ þ gonð2ÞÞ=k
and the threshold number of protein

molecules ny1 of gene 1 for a system

with two asymmetric adiabatic activated
genes. The parameters for gene 1 are

varied,whereas those for gene2 arefixed.

The parameters are gon(2)¼ 17, goff(2)¼
1, ny2 ¼ 8, and k¼ 1, k¼ 720. The gene h
fields for the repressed gene 1 (D) and the
activated gene 2 (E) and couplings (F)
as a function of the effective production
rate in the on-state of the system

ðgonð1Þ þ gonð2ÞÞ=k and the threshold

number of protein molecules ny2 of

gene 2 for a system with one repressed
adiabatic and one activated adiabatic

gene. The parameter of the activated

gene (gene 2) are varied. The fixed
parameters are gon(1) ¼ 24, goff(1) ¼ 2,

ny1 ¼ 8, and k ¼ 2, goff(2) ¼ 2.
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gene, the couplings can be neglected. When the h fields of
the two genes are both negative and the field of the repressed
gene is small (bottom half of Fig. 5, D–F), the couplings are
positive. In the repressed-activated two-gene system, if the
number of protein molecules is small, the repressed gene
becomes unrepressed, and the number of proteins increases.
An increase in the number of proteins increases the positive
coupling that stabilizes the on,on-state. Yet despite an
increase in the probability for both genes to be found in
the on-states, compared with independent genes in a similar
proteomic field, in the bottom-half of Fig. 5, D–F, the
threshold values are such that the repressed gene is slightly
more likely to be found in the off-state, as is the activated
gene. If the genes are not symmetric, a state with the
repressed and activated gene having the same probability
to be on, is not a steady-state solution. The states with
both the repressed and activated gene in the same occupancy
state (on,on and off,off) are not likely. In the case of two
nonsymmetric activated and repressed genes, the couplings
between genes act to counterbalance the h fields of the two
genes. An example of such a case is shown in the top-right
of Fig. 5, D–F, where the fields are of opposite signs, the
activated gene has a small field, and the couplings are nega-
tive. High threshold values for the activated gene result in the
gene being found in the off-state. The repressed gene is more
likely to be found in the on-state. The negative couplings
show that the on,on-state is not a likely not a steady-state
solution. The on,on-state would result in enhanced produc-
tion by the activated gene, which would lead to an increase
of proteins and the repressed gene would be turned off.
The strength of the couplings is limited by the number of
protein molecules in the system. When the h fields of the
two genes have large and opposite values, the couplings
become small (top left-hand corner of Fig. 5, D–F). In this
case, for large production rates and small threshold parame-
ters, the system acts as an effective activated gene system.
For large threshold parameters and small production rates,
the two-gene system (bottom-right corner of Fig. 5, D–F)
acts as an effective repressed gene system and for large
production rates. In the regime where the effective activated
gene dominates, the activated gene produces enough proteins
to stably repress the repressed gene and activate itself. Simi-
larly to a pure two-activated gene system, the couplings can
be neglected.

We can again link the sign of the couplings with the rela-
tion of the variance to the mean for the number of protein
molecules. The Poisson distribution, which is expected for
a noninteracting adiabatic system, has a variance of the
number of protein molecules equal to the mean number. In
the example in Fig. 5, D–F, the distribution changes from
having a variance less than the mean for negative couplings
in the activated gene dominant regime to having a variance
larger than the mean in the repressed gene dominant regime.
Therefore, the sign and value of the couplings, which are
a result of the interplay between activated and repressed

genes, are related to the noise characteristics, specifically
the variance of the probability distribution of the number
of protein molecules, of a gene functioning in a many-gene
network. In the self-activating system, the numerical results
indicate the couplings have a logarithmic dependence on
the variance J12 ~ log(a(hn2i – hni2)/hni), where a is an
unknown constant. We plan to explore this relation and its
consequences.

The repressed-activated two-gene system is analogous to
an antiferromagnet, since the most favorable configuration
for the pseudo-spins representing the genes is to be antia-
ligned. In this mapping of the molecular description onto
an analogous Ising model, antiferromagnetism arises
primarily because the gene h fields of the repressed and acti-
vated gene are of opposite signs in most of the parameter
range. When the genes have h fields of the same sign, the
intrinsic frustration is reintroduced by means of the Jij
couplings. Only when the protein field is very small, or
very large, one gene represses the other and the system loses
its balance. Therefore, coupling many repressed-activated
two-gene systems with similar probabilities to be on, will
lead to frustration.

