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SUPPLEMENTARY APPENDIX A:
THE FULL CONDITIONAL CALCULATION

In the main text, we focused primarily on the non-conditional approximation to the coa-

lescence probabilities, which led to our simple expression for the coalescence probabilities,

Eq. (15). In this Supplementary Appendix, we show how this approximation can be relaxed

in our lineage-structure framework by carrying out the full conditional calculation for some

of the simplest possible cases. We use this to understand the structure of the conditional

results and discuss the validity of the non-conditional approximation. We note that the full

conditional result can also be obtained from the sum of ancestral paths approach by keeping

the higher order terms in Eq. (56) of Appendix A, as described in Supplementary Appendix

D, and the validity of the non-conditional approximation can be directly assessed with that

approach.

We begin by considering the full conditional result for the probability that two individuals

both sampled from class k coalesce in class k − 2. From Appendix A of the main text, we

have

P k,k→k−2
c = Ik−2x

∫
Qk−2
k,k (t1, t2) exp [−s(k − 2)|t1 − t2|] dt1dt2. (S.1)

In order to evaluate this integral, we need to determine the probability distribution of mutant

timings Qk−2
k,k (t1, t2). The time t1 is the sum of the time for one individual to have mutated

from class k− 2 to class k− 1 plus the time for it to have mutated from class k− 1 to class

k, and analogously for t2. However, in order for the two lineages to coalesce in class k − 2,

they must not have coalesced in class k − 1. To illustrate the main point, we neglect the

distortion in the mutant timings due to the fact that individuals did not coalesce in class

k and focus only on the distortions due to the fact that coalescence did not occur in class
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k − 1; if desired, the former distortion can also be included using analogous methods. We

refer to the probability distribution of the times when these individuals mutated from class

k − 1 to class k conditional on them not having coalesced in class k − 1 as Qk−1
k,k (t1, t2|nc).

The distribution of the times for these individuals to then have mutated from class k− 2 to

class k − 1 is then given by

Qk−2
1step(t1, t2) = [s(k − 1)]2e−s(k−1)(t1+t2). (S.2)

Thus the distribution of t1 and t2 is given by

Qk−2
k,k (t1, t2) = Qk−1

k,k (t1, t2|nc) ? Qk−2
1step(t1, t2), (S.3)

where ? indicates a convolution. Note that much of the time when the individuals did

coalesce in class k−1, they did so because t1 happened to be close to t2 (since this increases

the chance the two individuals mutated from the same lineage). Thus in Qk−1
k,k (t1, t2|nc),

t1 and t2 are on average further apart than in Qk−1
k,k (t1, t2), and t1 and t2 are no longer

independent random variables.

We now need to calculate Qk−1
k,k (t1, t2|nc). We have

Qk−1
k,k (t1, t2|nc) =

Qk−1
k,k (t1, t2)−Qk−1

k,k (t1, t2|c)P k,k→k−1
c

1− P k,k→k−1
c

, (S.4)

where Qk−1
k,k (t1, t2|c) is the distribution of timings of mutations from class k − 1 to k given

that the lineages do coalesce in class k − 1. Applying the general probability identity

P (t1, t2|c) = 1
P (c)

P (c|t1, t2)P (t1, t2), and reading off the coalescence probability given t1 and

t2 from Eq. (13), we find that

Qk−1
k,k (t1, t2|c) =

Ik−1x

P k,k→k−1
c

Qk−1
k,k (t1, t2)e

−s(k−1)|t1−t2|. (S.5)

We therefore find

Qk−1
k,k (t1, t2|nc) =

1

1− P k,k→k−1
c

[
(sk)2e−sk(t1+t2) − Ik−1x (sk)2e−2k(t1+t2)e−s(k−1)|t1−t2|

]
. (S.6)

Plugging this into our convolution formula for Qk−2
k,k (t1, t2) and evaluating the integrals

by separating out the possible time orderings, we find

Qk−2
k,k (t1, t2) =

k2 [s(k − 1)]2

1− P k,k→k−1
c

e−s(k−1)(t1+t2)
[(

1− e−st1
) (

1− e−2t2
)
− Ik−1x

k − 2
B

]
, (S.7)
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where we have defined

B =
1

(k − 2)

[
1− e−2smin(t1,t2) − 2

k

(
1− e−skmin(t1,t2)

)
+

1

k

(
1− e−2k|t1−t2|

) (
e−2smin(t1,t2) − e−skmin(t1,t2)

)]
. (S.8)

We can now use this expression in Eq. (S.1) to calculate the coalescence probability P k,k→k−2
c .

Since the result is tedious and does not further illuminate the structure of the full conditional

calculation, we do not do so explicitly here, but the integrals are straightforward to evaluate

with the methods we have used above.

