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Signal-processing molecules inside cells are often present at low copy number, which necessitates probabi-
listic models to account for intrinsic noise. Probability distributions have traditionally been found using
simulation-based approaches which then require estimating the distributions from many samples. Here we
present in detail an alternative method for directly calculating a probability distribution by expanding in the
natural eigenfunctions of the governing equation, which is linear. We apply the resulting spectral method to
three general models of stochastic gene expression: a single gene with multiple expression states !often used as
a model of bursting in the limit of two states", a gene regulatory cascade, and a combined model of bursting
and regulation. In all cases we find either analytic results or numerical prescriptions that greatly outperform
simulations in efficiency and accuracy. In the last case, we show that bimodal response in the limit of slow
switching is not only possible but optimal in terms of information transmission.
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I. INTRODUCTION

Signals are processed in cells using networks of interact-
ing components, including proteins, mRNAs, and small sig-
naling molecules. These components are usually present in
low numbers #1–6$, which means the size of the fluctuations
in their copy counts is comparable to the copy counts them-
selves. Noise in gene networks has been shown to propagate
#7$ and therefore explicitly accounting for the stochastic na-
ture of gene expression appears important when predicting
the properties of real biological networks.

Although summary statistics such as mean and variance
are sometimes sufficient for answering questions of biologi-
cal interest #8$, calculating certain quantities, such as infor-
mation transmission #9–14$, requires knowing the full prob-
ability distribution. Full knowledge of the probability
distribution can also be used to discern different molecular
models of the noise sources based on recent exact measure-
ments of probability distributions #15–18$.

Much analytical and purely computational effort has gone
into detailed models of noise in small genetic switches
#8,19–21$. The most general description is based on the mas-
ter equation describing the time evolution of the joint prob-
ability distribution over all copy counts #22$. Some progress
has been made by applying approximations to the master
equation #24–26$. For example, a wide class of approxima-
tions focuses on limits of large concentrations or small
switches #8,19,23$. More often, modelers resort to stochastic

simulation techniques, the most common of which is based
on the varying-step Monte Carlo method #27,28$. This
method requires a computational challenge !generating many
sample trajectories" followed by an even more difficult sta-
tistical challenge !parametrizing or otherwise estimating the
probability distribution from which the samples are drawn"
#29$. Recently there have been significant advances in
simulation-based methods to circumvent these problems
#20,21,30$. Simulation techniques are especially useful for
more detailed studies of experimentally well-characterized
systems, including those incorporating DNA looping, non-
specific binding #30$, and explicit spatial effects #20,21$.
However, it is often beneficial to first gain intuition from
simplified analytical models.

In a recent paper #31$ we introduce an alternative method
for calculating the steady-state distributions of chemical re-
actants, which we call the spectral method. The procedure
relies on exploiting the natural basis of a simpler problem
from the same class. The full problem is then solved numeri-
cally as an expansion in the natural basis #32$. In the spectral
method we use the analytical guidance of a simple birth-
death problem to reduce the master equation for a cascade to
a set of algebraic equations. We break the problem into two
parts: a parameter-independent preprocessing step and the
parameter-dependent step of obtaining the actual probability
distributions. The spectral method allows huge computa-
tional gains with respect to simulations. In prior work #31$
we illustrate the method in the example of gene regulatory
cascades. We combine the spectral method with a Markov
approximation, which exploits the observation that the be-
havior of a given species should depend only weakly on
distant nodes given the proximal nodes.

In this paper we expand upon the application of the spec-
tral method to more biologically realistic models of regula-
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tion: !i" a model of bursting in gene expression and !ii" a
model that includes both bursts and explicit regulation by
binding of transcription factor proteins. In both cases we
demonstrate how the spectral method gives either analytic
results or reduced algebraic expressions that can be solved
numerically in orders of magnitude less time than stochastic
simulations.