Introducing genes into an existing system

Consider two alternative ways for introducing an additional
copy of a given gene into an existing system having only
a single copy. In one manner of doing this, we may assume
that all other elements of the system remain fixed. One does
not control for increasing the steady-state number of protein
molecules by modifying degradation mechanisms or limiting
the number of resources in the cell. Alternatively, we can
consider a more mathematically convenient limiting case,
corresponding to a model that limits the production rate of
proteins even when the additional gene is present. The
simplest example of limited resources is a limited number
of RNAPs in the cell, which would limit transcription,
despite a potentially large potential rate of mRNA produc-
tion. Another limiting step could be the lack of amino-acid
building blocks, which would, in turn, block translation.
The scenario of an unrestrained increase in mean protein
numbers is of limited relevance in the many gene limit
(and hence the cell), as lack of protein building blocks, cell
machinery, and crowding quickly become issues. Especially
the fact that there is a very limited number of complicated
complexes, such as RNAP, justifies the detailed study of
the second scenario, which we have thus far discussed, in
which the protein production rate per gene is modified
when introducing a new gene. However, if the protein
production resources are abundant, introducing small
numbers of new copies of a given type of gene into the
system can increase the overall protein production.

Let us consider the steady states of a two-gene system in
which the two genes are coupled by binding and unbinding
of the same type of activator protein. Not surprisingly, add-
ing a new activated gene simply increases the number of
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protein molecules in the activated-activated gene system
compared with the case having a single gene producing
that kind of protein. In the limit of fast binding and
unbinding of transcription factors, the two-gene system,
with similar equilibrium constants, may described well by
an effective single gene with parameters equal to the sum
of the production rates of the two genes in the particular
states ðgeffon ¼ g1on þ g2on; geffon ¼ g1off þ g2offÞ. Although
this relation to a single gene system is not surprising, a qual-
itatively new behavior appears: since the number of protein
molecules in the system changes, a gene that was previously
bistable can now become monostable and vice versa (31).
Furthermore, since the resulting system characteristics are
driven by the mean number of protein molecules, which
has increased, even a composite gene that was made up
of genes which would be more probably in the off-state,
can now be completely activated because of the shift of
Keq ¼ hi hn2i/fi.

The nonadiabatic regime

We now consider systems for which the assumption of very
fast binding and unbinding of the transcription factor from
the gene expression binding site is not valid. We must then
explicitly consider the effects of the change in gene expres-
sion state on the time-averaged properties of the system
(4,22–24,26,29,30,32,33). In this regime, the protein number
now has time to come to a steady state before the gene occu-
pancy state changes and there are two separate peaks for the
on-and off-state in the probability distribution, as opposed to
a single equilibrated peak characteristic of the adiabatic
distribution. For this case, even systems having two copies

of the same genes show strong cooperativity, and the genes
can neither be described by a single effective gene model nor
can they be treated separately as independently fluctuating
units. A strong signature of nonadiabaticity is visible in the
phase diagrams: the couplings are mainly a function of the
synthesis rate, whereas the h gene field now depends mainly
on the threshold number of protein molecules.

Two activated genes

For a system of two activated genes, the coupling strengths
generally dominate over the h fields, shown in Fig. 6, C
and D. The coupling constant J12 increases with the number
of protein molecules available in the proteomic reservoir,
because the cooperativity is mediated by the proteins. The
cooperativity between the genes increases with the protein
concentration. The gene h field depends mainly on the equi-
librium constant (related to the threshold number of protein
molecules). The h gene field describes each gene’s own
tendency to react to the proteomic field. The resulting gene
occupancy state is once again a result of both the gene fields
and the coupling between the genes. The probability to be in
an occupancy-given state depends on both the production
rate and the threshold ny. The h gene fields depend mainly
on the threshold value, whereas the couplings mainly depend
on the production rate. This separation of dependencies is
a signature of nonadiabaticity. In the nonadiabatic limit,
proteins equilibrate in a single gene occupancy state. In the
adiabatic limit, proteins equilibrate in an effective gene state,
which is reflected by a dependence of the h and J fields on
both order parameters.

In the nonadiabatic limit, the occupancy state of each genes
changes primarily according to the binding and unbinding

A B

C D

FIGURE 6 (A) The four components of the probability

distributions of the number of protein molecules for the

different gene occupancy states: {on,on}, {on,off},

{off,on}, {off,off} of a system with two asymmetric
nonadiabatic activated genes. The inset shows the proba-

bility distributions of the off,on-state separately. gon(1) ¼
40, goff(1) ¼ 1, gon(2) ¼ 17, goff(2) ¼ 1, ny1 ¼ 3, ny2 ¼ 8,

and k ¼ 720. The number of peaks in the distribution (B)
and the gene h fields (C), couplings (D) as a function of the
effective production rate in the on-state gonð1Þ þ gonð2Þ=k
and the threshold number of protein molecules ny for
a system with two symmetric nonadiabatic activated genes.