To motivate the validity of the non-conditional approximation, we need to consider the

full calculation going back one additional step. Thus we consider the probability that two

individuals both sampled from class k coalesce in class k − 3, P k,k→k−3
c . This will be given

by

P k,k→k−3
c =

∫
Qk−3
k,k (t1, t2)

x2

h2k−3
fk−3(x)e−s(k−3)|t1−t2|dt1dt2dx, (S.9)

where here Qk−3
k,k (t1, t2) is the distribution of the time at which the ancestors of the two

sampled individuals originally mutated from class k − 3 to class k − 2, conditional on them

not coalescing in classes k − 2 or k − 1.

We can calculate Qk−3
k,k (t1, t2) in the same way we calculated Qk−2

k,k (t1, t2). Explicitly,

Qk−3
k,k (t1, t2) = Qk−2

k,k (t1, t2|nc) ? Qk−3
1step(t1, t2), (S.10)

where analogously to the expression in the previous step

Qk−2
k,k (t1, t2|nc) =

1

1− P k,k→k−2
c

[
Qk−2
k,k (t1, t2)−Qk−2

k,k (t1, t2|c)P k,k→k−2
c

]
. (S.11)

We note that Qk−2
k,k (t1, t2) is the expression in Eq. (S.7) we calculated above. As before, we

have

Qk−2
k,k (t1, t2|c)P k,k→k−2

c = Ik−2x Qk−2
k,k (t1, t2)e

−s(k−2)|t1−t2|, (S.12)

hence we can write

Qk−2
k,k (t1, t2|nc) =

Qk−2
k,k (t1, t2)

1− P k,k→k−2
c

[
1− Ik−2x e−s(k−2)|t1−t2|

]
. (S.13)

Plugging the above expression back into Eq. (S.10), we obtain

Qk−3
k,k (t1, t2) =

s2(k − 1)2k2s2(k − 2)2

(1− P k,k→k−1
c )(1− P k,k→k−2

c )
e−s(k−2)(t1+t2)

∫ t2

0

∫ t1

0

es(k−2)(y+z)es(k−1)(y+z)

×
[
1− Ik−2x e−s(k−z)|y−z|

] [
(1− e−sy)(1− e−sz)− Ik−1x

k − 2
B

]
. (S.14)
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We could evaluate the integrals in the above expression for Qk−3
k,k (t1, t2) in the same way

that we did in our calculation for Qk−2
k,k (t1, t2). We would then substitute this result for

Qk−3
k,k (t1, t2) into an analogous calculation of Qk−4

k,k (t1, t2), and so on. In this way we can

build up the full conditional results. The most useful way to go about this is to separate the

results into powers of Ix, which is a small parameter related to the coalescent probability

in each step. We see from the expression for Qk−3
k,k (t1, t2) that there is a term in (Ix)

0,

which is exactly the non-conditional approximation. There are two terms involving (Ix)
1,

and a single term involving (Ix)
2. In general, in the expression for Qk−`

k,k (t1, t2), we will have

one (Ix)
0 term (which equals the result in the non-conditional approximation) plus ` terms

proportional to Ix,
(
2
`

)
terms proportional to (Ix)

2, and so on. Fortunately, the dependence

on the population parameters is entirely contained within these powers of Ix. That is, the

coefficients of these various powers of Ix depend only on k and `, and not at all on the

population parameters N , s, and Ud. Thus we could simply calculate a table of coefficients

once, and then would be able to understand all the distributions of mutant timings (and

from this all the coalescent probabilities).

In practice, it is easier to make these full conditional calculations within the sum of

ancestral paths approach. As we show in Supplementary Appendix D, that approach leads

naturally to a power series in Ix of exactly the form described above, in which the leading

order term is the non-conditional approximation and the additional terms represent the

conditional corrections. This calculation shows that provided Ix � 1, which is true provided

our usual condition that Nhksk � 1 holds, these higher order terms are all small, and our

non-conditional approximation is valid.

These full conditional results are, however, very complex and unilluminating. Therefore

we focus here on understanding the general structure of these results, and on showing why

the non-conditional approximation is good description of the distribution of mutation tim-

ings. We can see that at each step back through the fitness distribution, the probability

distribution of times shifts from the non-conditional results by a factor which is roughly

proportional to the coalescence probability at that step. That is, in general we have

Qk−`
k,k (t1, t2) =

1

1− P k,k→k−`
c

[
Qk−`
k,k (t1, t2)− P k,k→k−`

c Qk−2
k,k (t1, t2|c)

]
. (S.15)

The first term in square brackets reflects the fact that the probability distribution at a
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given step conditional on non-coalescence at that step is almost equal to the unconditional

probability distribution at that step. The second term represents the correction: note that

it is proportional to the coalescence probability in that step, P k,k→k−`
c . The nature of the

correction can be seen by plugging in the distribution of times conditional on coalescence,

giving

Qk−`
k,k (t1, t2) =

Qk−`
k,k (t1, t2)

1− P k,k→k−`
c

[
1− Ik−`x e−s(k−`)|t1−t2|

]
. (S.16)

We see that the correction acts to reduce the probability that |t1 − t2| is small — that is, it

makes it more likely that t1 and t2 are further apart, because this is more likely to be the

case given that coalescence did not occur.