We note that although information propagation in biologi-
cal networks is impeded by numerous mechanisms collec-
tively modeled as noise, here we focus on the inescapable or
“intrinsic” noise resulting from the finite copy number of the
molecules. One should consider these results, then, as an
upper bound on information propagation, further hampered
by, for example, cell division #33$; spatial effects #20,21$;
active degradation of the constituents !here modeled via a
constant degradation rate"; and other complicating mecha-
nisms particular to specific systems. Additionally, here we
focus on steady-state solutions, but extensions to dynamics
are straightforward and currently being pursued.

We begin with a model of a multistate birth-death process,
a special case of which has been used to describe transcrip-
tional bursting #17,34$. We illustrate how the spectral method
reduces the model to a simple iterative algebraic equation,
and in the appropriate limiting case recovers the known ana-
lytic results. We also use this section to introduce the basic
notation used throughout the paper. Next we explore the
problem of gene regulation in detail. The main idea behind
the spectral method is the exploitation of an underlying natu-
ral basis for a problem which we can solve exactly. We ex-
plore four different spectral representations of the regulation
model used in previous work #31$ that arise from four natural
choices of eigenbasis in which to expand the solution !cf.
Sec. II A and Fig. 2". All representations reduce the master
equation to a set of linear algebraic equations, and one ad-
mits an analytic solution by virtue of the tridiagonal matrix
algorithm. We compare the efficiencies of the representa-
tions’ numerical implementations and show that all outper-
form simulation. Lastly, we apply the spectral method to a
model that combines bursting and regulation. We obtain a
linear algebraic expression that permits large speedup over
simulation and thus admits optimization of information
transmission. Optimization reveals two types of solutions: a
unimodal response when the rates of switching between ex-
pression states are comparable to degradation rates and a
bimodal response when switching rates are much slower than
degradation rates.

II. BURSTS OF GENE EXPRESSION

We first consider a model of gene expression in which a
gene exists in one of Z stochastic “states,” i.e., protein pro-
duction obeys a simple birth-death process but with a state-
dependent birth rate. In the special case of Z=2, this corre-
sponds to a gene existing in an on or an off state due, for
example, to the binding and unbinding of the RNA poly-
merase. Such a model has been used to describe transcrip-
tional bursting #17,34$, and we specialize to this case in Sec.
II C.

For a general Z-state process, the master equation

ṗn
z = gzpn−1

z + !n + 1"pn+1
z − !gz + n"pn

z + %
z!

!zz!pn
z! !1"

describes the time evolution of the joint probability distribu-
tion pn

z , where z specifies the state !1"z"Z", n is the num-
ber of proteins, gz is the production rate in state z, !zz! is a
stochastic matrix of transition rates between states, and ṗn

z

denotes differentiation of the probability distribution with re-
spect to time. Time and all rates have been nondimensional-
ized by the protein degradation rate. Note that conservation
of probability requires

%
z

!zz! = 0. !2"

The relationship between the transition rates in !zz! and
the probabilities #z=%npn

z of being in the zth state can be
seen by summing Eq. !1" over n; at steady state one obtains

%
z!

!zz!#z! = 0, !3"

and normalization requires

%
z

#z = 1. !4"

In the following sections, we introduce the spectral method
and demonstrate how it can be used to solve for the full joint
distribution pn

z .

A. Notation and definitions

We begin our solution of Eq. !1" by defining the generat-
ing function #22$ Gz!x"=%n pn

zxn over complex variable x
#35$ !note that superscript z is an index, while superscript n
on xn is a power". It will prove more convenient to rewrite
the generating function in a more abstract representation us-
ing states indexed by protein number &n',

&Gz' = %
n

pn
z &n' , !5"

with inverse transform

pn
z = (n&Gz' . !6"

The more familiar form can be recovered by projecting the
position space (x& onto Eq. !5", with the provision that

(x&n' = xn. !7"

Concurrent choices of conjugate state

(n&x' =
1

xn+1 !8"

and inner product

(f &f!' =) dx

2#i
(f &x'(x&f!' !9"

ensure orthonormality of the states, (n &n!'=$nn!, as can be
verified using Cauchy’s theorem,
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) dx

2#i

f!x"
!x − x0"n+1 =

1
n!