The parameter of both genes are varied. The fixed parame-

ters are k ¼ 1, goff(2) ¼ 1, and k ¼ 0.5.
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rates of the particular gene. The protein molecule numbers
equilibrate in each of the occupancy states. Because of this
slow equilibration, there are four possible gene expression
states for the composite two-gene system. However, since
basal production rates are small and the considered enhanced
production rates are of the same order of magnitude, effec-
tively the two on,off-states are indistinguishable from each
other in terms of protein numbers, even if the basal production
rates differ. As a result, we find three distinct peaks in the
probability distribution for protein numbers (Fig. 6 A): a first
peak, corresponding to both genes producing proteins at the
enhanced level; a second peak, when both genes produce
proteins at the basal level; and the last peak, when one gene
is on and the other off. If we considered a wider range of
production rates in the case of a system with two asymmetric
genes, we could observe four distinct peaks. By comparing
the phase diagram for the number of peaks of the probability
distribution (Fig. 6 B) with the phase diagram of the coupling
constant (Fig. 6 D) for the same system with two symmetric
genes, we see that larger coupling constants correspond to
regions of phase space where there are three peaks. Larger
coupling constants result from larger average numbers of
protein molecules, which arise from larger production rates
yielding a clear separation of the peaks of the probability
distributions in n space.

Artificially increasing the number of copies of genes has
been considered as a way to decrease noise in the system
(1,2). As we can see from the example presented in Fig. 6
A, things may not always be so simple. Increasing the
number of gene copies can even result in increasing the
number of observed states, if the genes are in the nonadia-
batic limit. On the other hand, if the genes are in the adiabatic
limit, the genes are already equilibrated, and increasing their
copy number should not change the statistics of the proba-
bility distribution. However, if increasing the number of
gene copies increases the number of proteins, the system
may actually be moved from the nonadiabatic to the adia-
batic regime. In such a case, increasing the number of copies
of the gene changes the observed states and decreases the
noise. Here, we considered systems with one type of protein
molecules coupling all the genes. If the genes are regulated
by an external transcription factor, and there is no self-
regulation, the number of occupancy states should not be
increased by introducing new copies of the gene and the
system will become less noisy. Much as for the case of inter-
acting genes with weak and strong promoters, a nonadiabatic
two-gene system can also evolve from two adiabatic genes
when an organism duplicates its genome. In a system with
a high synthesis rate in the enhanced production state, where
one gene alone sustains the proteomic reservoir needed by
the cell, the binding constant for activator proteins can
decrease on evolutionary timescales, leading to a nonadia-
batic system. If the binding constants of only one of the
genes decrease, the result is a mixed system having one adia-
batic and one nonadiabatic gene.

The adiabaticity parameter k ¼ hbn2eff=k (where hb is the
binding rate of transcription factors and k is the degradation
rate) can be rewritten in terms of the effective number of
synthesized molecules neff ¼ gon=k, the equilibrium param-
eter ny, and the unbinding rate f as k ¼ f

kð
neff
ny Þ

2. Keeping the
adiabaticity parameter k fixed to a small number while scan-
ning the parameter range in the synthesis rate (~neff) with
equilibrium parameter ny, corresponds to decreasing the
unbinding and binding rates while either the synthesis rate
or ny increases. Such a procedure corresponds to introducing
mutations into the promoter sequence as the production rates
are increased. The genes become nonfunctional and cannot
be activated for high-enough production rates and high-
enough threshold values. The binding rates become so small
that even for a large production rate, the gene will always
remain off. On the other hand, if the number of proteins in
the system increases by, for example, increasing production
rates, and the binding and unbinding constants do not change
as the system becomes more adiabatic, the binding rate there-
fore depends on the number of proteins.

Two repressed genes

Differences between systems having only activated genes
and those having repressed genes are also apparent in the
nonadiabatic limit. The coupling still is a function mainly
of the production rate, as can be seen from Fig. 7, A and
B. Unlike for the two-activated gene system, the h gene field
for the two-repressed gene system is also mainly a function
of the effective production rate. Such a dependence of the
gene fields on the effective production rate is reminiscent
of the behavior seen in the adiabatic limit, even though the
probability distribution still is bimodal and fully nonadia-
batic.

When there is a small average number of protein mole-
cules in the system, a gene that can be repressed is in the
on-occupancy state, producing a large number of proteins.
Hence, if the production rate of the gene is large enough,
even for genes with slow binding and unbinding constants,
the concentration of proteins will become large enough to
repress the gene. If the threshold number of protein mole-
cules for switching is large enough, even a nonadiabatic
gene, with a very slow binding constant, will become
repressed for large effective production rates. However,
once a gene is repressed, it will remain repressed, because
the unbinding process is slow and its rate does not depend
on protein concentration. For this reason, the gene fields
for a pair of repressed genes in the nonadiabatic limit behave
in a similar way to the gene fields for adiabatic activated
genes: the fields decrease with the increase of the effective
production rate and increase with the increase of the
threshold number of protein molecules.