Since at each step the shift in the distribution of mutant timings is proportional to the

coalescence probability, and the coalescence probability at each step is small, it seems clear

that the non-conditional approximation where we simply ignore this shift in mutant timings

is reasonable. However there is one potential caveat we must consider: although the shift

in the distribution of mutation timings due to conditioning on non-coalescence is small in

each step, we typically take many steps before the lineages coalesce. In fact, since the shift

in mutation timings is proportional to the coalescence probability, and we typically go back

a number of steps of order one over the coalescence probability, in principle the shifts in

mutation timings could add up to a substantial shift.

Fortunately, there are three factors which prevent this from happening. First, the shift

in mutation timings at each step is always to reduce the probability of times t1 and t2 where

|t1 − t2| <∼ 1
(k−`)s . Since at each step ` is increasing, and the range of separations between

mutation timings at which coalescence can happen is also increasing, the shifts in mutation

timings from many steps ago are not a huge factor in determining coalescence probabilities

in a particular step. That is, though the shifts in mutation timings add up over many steps,

the shifts most relevant to the coalescent probability in a given step do not. Second, the

coalescence probabilities at each step are different. This reduces the chance that we take

enough steps to shift the overall mutation timings substantially by the time we coalesce.

Finally, and most importantly, we will see that the there is a substantial probability that

the ancestors of the two individuals sampled do not coalesce until they are in the most-fit

class. This means that the total sum of coalescence probabilities (and hence the total possible

weight in the shift of mutation timings) remains small even in the worst case where the two
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lineages do not coalesce for the maximum possible number of steps. The non-conditional

approximation will always be good in the regime where this is true. All of these heuristic

conclusions are reflected in the fact that the full conditional result we calculate in the sum

of ancestral paths approach is equal to the non-conditional result plus corrections that are

small provided Ix � 1.

SUPPLEMENTARY APPENDIX B: THE NON-CONDITIONAL
DISTRIBUTIONS OF MUTANT TIMINGS

Within the non-conditional approximation we need to calculate the distribution of mutant

timings, as used in Eq. (48). Specifically, we need to calculate

Qk−`
k (t) = Qk−1

k (t) ? Qk−2
k−1(t) ? Q

k−3
k−2(t) ? . . . ? Q

k−`
k−`+1(t), (S.17)

where ? refers to a convolution and

Qk−`
k−`+1(t) = s(k − `+ 1)e−s(k−`+1)t, (S.18)

as given by Eq. (6). In general, the convolution of n exponential distributions with param-

eters λ1 . . . λn is given by
n−1∑
i=0

λie
−λit

n−1∏
j=0,6=i

λj
λj − λi

. (S.19)

Applying this identity with λi = s(k − i), we find

Qk−`
k (t) =

`−1∑
i=0

se−s(k−i)t


`−1∏
j=0

k − j

`−1∏
j=0,6=i

i− j

 (S.20)

We can simplify this expression by noting that

`−1∏
j=0

(k − j) =
k!

(k − `)!
, (S.21)

and similarly that
`−1∏

j=0, 6=i

(i− j) = i!(`− 1− i)!(−1)`−1−i. (S.22)
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This means we have

Qk−`
k (t) =

`−1∑
i=0

s`e−s(k−i)t(−1)`−i−1
(
`− 1

i

)(
k

k − `

)
. (S.23)

We can evaluate this sum by recognizing the binomial expansion formula

(1 + x)n =
n∑
i=0

xi
(
n

i

)
, (S.24)

where we identify x = −est. We find

Qk−`
k (t) = s`

(
k

`

)
e−skt

(
est − 1

)`−1
. (S.25)

More generally, we have

Qb
a(t) = s(a− b)

(
a

b

)
e−sat

(
est − 1

)a−b−1
. (S.26)

SUPPLEMENTARY APPENDIX C: GENERAL COALESCENCE
PROBABILITIES IN THE NON-CONDITIONAL APPROXIMATION

The probability of coalescence for two individuals originally in two different classes k and

k′, as defined in Eq. (48) can be rewritten as

P k,k′→k′−`
c =

1

1 + 2Nhk−`s(k − `)
[I1 + I2] , (S.27)

where we have defined

I1 =

∫ ∞
0

Qk−`
k′ (t1)e

−s(k−`)t1
∫ t1

0

Qk−`
k (t2)e

s(k−`)t2dt2dt1 (S.28)

I2 =

∫ ∞
0

Qk−`
k (t2)e

−s(k−`)t2
∫ t2

0

Qk−`
k′ (t1)e

s(k−`)t1dt1dt2. (S.29)

Note that both I1 and I2 involve integrals of the form

Ia =

∫ t

0

Qb
a(t
′)esbt

′
dt′. (S.30)