!x
n#f!x"$x=x0

%!n + 1" , !10"

where the convention %!0"=0 is used for the Heaviside func-
tion.

With these definitions, summing Eq. !1" over n against &n'
yields

&Ġz' = − !â+ − 1"!â− − gz"&Gz' + %
z!

!zz!&Gz!' , !11"

where the operators â+ and â− raise and lower protein num-
ber, respectively, i.e.,

â+&n' = &n + 1' , !12"

â−&n' = n&n − 1' , !13"

with adjoint operations

(n&â+ = (n − 1& , !14"

(n&â− = !n + 1"(n + 1& . !15"

As in the operator treatment of the simple harmonic oscilla-
tor in quantum mechanics, the raising and lower operators
satisfy the commutation relation #â− , â+$=1 and â+â− is
a number operator, i.e., â+â−&n'=n&n' #36$. This operator
formalism for the generating function was introduced in
the context of diffusion independently by Doi #37$ and
Zel’dovich #38$ and developed by Peliti #39$. We note that
all results can equivalently be obtained by remaining in x
space !for example, â+↔x and â−↔!x". However, the rais-
ing and lowering operators define an extremely simple alge-
bra which allows us to calculate all projections without ex-
plicitly computing overlap integrals !as shown, for example,
in Appendix A". A review by Mattis and Glasser #40$ intro-
duces and discusses the applications of the formalism for
diffusion.

The factorized form of the birth-death operator in Eq. !11"
suggests the definition of shifted raising and lowering opera-
tors

b̂+ = â+ − 1, !16"

b̂z
− = â− − gz, !17"

making Eq. !11"

&Ġz' = − b̂+b̂z
−&Gz' + %

z!

!zz!&Gz!' . !18"

Since b̂+ and b̂z
− are simply shifted from â+ and â− by con-

stants, b̂+b̂z
− is a new number operator, and its eigenvalues are

nonnegative integers j, i.e.,

b̂+b̂z
−&jz' = j&jz' , !19"

where j indexes !z-dependent" eigenfunctions &jz'. In position
space, b̂+ and b̂z

− are x−1 and !x−gz, respectively. Projecting
(x& onto Eq. !19" therefore yields a first-order ordinary dif-
ferential equation whose solution !up to normalization" is

(x&jz' = !x − 1" jegz!x−1", !20"

with conjugate

(jz&x' =
e−gz!x−1"

!x − 1" j+1 , !21"

such that orthonormality (jz & jz!'=$ j j! is satisfied under the
inner product in Eq. !9". Note that b̂+ and b̂z

− raise and lower
eigenstates &jz' as in Eqs. !12"–!15", i.e.,

b̂+&jz' = &!j + 1"z' , !22"

b̂z
−&jz' = j&!j − 1"z' , !23"

(jz&b̂+ = (!j − 1"z& , !24"

(jz&b̂z
− = !j + 1"(!j + 1"z& . !25"

As we will see in this and subsequent sections, going
between the protein number basis &n' and the eigenbasis &jz'
requires the mixed product (n & jz' or its conjugate (jz &n'.
There are several ways of computing these objects, as de-
scribed in Appendix A. Notable special cases are

(!j = 0"z&n' = 1, !26"

(n&!j = 0"z' = e−gz
!gz"n

n!
, !27"

where the latter is the Poisson distribution.

B. Spectral method

We now demonstrate how the spectral method exploits the
eigenfunctions &jz' to decompose and simplify the equation
of motion. Expanding the generating function in the eigen-
basis,

&Gz' = %
j

Gj
z&jz' , !28"

and projecting the conjugate state (jz& onto Eq. !18" yields
the equation of motion

Ġj
z = − jGj

z + %
z!

!zz!%
j!

Gj!
z!(jz&jz!

! ' !29"

for the expansion coefficients Gj
z #where the dummy index j

in Eq. !28" has been changed to j! in Eq. !29"$. Using Eqs.
!9", !10", !20", and !21", the product (jz & jz!

! ' evaluates to

(jz&jz!
! ' =

!− &zz!"
j−j!