For repressed gene systems, the number of protein mole-
cules does not grow with the production rate; it is limited
for large production rates. Much as in the case of two acti-
vated genes, peaks associated with individual expression
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states of the two-gene system can be discerned in the protein
number probability distributions.

One repressed and one activated gene

The nonsymmetric nonadiabatic repressed-activated gene
system displays the properties of the couplings and fields
for genes in the nonadiabatic limit, which are shared by
both systems with only-activated and only-repressed genes
(Fig. 7, C–E): the activated gene h fields depend only on
the threshold number of protein molecules, whereas the
repressed gene h fields depend also on the number of protein
molecules in the system. The couplings depend on the
number of proteins in the system. As in the adiabatic limit,
the couplings counterbalance the repressed gene and acti-
vated gene h fields, stabilizing the on,off- and off,on-states.

In the nonadiabatic limit for a two-gene system having
a single repressed and a single activated gene, we again can
discern peaks in the probability distribution due to individual
expression states. As in previously discussed nonadiabatic
systems, the multimodality of the probability distribution
shows the inadequacy of using the mean and the variance
to characterize the steady states.Hence, in this case, we cannot
link the couplings specifically to the noise parameters as
straightforwardly as we did for the adiabatic limit. For inter-
mediate values of the adiabaticity parameter, we find the
probability distributions have a larger variance than a single
effective gene would have. The underlying gene expression
states merge to form one pronounced peak for large adiabatic-
ity parameters.

The mixed adiabatic-nonadiabatic
activated-activated gene case

In the case of a mixed system having one adiabatic gene and
one nonadiabatic gene changing the state of the nonadiabatic

gene modifies the proteomic field. The effective synthesis
rate of the adiabatic gene changes, and a new steady state
appears with intermediate protein molecule number.

Let us consider a specific case of two activated genes: the
expression state of one gene changes on fast timescales (the
binding and unbinding reactions are in equilibrium in the
presented model), and the gene occupancy of the other
gene is not rapidly equilibrated. We may say, the first gene
has a high adiabaticity parameter, k, whereas the second
gene is in the nonadiabatic limit, with a small k. Since the
probability of binding a transcription factor per unit time
depends on the number of protein molecules in the system,
we will use a conservative estimate of the adiabaticity param-
eter of the two-gene system. We estimate the mean number
of protein molecules, by the mean number of protein mole-
cules if both genes were always on: k ¼ hb

2kð
gonð1Þþgonð2Þ

k Þ2.
The effective adiabaticity of a given gene is, therefore, in
fact a function of the parameters of the system taken as
a whole, not merely a function of the parameters of that given
gene alone. It is straightforward to note that introducing an
adiabatic gene into a system with a functioning nonadiabatic
gene will increase the effective adiabaticity parameter of the
previously nonadiabatic gene, because the number of
proteins increases. Such a scenario is similar to the case of
adding a new gene to a functioning system, without modi-
fying the effective production rates, as described earlier for
the case of abundant resources. Therefore a gene with slow
binding parameters, which is surrounded by a constant
high concentration of transcription factors, may behave adia-
batically when coupled with an adiabatic gene; it is effec-
tively buffered. The gene with slow binding and unbinding
alone would be nonadiabatic—the slow binding and
unbinding would not be enough to sustain the constant pro-
teomic cloud and the protein numbers would equilibrate in
the two-gene states. However, if the large k, adiabatic gene
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FIGURE 7 The gene h fields for the

genes (A) and the couplings (B) as a

function of the effective production rate

of the system in the on-state ðgonð1Þþ
gonð2ÞÞ=k and the threshold number of

protein molecules ny for a system with

two symmetric nonadiabatic repressed

genes. The parameter of both genes are
varied. k ¼ 2, goff(2) ¼ 2, and k ¼ 0.01.

The gene h fields for the repressed gene

1 (C) and the activated gene 2 (D) and
couplings (E) as a function of the effec-

tive production rate of the system gene

1 in the on-state ðgonð1Þ þ gonð2ÞÞ=k
and the threshold number of protein
molecules ny1 of gene 1 for a system

with one nonadiabatic repressed and one

nonadiabatic activatedgene.The parame-

ters of the repressed gene (gene 1)are
varied, whereas those of the activated

gene (gene 2) are fixed. The parameters

are gon(2) ¼ 24, goff(2) ¼ 2, ny1 ¼ 8, and
k ¼ 2, goff(1) ¼ 2.
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has a large enough production rate to sustain a constant pro-
teomic environment, it will push the nonadiabatic gene into
the adiabatic regime. If the strictly adiabatic gene does not
produce enough protein molecules, the nonadiabatic gene
will remain in the nonadiabatic limit.