Plugging in the results for the non-conditional distributions of mutant timings, Eq. (S.26),

and making use of the binomial expansion formula for (1 + x)n noted in Supplementary
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Appendix B, we find this integral becomes

Ia = s(a− b)
(
a

b

)∫ t

0

es(b−a)t
′
(
est
′ − 1

)a−b−1
dt′ (S.31)

= s(a− b)
(
a

b

) a−b−1∑
i=0

(−1)a−b−1+i
(
a− b− 1

i

)∫ t

0

es(b−a+i)t
′
dt′ (S.32)

= (a− b)
(
a

b

)
(−1)a−b

a−b−1∑
i=0

(−1)i

a− b

(
a− b
i

)(
es(b−a+i)t − 1

)
(S.33)

=

(
a

b

)
(−1)a−b

a−b∑
i=0

(−1)i
(
a− b
i

)(
es(b−a+i)t − 1

)
(S.34)

=

(
a

b

)
(−1)a−bes(b−a)t

a−b∑
i=0

(
−est

)i(a− b
i

)
(S.35)

=

(
a

b

)
es(b−a)t

(
est − 1

)a−b
. (S.36)

We now substitute this result for Ia into our expressions for I1 and I2. We note that both

have terms of the form

Ib =

∫ ∞
0

Qb
a(t)

(
c

b

)
e−sct

(
est − 1

)c−b
dt. (S.37)

Using similar manipulations to those above, we find

Ib = (a− b)
(
a

b

)(
c

b

)∫ ∞
0

e−s(a+c)t
(
est − 1

)a+c−2b−1
dt (S.38)

= s(a− b)
(
a

b

)(
c

b

)
(−1)a+c−1

a+c−2b−1∑
i=0

(
a+ c− 2b− 1

i

)
(−1)i

∫ ∞
0

e−s(a+c−i)tdt(S.39)

= (a− b)
(
a

b

)(
c

b

)
(−1)a+c−1

a+c−2b−1∑
i=0

(−1)i
(
a+ c− 2b− 1

i

)
1

a+ c− i
. (S.40)

Using the partial fraction decomposition

1(
n+x
n

) =
n∑
i=1

(−1)i−1
(
n

i

)
i

x+ i
, (S.41)

we find

Ib =
a−b

a+c−2b

(
a
b

)(
c
b

)
(−1)a+c(−2b−1

a+c−2b

) =
a−b

a+c−2b

(
a
b

)(
c
b

)
(−1)2b(

a+c
a+c−2b

) . (S.42)

We can now use this result for Ib to determine I1 and I2, and hence compute P k,k′→k′−`
c .

We find

P k,k′→k′−`
c =

1

1 + 2Nhk−`s(k − `)

(
k′

k−`

)(
k
k−`

)(
k+k′

2`+k′−k

) . (S.43)
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As we noted in the main text, this is just

P k,k′→k−`
c =

1

1 + 2Nhk−`s(k − `)
Ak,k

′

` , (S.44)

with Ak,k
′

` as defined in Eq. (16). Note that when k = k′, this result simplifies to P k,k→k−`
c

as defined in the main text, as expected.

SUPPLEMENTARY APPENDIX D: COMPUTING SUMS OF
ANCESTRAL PATHS

In this appendix, we describe the calculation of φk
′

k (`) using the sum of ancestral paths

approach.

Calculation of φkk(3): We begin by considering a simpler specific case, where k = k′

and ` = 3. There are a total of
(
6
3

)
= 20 possible ancestral paths by which two individuals

sampled from class k can coalesce in class k − 3. These can be separated into four types,

according to whether the two ancestral lineages were ever together in classes k− 1 or k− 2.

We can list all paths of each type, using the notation that A is a mutation event in the first

lineage, and B is a mutation event in the second lineage. We have



ABABAB

ABABBA

ABBAAB

ABBABA

BAABAB

BAABBA

BABAAB

BABABA


︸ ︷︷ ︸
(2

1)(
2
1)(

2
1)=8 ways


ABAABB

ABBBAA

BAAABB

BABBAA


︸ ︷︷ ︸

(2
1)((

4
2)−(2

1)(
2
1))=4 ways


AABBAB

AABBBA

BBAAAB

BBAABA


︸ ︷︷ ︸

(2
1)((

4
2)−(2

1)(
2
1))=4 ways


AAABBB

AABABB

BBBAAA

BBABAA


︸ ︷︷ ︸
(6

3)−others=4ways

.