!j − j!"!
%!j − j! + 1" , !30"

where &zz!=gz−gz!. Noting that (jz & jz!'=1 and that (jz & jz!'
=0 for j!' j, Eq. !29" becomes
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Ġj
z = − jGj

z + %
z!

!zz!Gj
z! + %

z!"z

!zz! %
j!'j

Gj!
z! !− &zz!"

j−j!

!j − j!"!
.

!31"

The last term in Eq. !31" makes clear that each jth term is
slaved to terms with j!' j, allowing the Gj

z to be computed
iteratively in j. The lower-triangular structure of the equation
is a consequence of rotating to the eigenspace of the birth-
death operator; this structure was not present in the original
master equation.

At steady state, Gj
z obeys

jGj
z − %

z!

!zz!Gj
z! = %

z!"z

!zz! %
j!'j

Gj!
z! !− &zz!"

j−j!

!j − j!"!
, !32"

from which it is clear that Gj
z can be computed successively

in j. Since

G0
z = (!j = 0"z&Gz' = %

n
pn

z(!j = 0"z&n' = #z !33"

#cf. Eq. !26"$, the computation is initialized using Eqs. !3"
and !4", i.e.,

%
z!

!zz!G0
z! = 0, !34"

%
z

G0
z = 1. !35"

Recalling Eqs. !6" and !28", the probability distribution is
retrieved via

pn
z = %

j
Gj

z(n&jz' , !36"

where the mixed product (n & jz' can be computed as de-
scribed in Appendix A.

There is an alternative way to decompose the master
equation spectrally. Instead of expanding the generating
function in eigenfunctions &jz', which depend on the produc-
tion rates gz in each state, we may expand in eigenfunctions
parametrized by a single rate ḡ, i.e.,

&Gz' = %
j

Gj
z&j' , !37"

where

(x&j' = !x − 1" jeḡ!x−1", !38"

(j&x' =
e−ḡ!x−1"

!x − 1" j+1 . !39"

The parameter ḡ is arbitrary and thus acts as a “gauge” free-
dom.

We may now partition the birth-death operator as

− b̂+b̂z
− = − b̂+b̄− − b̂+(z !40"

where b̄−= â−− ḡ such that the &j' are the eigenstates of b̂+b̄−,
i.e.,

b̂+b̄−&j' = j&j' , !41"

and (z= ḡ−gz describes the deviation of each state’s produc-
tion rate from the constant ḡ.

Projecting the conjugate state (j& onto Eq. !18" and using
Eq. !37" !with dummy index j changed to j!" gives

Ġj
z = − jGj

z + %
j!

(j&b̂+(z&j!'Gj!
z + %

z!

!zz!Gj
z!. !42"

Recalling Eq. !24", Eq. !42" at steady state becomes

%
z!

!!zz! − j$zz!"Gj
z! = (zGj−1

z . !43"

Equation !43" is subdiagonal in j, meaning computation of
the jth term requires only the previous !j−1"th term and the
inversion of the Z-by-Z matrix !!− jI" !where I is the iden-
tity matrix". It is initialized with Eqs. !34" and !35" and
solved successively in j. The probability distribution is re-
trieved via

pn
z = %

j
Gj

z(n&j' , !44"

where (n & j' is computed as described in Appendix A.
As an example of a simple computation employing the

spectral method, Fig. 1 shows probability distributions for
the case of Z=3 states, corresponding to a gene that is either
off, producing proteins at a low rate, or producing proteins at
a high rate. For simplicity we set the rates of switching
among all states equal to a constant ), making the stochastic
matrix

0 10 200

0.1

0.2

0.3 ! = 10

number of proteins, n

pro
ba
bil
ity

0 10 200

0.1

0.2

0.3 ! = 1

number of proteins, n

pro
ba
bil
ity

0 10 200

0.1

0.2

0.3 ! = 0.1

number of proteins, n

pro
ba
bil
ity

0 10 200

0.1

0.2

0.3 ! = 0.01

number of proteins, n

pro
ba
bil
ity

FIG. 1. An example of the spectral method for Z=3 states.
Dashed curves show the joint distribution pn

z for each of z=1, 2, and
3, and solid curves show the marginal distribution pn. The stochas-
tic transition matrix is given in Eq. !45", and the setting of ) in each
panel is indicated in the upper-right corner. Production rates are
g1=0, g2=3, and g3=12 for all panels. Distributions are calculated
via the spectral decomposition in Eq. !43" with ḡ= (gz'=5.
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! = *− 2) ) )