Even if the interaction with the adiabatic gene does not
move the independently nonadiabatic gene into the adiabatic
regime, the increase in the number of proteins results in
differences in the probability distributions for systems con-
taining both genes, compared with what would be found
for an effective single gene system (with the same effective
production rate and adiabaticity as the two-gene system).
Since the adiabatic gene provides a constant reservoir of
high numbers of protein molecules, this leads to the appear-
ance of an additional peak in the probability distribution
(Fig. 8 A). The new peak corresponds to the nonadiabatic
gene being in the off-state and the adiabatic gene producing
proteins at the equilibrated rate. The mean expression rate of
the adiabatic gene is affected by the production rate of the
nonadiabatic gene, through the number of protein molecules
present in the system. The original peak of the adiabatic
distribution remains, corresponding to the nonadiabatic
gene being in the on-state. The third peak corresponds to
a state when the nonadiabatic gene is off and the number
of protein molecules has decreased to effectively deactivate
the adiabatic gene. Hence, the effective production rate of

the adiabatic gene is modified by the state of the nonadiabatic
gene. The low and high, effective production rate states of
the adiabatic gene are an emergent form of bistability
induced by the change in the average number of protein
molecules due to different occupancy states of the nonadia-
batic gene (Fig. 8 B). Experimentally, we would observe
three steady states. If proteins produced by one gene could
be distinguished from those produced by the other gene,
for example, by coexpressing different colored fluorophores,
one could measure the two different timescales for switch-
ing: one which results from a rare change in the gene expres-
sion state and the other from a change in the available
number of protein molecules. Hence, in the case of an mixed
adiabatic-nonadiabtic system, the cooperative steady state
imposes additional states that may be observed focusing
only on the adiabatic gene. An extract from a simulation
trajectory for such a mixed adiabatic-nonadiabatic system
is presented in Fig. 8 C. We can clearly distinguish the three
states. We can also see how the nonadiabatic gene state
changes on slow timescales. In the discussed example, the
adiabatic gene states are equilibrated and switch on fast time-
scales (not shown).

If the production rate from the nonadiabatic gene is
smaller than that for the adiabatic gene, so that the mean
number of protein molecules of the two-gene system does
not significantly change compared with that for the effective
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FIGURE 8 The probability distributions of the number of protein molecules and the gene to be found in the on-state for an adiabatic gene 1 (A) and a nonadi-
abatic gene 2 (B) in a system with one adiabatic and one nonadiabatic activated genes (solid lines) comparedwith the probability distributions of an effective

single gene with the same effective production rates as the two gene system. ConðiÞ ¼
P

n PonðiÞ is the probability of gene i to be in the on-state. gon(1) ¼ 14,

goff(1)¼ 1, gon(2)¼ 24, goff(2)¼ 1, ny1 ¼ 6, ny2¼ 6, k1 ¼ 200, k2 ¼ 0.2, and k¼ 1. (C) The number of protein molecules (solid line) as a function of time and
the gene expression state of the nonadiabatic gene (dashed line). The gene expression state is scaled to be visible on the same figure as the number of protein

molecules. Results of Gillespie simulations of a mixed adiabatic-nonadiabatic system with two activated genes. gon(1)¼ 20, goff(1)¼ 1, gon(2)¼ 10, goff(2)¼
1, ny1 ¼ 8, ny2 ¼ 8, k1 ¼ 10,000, k2 ¼ 0.5, and k ¼ 1. The gene h fields for the adiabatic gene 1 (D) and the nonadiabatic gene 2 (E), the couplings (F) and the
number of peaks of the probability distribution (G) as a function of the effective production rate of the system in the on-state gonð1Þ þ gonð2Þ=k and the
threshold number of protein molecules ny1 of gene 1 for a system with one adiabatic and one nonadiabatic activated gene. The parameters for the adiabatic

gene (gene 1) are varied, whereas those for the nonadiabatic gene (gene 2) are fixed. The parameters are gon(2) ¼ 17, goff(2) ¼ 1, ny2 ¼ 18, k1 ¼ 10,000,