The probabilities of all paths of a particular type are identical. We can calculate the

probability of each of the four types of paths using the same logic as outlined in the main
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text. We find

P (AAABBBc) = Ik−3x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

)
, (S.45)

P (AABBABc) = Ik−3x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

) (
1− Ik−1x

)
, (S.46)

P (ABAABBc) = Ik−3x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

) (
1− Ik−2x

)
, (S.47)

P (ABABABc) = Ik−3x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

) (
1− Ik−1x

) (
1− Ik−2x

)
.(S.48)

Summing over all the possible paths, we find

φkk(3) = Ik−3

(
k
k−3

)(
k
k−3

)(
2k
6

) [
1−

(
2
1

)(
4
2

)(
6
3

) Ik−1 −
(
2
1

)(
4
2

)(
6
3

) Ik−2 +

(
2
1

)(
2
1

)(
2
1

)(
6
3

) Ik−1Ik−2

]
. (S.49)

We now pause to consider the form of the probabilities of each type of ancestral path.

These probabilities differ only by factors of (1 − Ik−ix ). One such factor arises each time

the two ancestral lineages are together in class k − i. In other words, we can rewrite

the probability of each path as the probability of an undistorted path (defined to be a

path in which the contributions due to the possibility of coalescence in previous classes are

neglected), times a correction for each class in which the two lineages are together:

P (AAABBBc) = P (Undistorted Path)
(
1− Ikx

)
(S.50)

P (AABBABc) = P (Undistorted Path)
(
1− Ikx

) (
1− Ik−1x

)
(S.51)

P (ABAABBc) = P (Undistorted Path)
(
1− Ikx

) (
1− Ik−2x

)
(S.52)

P (ABABABc) = P (Undistorted Path)
(
1− Ikx

) (
1− Ik−1x

) (
1− Ik−2x

)
. (S.53)

By definition, the “undistorted path” probability is the probability neglecting the contribu-

tions due to the possibility of coalescence in previous steps, and is therefore the same for all

paths. We have

P (Undistorted Path) =
k(k − 1)(k − 2)k(k − 1)(k − 2)

2k(2k − 1)(2k − 2)(2k − 3)(2k − 4)(2k − 5)
Ik−`x (S.54)

=

k!
(k−3)!

k!
(k−3)!

2k!
(2k−6)!

Ik−`x . (S.55)

Using these results, we can write φkk(3) as

φkk(3) = [# of Paths]P (Undistorted Path)
[
Fk(1− Ikx) + Fk,k−1(1− Ikx)(1− Ik−1x )

+Fk,k−2(1− Ikx)(1− Ik−2x ) + Fk,k−1,k−2(1− Ikx)(1− Ik−1x )(1− Ik−2x )
]
, (S.56)
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where we have defined F{a} to be the fraction of paths that are together in the set of classes

{a} (and are not together in any other class).

Calculation of φkk′(`): We now use this approach to calculate the coalescence probability

in the general case. The probability of any particular ancestral path from k and k′ to k−` is

the product of the individual probabilities of each mutational step that makes up this path.

Each such individual probability consists of three parts: a numerator, which depends only

on the current class of the lineage that mutates, divided by a denominator, which depends

only on the sum of the current set of classes for both lineages, times a correction factor of

(1− Ik−ix ) if the two lineages are in the same class at that step.

Although in each ancestral path the mutations will occur in a different order, all paths

will ultimately consist of the same set of mutations (k′ → k′ − 1 → . . . → k − ` and

k → k − 1 → . . . → k − `). Therefore, regardless of the path taken, the product of the

numerators from each step will be identical. Similarly, the sum of the current set of classes

will begin at k′+k, and decrement by one each time a deleterious mutation occurs, until both

lineages are in the final class (k′ + k → k′ + k − 1→ . . .→ 2k − 2`). Therefore, regardless

of the path taken, the product of the denominators from each step will also be identical.

Therefore, the paths will differ only by the correction factor (1−Ik−ix ) for each class in which

the two ancestral lineages are together. This means that, analogous to the case of φkk(3) we

described above, the probability of each path is the probability of an “undistorted path”

times the appropriate correction factor. The probability of the undistorted path is

P (Undistorted Path) =
k′(k′ − 1) . . . (k − `+ 1)k(k − 1) . . . (k − `+ 1)

(k′ + k)(k′ + k − 1) . . . (2k − 2`+ 1)
Ik−`x . (S.57)

We can now sum up all possible paths to obtain

φkk′(`) = [# of Paths]P (Undistorted Path)

[
F∅ +

∑̀
i=0

Fk−i(1− Ik−ix )

+
`−1∑
i=0

∑̀
j>i

Fk−i,k−j(1− Ik−ix )(1− Ik−jx ) (S.58)

+
`−2∑
i=0

`−1∑
j>i

∑̀
m>j

Fk−i,k−j,k−m(1− Ik−ix )(1− Ik−jx )(1− Ik−mx ) + . . .

]
,

where as before F{a} is the fraction of paths that are together in the set of classes {a} (and

are not together in any other class). Note that there are a total of ` + 1 terms in this
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equation, representing the possibility that the two lineages can be together in anywhere

from 0 to ` of the classes. We can rearrange these terms to write

φkk′(`) = [# of Paths]P (Undistorted Path)

[
1−

∑̀
i=0

Gk−iI
k−i
x

+
`−1∑
i=0

∑̀
j>i

Gk−i,k−jI
k−i
x Ik−jx (S.59)

−
`−2∑
i=0

`−1∑
j>i

∑̀
m>j

Gk−i,k−j,k−mI
k−i
x Ik−jx Ik−mx + . . .