) − 2) )

) ) − 2)
+ . !45"

As seen in Fig. 1, when )*1 !corresponding to a switching
rate much slower than the degradation rate" the dwell time in
each expression state lengthens. The slow switching gives
the protein copy number time to equilibrate in any of the
three expression states, resulting in a trimodal marginal dis-
tribution pn. When )+1 !corresponding to a switching rate
much faster than the degradation rate", the system switches
frequently among the three expression states, resulting in an
average production rate. In this limit, the expression state
equilibrates on a faster time scale than the protein number
state.

C. On/off gene

For the special case of Z=2 states, as when a gene is
either “on” !z=+" or “off” !z=−", it is useful to demonstrate
how the spectral method reproduces known analytic results
#17,34$. The probability distribution can be written in vector
form as

p!n = ,pn
−

pn
+ - , !46"

and defining )+ and )− as the transition rates to and from the
on state, respectively, the stochastic matrix takes the form

! = ,− )+ )−

)+ − )−
- . !47"

Note that Eq. !3" implies

#−

#+
=

)−

)+
, !48"

which makes clear that increasing the rate of transition to
either state increases the probability of being in that state.

From Eq. !32" the spectral expansion coefficients obey

jGj
, + )-Gj

, − ),Gj
- = ), %

j!'j

Gj!
- !-&" j−j!

!j − j!"!
, !49"

where &=&+−=−&−+. Initializing with G0
,=), / !)++)−"

and computing the first few terms reveals the pattern

Gj
, =

),

)+ + )−

!-&" j

j!

. j!=0
j−1 !j! + )-"

. j"=0
j−1 !j" + )+ + )− + 1"

!50"

=
),

)+ + )−

!-&" j

j!
(!j + )-"

(!)-"
(!)+ + )− + 1"

(!j + )+ + )− + 1"
,

!51"

where in the second line the products are written in terms of
the Gamma function.

For comparison with known results #17,34$ we write the
total generating function &G'=%,&G,' in position space,

G!x" = %
,

(x&G,' = %
,

%
j

(x&j,'(j,&G,' !52"

=%
,

%
j

!x − 1" jeg,!x−1"Gj
, !53"

=%
,

),

)+ + )−
eg,!x−1"

. /#)-,)+ + )− + 1; - &!x − 1"$ , !54"

where

/#0,1;y$ = %
j

(!j + 0"
(!0"

(!1"
(!j + 1"

yj

j!
!55"

is the confluent hypergeometric function. As shown in Ap-
pendix B, in the limit g−=0, Eq. !54" reduces to

G!x" = /#)+,)+ + )−;g+!x − 1"$ , !56"

and the marginal pn is given by

pn =
g+

n

n!
(!n + )+"

(!)+"
(!)+ + )−"

(!n + )+ + )−"

. /#)+ + n,)+ + )− + n;− g+$ , !57"

in agreement with the results of Iyer-Biswas et al. #34$ and
Raj et al. #17$. We remind the reader that in addition to
reducing to known results in the special case of Z=2 states
with a vanishing off-rate, the spectral method is valid for any
number of states with arbitrary production rates.

III. GENE REGULATION

Next we consider a two-gene regulatory cascade, in which
the production rate of the second gene is a function of the
number of proteins of the first gene. As shown in previous
work #31$, a cascade of any length can be reduced to such a
generalized two-dimensional system using the Markov ap-
proximation, which asserts that the probability distribution
for a given node of the cascade should depend only weakly
on the probability distributions of the distant nodes given the
proximal nodes.