and k2 ¼ 5 ( 10'5.
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adiabatic system, the intermediate peak, because of the off-
nonadiabatic state and the high production adiabatic state,
may be indistinguishable from the on-high nonadiabatic-
adiabatic state. In this case, the probability of the nonadia-
batic gene to be in the off-state is very small, as can be
seen from the small positive h2 gene fields in Fig. 8, D–F.
Fig. 8 G also displays a phase diagram for the observed
number of peaks of the probability distribution, in which
we vary the parameter of the adiabatic gene. Comparing
the phase diagram for the coupling parameter with the phase
diagram for the number of peaks, we see that a three-peak
situation appears for relatively small couplings, when the
adiabatic gene has an intermediate tendency to be on, but
where this tendency is large enough that the adiabatic gene
can sustain its own proteomic field. If the adiabatic gene
has a high equilibrium constant, the adiabatic gene produces
small protein numbers and the nonadiabatic off-adiabatic
protein numbers overlap with the state when both genes
are off. Once again, we note the adiabatic and nonadiabatic
characteristics in the gene h fields and couplings. When
the parameters of the nonadiabatic gene are varied, the
coupling phase diagram changes only with the effective
production rate of the system (results not shown).

GENERALIZATION TO MANY GENES

In many composite systems, introducing effective two-body
interactions between the constituents accounts for most of
the behavior of many-body systems having a large number
of parts. To see whether this is true for these networks of in-
teracting gene switches, we examine networks of four inter-
acting genes and test whether the results from a complete
treatment are consistent with those coming from the Ising
mapping based on two-body interactions. We fit the Ising
model parameters using a minimally constrained maximum
entropy model. Within a parameterized two-body interaction
model, the maximum entropy approach corresponds to mini-
mizing the Kullback-Leibler divergence between two-point
correlation functions. We consider examples of genes, both
in the adiabatic and nonadiabatic regime and with varying
coupling constants and internal h fields. The probabilities
predicted based on the fitted Ising model are compared
with those from simulations in Fig. 9 A. The predicted three-

and four-point correlations based on the coupling constant
and random fields predicted from two-body correlations
agree very well with the correlations derived from the data.
The correlations decrease as the probabilities of the partic-
ular states become smaller and more uniform between the
substates. As the probabilities of each of the substates
become closer to each other, the couplings increase. The
mapping is generally successful. It works well for genes
that have large and small coupling constants, both in the
adiabatic and nonadiabatic regime.

The fitted couplings and fields for the four-gene system
agree with the intuition we have gained based on the two-
gene system. A gene with a positive gene hi field has a higher
tendency to be in the on-state than in the off-state. For iden-
tical genes, the coupling constant between two genes plays
a role when the probability of the genes to be on is close
to 0.5. Since all studied genes in the four-gene system are
activated genes, all the coupling constants are positive. The
couplings properly describe, in a quantitative way, the
collective stabilization of the proteomic field by all the genes.

In the examples presented, the genes in the system with
identical genes A and B are more likely to be found in the
on-state (Con(i) > 0.5), both in the adiabatic and nonadiabtic
limit. In the adiabatic limit, the genes are mapped onto an
Ising system with positive fields and small couplings. In
the nonadiabatic limit, the fields are negative. Guided by
the results from studying a two-gene system, we see that
each gene alone could not sustain the on-state if the other
genes were constrained to be in the off-state. Large coupling
constants, which are related to the number of proteins in the
system, result in the genes being more likely to be on than
off. The genes in the system with identical genes C is
more likely to be found in the off-state, both in the adiabatic
and nonadiabatic limit. In both cases, the C genes are
described by negative h fields. Since the probability of the
genes to be on is close to one-half, the coupling constants
are of the same order of magnitude as the h fields. In the
examples with four different types of genes in the nonadia-
batic limit, the genes all have negative h fields. In the S1
system, only one gene has a higher probability to be on
than to be off. That gene has the smallest magnitude of the
h z '0.75 field compared with other genes with '3.05 <
h < '2.5. The couplings have values J z 0.9, between

BA
FIGURE 9 (A) Comparison of a maximum entropymodel
fit to probabilities of all 16 possible gene occupancy states for

a four-gene system interacting by one type of protein.

Different symbols indicate genes with different parameters.

GeneA:gon(1)¼24,goff(1)¼2,ny¼5.GeneB:gon(1)¼ 12,
goff(1)¼ 1, ny¼ 3. Gene C: gon(1)¼ 17, goff(1)¼ 1, ny¼ 8.

k¼ 2 for all systems. S1¼ {A, B,C, gon(1)¼ 12, goff(1)¼ 1,

ny¼ 10}.S2¼ {A,B,C, gon(1)¼ 12, goff(1)¼ 1, ny¼ 5}. (B)
Schematic representation of the mapping of the S1 and S2
systems.
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the two genes which are least probable to be on, and Jz 1.9,
between the two genes which are most probable to be on.
Pairs of genes with higher probabilities to be on contribute
more to the common proteomic pool and hence have stronger
couplings. In the S2 system, the threshold number of proteins
of one of the genes is decreased. The number of proteins in
the system increases compared with the S1 case and all genes
are now more probable to be on. Only for the h gene field of
the gene, the chemical parameters of which were varied,
changed significantly (from '3.05 in the S1 system to
'1.95 in S2). The coupling constants of that gene with the
other genes increases, whereas the other coupling constants
decrease (Fig. 9 B).