]
,

where we have defined G{a} to be the fraction of paths that are together in at least the set

of classes {a}.

We can evaluate each of these factors of G. For example, the fraction of paths that are

together in class k− i equals the number of ways for the two lineages to descend from classes

k′ and k to be together in class k−i,
(
k′−k+2i

i

)
, times the number of ways for the two lineages

to descend from class k− i to be together in class k− `,
(
2i−2`
i−`

)
, divided by the total number

of ways for the two lineages to descend from classes k′ and k to be together in k−`,
(
k′−k+2`

`

)
.

Using this logic, we find

φkk′(`) = [# of Paths]P (Undistorted Path) (S.60)

×

[
1−

`−1∑
i=0

(
k′−k+2i

i

)(
2`−2i
`−i

)(
k′−k+2`

`

) Ik−ix +
`−2∑
i=0

`−1∑
j>i

(
k′−k+2i

i

)(
2j−2i
j−i

)(
2`−2j
`−j

)(
k′−k+2`

`

) Ik−ix Ik−jx . . .

]
.

The total number of paths is
(
k′−k+2`

`

)
, so we finally find that the full probability of

coalescence in class k − ` is

φk
′

k (`) = Ik−`x

(
k′

k−`

)(
k
k−`

)(
k′+k

k′−k+2`

) [1−
`−1∑
i=0

(
k′−k+2i

i

)(
2`−2i
`−i

)(
k′−k+2`

`

) Ik−ix +

`−2∑
i=0

`−1∑
j>i

(
k′−k+2i

i

)(
2j−2i
j−i

)(
2`−2j
`−j

)(
k′−k+2`

`

) Ik−ix Ik−jx − . . .

]
. (S.61)

This is Eq. (56) from the main text. Note that it equals our non-conditional result for

P k,k′→`
c times a correction factor. There are a total of ` + 1 terms in this correction factor.

This full correction factor can be arbitrarily complex for large `, so we do not write out a

general form here. However, it is straightforward to calculate for any values of k, k′, and `;

a Mathematica script to do so is available on request.
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SUPPLEMENTARY APPENDIX E: THE CORRESPONDENCE
BETWEEN STEPTIMES AND REAL TIMES

In this Supplementary Appendix, we calculate the correspondence between steptimes and the

actual times measured in generations. Our goal is to calculate the probability distribution

of real coalescence times, ψ(t|k, k′, `), given that individuals were initially in classes k and

k′ and coalesced in class k − `.

To begin, we neglect the coalescence time within class k−`, and consider the distribution

of the time at which an ancestor of one of the two sampled individuals first mutated from

class k − ` to class k − ` + 1. We refer to this as ψ1(t|k, k′, `). We first calculate the joint

distribution of the times at which both ancestors mutated out of the class, Rk−`
k,k′ (t1, t2).

Conditional on coalescence in class k − `, Rk−`
k,k′ (t1, t2), is given by the probability of t1 and

t2 and coalescence divided by the total probability of coalescence. That is,

R(t1, t2) =
P (coal|t1, t2)P (t1, t2)

P (coal)
. (S.62)

Substituting in the relevant expressions from the main text, this gives

Rk−`
k,k′ (t1, t2) =

1

Ak,k
′

`

Qk−`
k,k′ (t1, t2)e

−s(k−`)|t1−t2|. (S.63)

The time at which the first ancestor mutated out of class k − ` is the longer of the two

times t1 and t2,

ψ(t|k, k′, `) =

[∫ t

0

Rk−`
k,k′ (t1, t)dt1 +

∫ t

0

Rk−`
k,k′ (t, t2)dt2

]
. (S.64)

Substituting in our expression for Rk−`
k,k′ (t1, t2) and carrying out the integrals as in Supple-

mentary Appendix C, we find

ψ1(t|k, k′, `) = sπde
−s(k′+k)t(est − 1)πd−1

(
k′ + k

πd

)
, (S.65)

where we have used πd = k′ − k + 2`.

We can alternatively calculate ψ1(t|k, k′, `) using our sum of ancestral paths approach.

As before, we imagine two individuals sampled from classes k and k′ and condition on them

coalescing in class k − `. Consider a case where k 6= k′. Then the first event in the history

of these two individuals must be a deleterious mutation. Since these mutations happen at
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rate sk and sk′ in each lineage, the distribution of times since this mutation occurred in one

of the two ancestral lineages is

P (t) = s(k + k′)e−s(k+k
′)t. (S.66)

With probability k′

k+k′
, this mutation is in the lineage sampled from class k′, in which case

the two lineages are now in classes k and k′ − 1. Alternatively, the mutaion occurred in the

lineage sampled from k and the lineages are in classes k − 1 and k′.