In the present section, we consider only the generalized
two-dimensional equation and explore different approaches
to solving it. The equation describes two genes, each with
one expression state, with regulation encoded by a functional
dependence of the downstream protein production rate on the
upstream protein copy number. In Sec. III D we make an
explicit connection between the on/off gene discussed in Sec.
II C and the case when the functional dependence is a thresh-
old. Finally, in Sec. III we combine the two types of models
and consider a system with regulation and bursts.

A. Representations of the master equation

1. /n ,m‹ basis

Defining n and m as the numbers of proteins produced by
the first and second gene, respectively, the master equation
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describing the time evolution of the joint probability distri-
bution pnm is #31$

ṗnm = gn−1pn−1,m + !n + 1"pn+1,m − !gn + n"pnm

+ 2#qnpn,m−1 + !m + 1"pn,m+1 − !qn + m"pnm$ . !58"

The function qn describes the regulation of the second spe-
cies by the first, and the function gn describes the effective
autoregulation of the first species due either to a non-
Poissonian input distribution or to effects further upstream in
the case of a longer cascade #31$. Time is rescaled by the first
gene’s degradation rate so that each gene’s production rate
!gn or qn" is normalized by its respective degradation rate,
and 2 is ratio of the second gene’s degradation rate to that of
the first. We impose no constraints on the form of gn or
qn—they can be arbitrary nonlinear functions.

Summing Eq. !58" over m gives a simple recursion rela-
tion between gn and pn at steady state, from which explicit
relations are easily identified. If pn is known, gn is found as

gn = !n + 1"
pn+1

pn
. !59"

If on the other hand gn is known, pn is found as

pn =
p0

n! .
n!=0

n−1

gn!, !60"

with p0 set by normalization. Note that if the first species
obeys a simple birth-death process, gn=g=constant, and Eq.
!60" reduces to the Poisson distribution.

In the current representation #Eq. !58"$, which we denote
the &n ,m' basis, finding the steady-state solution for the joint
distribution pnm means finding the null space of an infinite
!or, effectively for numerical purposes, very large" locally
banded tridiagonal matrix. More precisely, defining N as the
numerical cutoff in protein number n or m, the problem
amounts to inverting an N2-by-N2 matrix, which is computa-
tionally taxing even for moderate cutoffs N.

In order to solve Eq. !58" more efficiently we will employ
the spectral method. We begin as before by defining the gen-
erating function #22$ G!x ,y"=%nm pnmxnym over complex
variables x and y or, in state notation,

&G' = %
nm

pnm&n,m' , !61"

with inverse transform

pnm = (n,m&G' . !62"

Summing Eq. !58" over n and m against &n ,m' and employ-
ing the same operator notation as in Eqs. !12"–!15" yields

&Ġ' = − Ĥ&G' , !63"

where

Ĥ = b̂n
+b̂n

−!n" + 2b̂m
+ b̂m

− !n" !64"

and

b̂n
+ = ân

+ − 1, !65"

b̂m
+ = âm

+ − 1, !66"

b̂n
−!n" = ân

− − ĝn, !67"

b̂m
− !n" = âm

− − q̂n. !68"

Here the regulation functions have been promoted to opera-
tors obeying ĝn&n'=gn&n' and q̂n&n'=qn&n', subscripts on op-
erators denote the sector !n or m" on which they operate, and
the arguments of b̂n

− and b̂m
− remind us that both are n depen-

dent.
Equation !64" makes clear that if not for the n dependence

of the operators the Hamiltonian Ĥ would be diagonalizable,
or, equivalently, if gn and qn were constants the master equa-
tion would factorize into two individual birth-death pro-
cesses. We may still, however, partition the full Hamiltonian
as

Ĥ = Ĥ0 + Ĥ1, !69"

where Ĥ0 is a diagonalizable part !and Ĥ1 is the correspond-
ing deviation from the diagonal form", and expand &G' in the
eigenbasis of Ĥ0 to exploit the diagonality.