A Boolean representation is able to capture the properties
of a genetic network. It is worth pointing out that such
a Boolean approximation is tailor-made for the present sort
of system (34). The parameters of the mapping are based
on a detailed molecular description in this specific parameter
regime. Changing the parameters of the system will change
the probability distributions and the corresponding fit param-
eters of the corresponding spin system. As we could see from
the two-gene discussion, the dependence of the Ising model
parameters on the chemical parameters is far from trivial.
However, the observation that two-point correlations
account for a large part of the correlations in highly coupled
many-gene systems is worth exploiting in practical models.
We believe the mapping onto an effective spin system that
we have described here can facilitate the study of larger
networks and be used to explore the existence of multiple
steady states and characterize them.

For the systems where all four genes are identical, the gene
fields h and coupling Jij are identical for all genes. Such
systems composed of identical genes are especially straight-
forward to generalize to larger systems. The values of the
fields and couplings are also the same for systems with
four and two genes, if the steady-state probabilities of the
genes in both cases are the same. Hence, finding the param-
eters of the model for a small network allows us to study
larger networks repetitively made up of these smaller subsys-
tems. This approach can be easily generalized to systems
having many different proteins.

CONCLUSIONS

Gene networks consist of interacting genes, the protein mole-
cules that are produced in response to the gene state and that

can, in turn, bind to different genes. A molecular kinetic
description of the underlying interactions is important to
capture the properties of these genetic regulatory systems.
We considered a number of self-interacting small gene regu-
latory systems. Multiple copies of genes, which produce and
are regulated by the same type of protein, arise in a number
of examples in biological systems: genome replication
before cell division, genome duplication in evolution, and
in synthetic engineered circuits (for example, when intro-
ducing plasmids). We showed how to find reduced descrip-
tions of such systems using gene state variables alone.
Fig. 10 A shows a summary of the values of the h fields
and coupling constants for interacting activated and
repressed genes. In Fig. 10 B, we also summarize the primary
ways in which the parameters of the reduced model depend
on both the total number of protein molecules in the system
and the threshold for switching in the adiabatic and nonadi-
abatic regime. Although within a deterministic description,
genes with identical binding parameters can generally be
reduced to an effective one-gene model in the adiabatic limit
(where gene expression states can be taken to be in equilib-
rium), this analysis shows that the genes cannot be treated as
independent. The coupling between genes results in slightly
different steady-state characteristics and a much sharper tran-
sition from the on- to off-state. Furthermore, a composite
one-gene description does not reproduce the steady-state
properties of even adiabatic genes with different equilibrium
constants. In all cases of considered systems, the steady state
is a product of a cooperative mutual proteomic field, which is
produced by, and used by, both genes.

In the nonadiabatic limit, when protein molecule numbers
can come to steady states faster than the gene occupancy states
can change, multipeaked probability distributions for the
number of protein molecules emerge. These correspond to
protein molecule numbers equilibrating in specific multiple
gene expression states. For a mixed adiabatic-nonadiabatic,
two-activated gene system, the gene expression state of the
nonadiabatic gene can modify the proteomic field and induce
a change in the expression state of the adiabatic gene.

If the number of protein molecules increases, but the
binding and unbinding rate coefficients do not change, the
binding rate of the system increases and the nonadiabatic
system can become adiabatic. In this case, the noise in the
system can be reduced by introducing more copies of exist-
ing genes. If the binding rates of a single gene are in the adia-
batic limit, however, increasing the number of genes will not

h J

ACTIVATED GENES

REPRESSED GENES

ACTIVATED GENE +
REPRESSED GENE

ACTIVATED
      GENE> 0

REPRESSED   
      GENE< 0

> 0

< 0

  ENHANCED
PRODUCTION> 0

> 0
< 0

ACT. ON + REP. OFF

ACT. OFF + REP. ON

h J

ADIABATIC

NONADIABATIC

n , n+ n , n+

n+ n

BA
FIGURE 10 (A) Summary of the values of the h fields

and coupling constants J for interacting two-activated,

two-repressed and one-activated, one-repressed gene

systems. (B) Summary of the dependence of the h fields
and coupling constants J on the number of protein mole-

cules in the system n and the threshold ny in the adiabatic

and nonadiabatic regime.

Biophysical Journal 96(11) 4525–4541

Gene-Gene Cooperativity in Small Networks 4539



reduce the noise coming from gene occupancy state fluctua-
tions, but can reduce the noise from the birth and death of
proteins in small numbers.