We can now consider the time to the next event backwards in time. If the two lineages

are in the same class (but not yet in class k − `), the distribution of times to the next

deleterious mutation event is somewhat shorter, because we are conditioning on coalescence

not occuring. However, provided that 2sk1 � 1
Nhk

(the condition we are already making

elsewhere), this shortening of the time will be a small correction and neglecting it is a good

approximation.

Making this approximation, the rate at which the next deleterious mutation event occurs

when the two lineages are in classes k1 and k2 is just s(k1 + k2). Regardless of the order

in which these mutations happen between the two lineages, this sum is simply decreased

by s at each step. This will continue until the both ancestral lineages are in class k − `.

Therefore, the distribution of times until the original mutation out of class k− ` is given by:

ψ1(t|k′, k, `) = s(k′ + k)e−s(k
′+k)t ? s(k′ + k − 1)e−s(k

′+k−1)t ? . . . ? s(2k − 2`+ 1)e−s(2k−2`+1)t.

(S.67)

This can be written as

ψ1(t|k′, k, `) = λ0e
−λ0t ? λ1e

−λ1t ? . . . ? λk′−k+2`−1e
−λk′−k+2`−1t, (S.68)

where we have defined:

λi = s(k′ + k − i). (S.69)

We can compute this convolution as in Supplementary Appendix B (compare to Eq. (S.17)

for Q2k−2`
k+k′ (t)). We find

ψ1(t|k, k′, `) = sπde
−s(k′+k)t(est − 1)πd−1

(
k′ + k

πd

)
, (S.70)

identical to the result of our lineage structure calculation above.
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Distribution of Coalescence Times: To calculate the correspondence between step-

times and real times, we now need to add the time it takes two individuals two coalesce in

class k − `, which we refer to as ψ2(t|k, k′, `), to the time it took them both to get to that

class, ψ1(t|k, k′, k − `). The rate of coalescence once in class k − ` is 1
Nhk−`

, so we have

ψ2(t|k′, k, `) = (2s(k − `) + 1/Nhk−`) e
−(s(k−`)+1/Nhk−l)t. (S.71)

Putting this together, the full distribution of times since coalescence is

ψ(t|k′, k, `) = ψ1(t|k′, k, `) ? ψ2(t|k′, k, `). (S.72)

Carrying out this convolution (and expanding the binomial factor (est − 1)πd−1 in ψ1), we

find

ψ(t|k′, k, `) =

πd−1∑
i=0

sπd(−1)πd−i−1
(
πd − 1

i

)(
k′ + k

πd

)
B

A−B
(
e−sBt − e−sAt

)
, (S.73)

where we have defined A ≡ k′ + k − i and B ≡ k − `+ 1
Nshk−`

.

SUPPLEMENTARY APPENDIX F: AN ALTERNATIVE APPROACH
TO NEUTRAL DIVERSITY

Instead of calculating the distribution of neutral heterozygosity by first computing the dis-

tribution of real times, we could alternatively incorporate neutral mutations directly into the

sum of ancestral paths framework. This completely bypasses the correspondence with real

coalescence times. To do this, we characterize ancestral paths not only by the ordering of

deleterious mutation and coalescence events, but also by the ordering of neutral mutations.

This means that if we sample two individuals A and B, there are five types of events that

can happen in their ancestral paths: a deleterious mutation (DM) in A or in B, a neutral

mutation (NM) in either A or in B, and or a coalescence (C) event (if A and B are currently

in the same class).

We now imagine that we sample two individuals from classes k and k′, and that they

coalesce in class k − `. Our goal is to calculate the probability distribution of πn given k,

k′, and `, ρ(πn|k, k′, `). We will find it helpful to divide the five types of events that can

occur into two classes: neutral mutations on the one hand, and deleterious mutations or

coalescence (which we call “steps”) on the other. We begin by computing the probability
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that a given number of NMs occur before the next DM or C events (i.e. the number of

neutral mutations that occur at this “step”). We have

P (a NMs, then DM in k′ or k′|k′, k) =

(
2Un
s

k′ + k + 2Un
s

)a
k + k′

k′ + k + 2Un
s

, (S.74)

where we have made our usual assumption that Nhksk � 1, allowing us to neglect the rates

of coalescence events (when k = k′) in writing this expression.

This probability only depends on the sum of the current classes the individulas are in.

At each subsequent step, regardless of the path taken, this sum of the classes will decrease

by one. Therefore, the probability that ai neutral mutations occur at step i is independent

of the path taken. This observation allows us to calculate the probability that a given

total number of neutral mutations have occurred since coalescence. We first calculate the

probability that a given number of neutral mutations have occurred since the first deleterious

mutation out of the k− ` class. We will add in the additional neutral mutations once in the

k − ` class at the end.