As with the multistate system in Sec. II B, where we ex-
pand the solution in two different bases, there are several
natural choices of eigenbasis of Ĥ0. Figure 2 summarizes
these choices diagrammatically: starting in the &n ,m' basis
!at the top of Fig. 2", one may expand in eigenfunctions
either the first species, yielding the &j ,m' basis !left", or the
second species, yielding the &n ,kn' basis !right; in general we
allow the parameter defining the second species’ eigenfunc-
tions to depend on n to reflect the regulation of the second
species by the first". From either the &j ,m' or the &n ,kn' basis,
one may expand in eigenfunctions the remaining species,
yielding either the &j ,kn' basis !bottom left", in which the
second species’ eigenfunctions depend on the first species’
copy number n or the &j ,kj' basis !bottom right", in which the
second species’ eigenfunctions depend on the first species’
eigenmode number j. Both bases reduce to the &j ,k' basis

|n,m

|j,m |n,kn

|j,kj|j,kn

]g ,qn n]

]g ,qn] ]g ,qn n]

|j,k
]g ,q] ]g ,qj]]g ,qn]

FIG. 2. Summary of the bases discussed in Sec. II A !black" and
their gauge freedoms !barred parameters in gray". In the top row,
neither the m nor the n sector is expanded in an eigenbasis; in the
middle row, one sector is expanded; and in the bottom row, both
sectors are expanded. The &j ,k' basis can be viewed as a special
case of the &j ,kj' or &j ,kn' basis with q̄j = q̄ or q̄n= q̄, respectively.
The &j ,m' basis is not discussed as it is not useful in simplifying the
problem.

MUGLER, WALCZAK, AND WIGGINS PHYSICAL REVIEW E 80, 041921 !2009"

041921-6



!bottom center" when the parameter of the second species’
eigenfunctions is a constant.

The &n ,m' and &j ,m' bases are less numerically useful
than the other bases: as discussed above and detailed in Fig.
3, the &n ,m' basis is numerically inefficient; and the &j ,m'
basis does not exploit the natural structure of the problem,
since, unlike the other bases, it neither retains the tridiagonal
structure in n nor gains a lower triangular structure in k !see
the sections below". Each of the remaining bases, however,
has preferable properties in terms of numerical stability and
ability to represent the function sparsely yet accurately !ei-
ther using a few values of n in the &n ,kn' basis or a few
values of j in the &j ,k', &j ,kj', or &j ,kn' bases, for example".
Moreover, the equation of motion simplifies differently in
each of the different bases. We present the derivations of the
equations of motion in the following sections, beginning
with the &j ,k' basis, generalizing to the &j ,kj' basis, moving
to the &n ,kn' basis, and ending with the &j ,kn' basis.

2. /j ,k‹ basis

For expository purposes we start by recalling the spectral
representation used in previous work #31$. We choose the

diagonal part of the Hamiltonian to correspond to two birth-
death process with constant production rates ḡ and q̄,

Ĥ0 = b̂n
+b̄n

− + 2b̂m
+ b̄m

− , !70"

where b̄n
−= ân

−− ḡ and b̄m
− = âm

− − q̄. As in Sec. II B, the gauge
parameters ḡ and q̄ can be set arbitrarily without affecting
the final solution; however, their values can affect the nu-
merical stability of the method. For example, when the regu-
lation qn is a threshold function, a large discontinuity can
narrow the range of q̄ for which the method is numerically
stable. The nondiagonal part,

Ĥ1 = b̂n
+(̂n + 2b̂m

+ &̂n, !71"

captures the deviations (̂n= ḡ− ĝn and &̂n= q̄− q̂n of the regu-
lation functions from the constant rates. We expand the gen-
erating function as

&G' = %
jk

Gjk&j,k' , !72"

where &j ,k' is the eigenbasis of Ĥ0, i.e.,

Ĥ0&j,k' = !j + 2k"&j,k' . !73"

The eigenbasis is parametrized by the rates ḡ and q̄, meaning
in position space (x & j' is as in Eq. !38" and similarly for
(y &k' with x→y, j→k, and ḡ→ q̄.

With Eqs. !70"–!72", projecting the conjugate state (j ,k&
onto Eq. !63" yields

Ġjk = − !j + 2k"Gjk − %
j!k!