Even when the systems we have studied are approximated
by an effective gene description, the protein numbers are not
generally well described by a Poisson distribution. If the
probability distribution of the number of protein molecules
were described properly by a Poisson distribution, the deter-
ministic kinetic rate equations would follow. For unimodal
probability distributions, we can link the deviation from
a Poisson description to a nonzero coupling constant of an
effective pseudo-Ising spin system. For a system with a bista-
ble solution, the same nonzero coupling informs us of the
bimodality of the distribution. In both cases, if the couplings
are small or vanishing, this would indicate that a description,
in terms of independent genes, is valid. Such a description
works in those parameter regimes, where genes can individ-
ually sustain the proteomic field needed for the same steady
state as is observed in the two-gene system. For pure
repressed and activated gene systems, this is possible when
each gene is expressed at maximum rates. In the case of
a mixed activated-repressed gene system, the genes do not
cooperate when each gene on average produces similar
numbers of protein molecules.

The effective description of a stochastic interacting protein-
gene network in terms of Ising-like variables that indicate the
occupancy and therefore expression states of genes, is a first
step to deriving a reduced molecular-based description of
large networks of many genes. The mapping developed here
shows how activation is linked to positive couplings and
repression to negative couplings. The gene h fields describe
the genes preference to be on, regardless of the state of the
other genes. These fields are local and depend on the chemical
kinetic parameters of the genes. The fields can have different
signs for different genes in the same system.

In the nonadiabatic limit, we have shown how correlations
provide a clear signature of the lack of equilibration of gene
expression states, by showing the dependence of the
couplings mainly on protein molecule numbers and of the
local gene h fields mainly on threshold protein molecule
numbers.

The proposed mapping of a molecular kinetic description
of gene networks onto a Boolean description should allow
the study of the dynamics of larger systems of genes within
this reduced framework. We hope this approach can aid
simulations in the nonadiabatic limit which are computation-
ally expensive because of the slow binding rates. Initially,
each system must be mapped onto this effective description.

We considered extensions of the activated gene systems to
larger small networks using maximum entropy techniques
and found that the appropriate Boolean description correctly
predicts higher-order correlations in the composite gene
system. This exploratory study suggests two-body interac-
tions can probably be used quite effectively to capture the
properties of larger networks.

APPENDIX A

Consider two genes coupled by a common protein environment of activators
numbering n. The master equation for the evolution of the four states of the

system is Pij ¼ {Pon, on(n), Poff, on(n), Pon, off(n), Poff, off(n)}:

vPon;onðnÞ
vt

¼
"
gon1 þ gon2

#
½Pon;onðn' 1Þ ' Pon;onðnÞ&

þ k½ðn þ 1ÞPon;onðn þ 1Þ ' nPon;onðnÞ&

þ hb1
2
nðn' 1ÞPoff;onðnÞ þ
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2
nðn' 1ÞPon;offðnÞ
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$
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APPENDIX B

In this Appendix we comment on the choice of si ¼ 0, 1 in making the

magnetic analogy, as opposed to the symmetric choice si ¼ – 1, þ 1. In

the latter case, for the two-gene case, the explicit mapping becomes

~h1 ¼ 1

4
log

Con;onCon;off

Coff;onCoff;off

~h2 ¼ 1

4
log

Con;onCoff;on

Con;offCoff;off
;

(4)

~J12 ¼ 1

4
log

Con;onCoff;off

Coff;onCon;off
: (5)

Positive values of the gene fields describe the preference of the gene to be in

the on-state, regardless of the state of the other gene. The gene fields in the
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nonsymmetric model (Eq. 5) describe the gene’s own preference to be in the

on-state, assuming the other gene is in the off-state, so that the other gene
does not contribute to the common protein pool. In the symmetric model

(Eq. 4), the interaction due to sharing a common field is incorporated into

the preference of the gene. The interaction term, although it has the same
form as in the nonsymmetric case (compare Eqs. 3 and 5) up to a constant

multiplicative factor, describes how a state with both genes in the same

expression state is stabilized. The smaller value of the interaction in the

symmetric model, compared with the nonsymmetric results, encompass
parts of the protein-mediated Jij into the gene fields. The reclassification

of the interaction terms becomes especially clear in the nonadiabatic limit.

Unlike in the symmetric model, where the gene fields depends mainly on

the genes affinity for binding a protein, for the symmetric model, the gene
fields show a dependence on protein concentrations. Both the symmetric

and nonsymmetric model predict that two-body interactions are sufficient

to describe many gene interactions.

We are grateful for helpful discussions with, and helpful comments of, Anat

Burger.

The work was supported by National Science Foundation grant No.

PHY0822283 to the Center for Theoretical Biological Physics.

REFERENCES
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