In order for πn neutral mutations to have occurred since the first deleterious mutation

out of class k − `, we require that a0 mutations occurred at the first step, a1 mutations

occurred at the second step, and so on, such that a0 + a1 + . . .+ ak′−k+2`−1 = πn. This gives

ρ(πn = X|k′, k, `) =

(k′+k)!
(2k−2`)!

( 2Un
s

+k′+k)!

( 2Un
s

+2k−2`)!

∑
|~a|=X

(
2Un/s

2Un/s+ k + k′

)a0

. . .

(
2Un/s

2Un/s+ 2k − 2l + 1

)ak′−k+2l−1

.

(S.75)

We can define x ≡ 2Un/s+ k + k′, recognize πd = k′ − k + 2`, and relabel the ai as

a0 → X − b0, a1 → b0 − b1, . . . aπd−2 → bπd−3 − bπd−2, aπd−1 → bπd−2. (S.76)

This gives

ρ(πn = X|k′, k, `) =

(
k′+k
πd

)( 2Un
s

+k′+k
πd

) (2Un
s

)X (
1

x

)X X∑
b0=0

(
x

x− 1

)b0
(S.77)

b0∑
b1=0

(
x− 1

x− 2

)b1
. . .

bπd−3∑
bπd−2=0

(
x− πd + 2

x− πd + 1

)bπd−2

.
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To simnplify this expression, it is helpful to define a function f such that:

f (A,B) ≡
(

1

x

)X X∑
b0=0

(
x

x− 1

)b0
(S.78)

b0∑
b1=0

(
x− 1

x− 2

)b1
. . .

X∑
bA−1=0

(
x− A+ 1

x− A

)b0 bA−1∑
bA=0

(
x− A
x−B

)bA
In other words, f (A,B) is a set of A nested sums, each of the same form, except for the

final sum, which can have a different denominator. Using this definition, we have

P (πn = X|k′, k, `) =

(
k′+k
πd

)( 2Un
s

+k′+k
πd

) (2Un
s

)X
f (πd − 2, πd − 1) . (S.79)

The virtue of this definition is that this sum can be solved recursively. We have

bA−1∑
bA=0

(
x− A
x−B

)bA
=
x−B
A−B

− x− A
A−B

(
x− A
x−B

)bA−1

. (S.80)

Therefore we have

f (A,B) =
x− A
B − A

f (A− 1, B)− x−B
B − A

f (A− 1, A) . (S.81)

Repeatedly inserting this result yields:

f (A,A+ 1)→ (x− A)(x− A− 1)

1

(
f (A− 1, A+ 1)

x− A− 1
− f (A− 1, A)

x− A

)
f (A,A+ 1)→ (x− A+ 1)(x− A)(x− A− 1)

2

[
f (A− 2, A+ 1)

x− A− 1
− 2f (A− 2, A)

x− A
+

f (A− 2, A− 1)

x− A+ 1

]
...

f (A,A+ 1)→ (m+ 1)

(
x− A− 1 +m

m+ 1

) m∑
i=0

(−1)i+m

x− A− 1 + i

(
m

i

)
f (A−m,A+ 1− i) . (S.82)

Note that f(−1, B) = 1/BX , since there are no more sums to compute. Thus, for m = A+1

we have

f (A,A+ 1) = (A+ 2)

(
x

A+ 2

) A+1∑
i=0

(−1)i+A+1

(x− A− 1 + i)X+1

(
A+ 1

i

)
. (S.83)

Relabeling the sum and taking A = πd − 2, we have

f (πd − 2, πd − 1) = πd

(
x

πd

) πd−1∑
i=0

(−1)i

(x− i)X+1

(
πd − 1

i

)
. (S.84)
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We can now substitute these results into our expression for πn, to find

ρ1(πn = X|k′, k, `) = πd

(
k′ + k

πd

)(
2Un
s

)X πd−1∑
i=0

(−1)i

(2Un/s+ k + k′ − i)X+1

(
πd − 1

i

)
(S.85)

Note, however, that this is only the distribution of neutral mutations since the first delete-

rious mutation out of class k − l. It is also possible for neutral mutations to occur prior to

the coalescence event. Adding in this factor, we find

ρ(πn = X|k′, k, `) = πd

(
k′ + k

πd

) πd−1∑
i=0

(−1)i
(
πd − 1

i

)
(S.86)

×
πn∑
X=0

(2Un/s)
X

(2Un/s+ k + k′ − i)X+1

(
2Nk−lUn

1 + 2Nk−lUn + 2Nk−ls(k − l)

)πn−X
.

Rearranging this expression gives

ρ(πn|k′, k, `) =

πd−1∑
i=0

πd(−1)πd−i−1
(
πd − 1

i

)(
k′ + k

πd

)
B

A−B

(
(2Un

s
)πn

(2Un
s

+B)πn+1
−

(2Un
s

)πn

(2Un
s

+ A)πn+1

)
,

(S.87)

where we have defind

A = k′ + k − i, B = 2k − 2`+
1

Nshk−l
, (S.88)

identical to our earlier result.
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