(j&b̂n
+(̂n&j!'(k&k!'Gj!k!

− 2%
j!k!

(k&b̂m
+ &k!'(j&&̂n&j!'Gj!k! !74"

#where the dummy indices j and k in Eq. !72" have been
changed to j! and k!, respectively, in Eq. !74"$. Recalling Eq.
!24" and restricting attention to steady state, Eq. !74" be-
comes

0 = − !j + 2k"Gjk − %
j!

( j−1,j!Gj!k − 2%
j!

& j j!Gj!,k−1,

!75"

where the deviations have been rotated into the eigenbasis as

( j j! = (j&(̂n&j!' = %
n

(j&n'!ḡ − gn"(n&j!' , !76"

& j j! = (j&&̂n&j!' = %
n

(j&n'!q̄ − qn"(n&j!' . !77"

Equation !75" is subdiagonal in k and is therefore similar
to Eq. !43" in that the last term acts as a source term. The
subdiagonality is a consequence of the topology of the two-
gene network: the first species regulates only itself !effec-
tively" and the second species. Although the spectral method
is fully applicable to systems with feedback, the subdiagonal
structure is not preserved.

!"!# !"!$ !"" !"$ !"#

!"!%

!"!#

!"!$

!""

!"$

&'()*+, - *),&.)*/, +,)01234 &'()*+,

,&&
1&5

6,
(4
,(
!7

0.
((
1(

2*/
,&8

,(
9,

:;*
)4<

" !" $" =""
!"

$""
">""?
">"!

">"!?
">"$

(+

@ (+

FIG. 3. Error vs runtime for the spectral method and stochastic
simulation. Error is the Jensen-Shannon divergence #41$ between
pnm obtained using the &n ,m' basis !via iterative solution of the
original master equation" and that obtained using the &j ,k' basis
#circles; cf. Eq. !80"$, the &j ,kj' basis #triangles; cf. Eq. !90"$, the
&n ,kn' basis #squares; cf. Eq. !100"$, the &j ,kn' basis #diamonds; cf.
Eq. !114"$, or stochastic simulation #28$ !dots". Runtimes are scaled
by that of the iterative solution, 150 s !in MATLAB". Spectral basis
data is obtained by varying K, the cutoff in the eigenmode number
k of the second gene; simulation data is obtained by varying the
integration time. The input distribution pn=#1e−3131

n /n !+!1
−#1"e−3232

n /n! #from which gn is calculated via Eq. !59"$ is a mix-
ture of two Poisson distributions with 31=0.5, 32=15, and #1
=0.5. The regulation function qn=q−+ !q+−q−"n4 / !n4+n0

4" is a Hill
function with q−=1, q+=11, n0=7, and 4=2. The gauge choices
used !cf. Fig. 2" are ḡ=%n pngn, q̄=%n pnqn, q̄n=qn, and q̄j
=%n(j &n'qn(n & j'. The cutoffs used are J=80 for the eigenmode
number j of the first gene and N=50 for the protein numbers n and
m. Inset: the joint probability distribution pnm. The peak at low
protein number extends to p0000.1.
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Equation !75" is initialized using

Gj0 = (j,k = 0&G' = %
nm

pnm(j&n'(0&m' !78"

=%
n

pn(j&n' , !79"

#cf. Eq. !26"$ with known pn #cf. Eq. !60"$, then solved at
each subsequent k using the result for k−1. Equation !75"
can be written in linear algebraic notation as

G! k = − 2!Dk + S−""−1#G! k−1, !80"

where G! k is a vector over j, bold denotes matrices, and
Djj!

k = !j+2k"$ j j! and Sjj!
− =$ j−1,j! are diagonal and subdiago-

nal matrices, respectively. Equation !80" makes clear that the
solution involves only matrix multiplication and the inver-
sion of a J-by-J matrix K times, where J and K are cutoffs
in the eigenmode numbers j and k, respectively. In fact, if
the first species obeys a simple birth-death process, i.e., gn
=g=constant, setting ḡ=g makes ( j j!=0, and since Dk is
diagonal, the solution involves only matrix multiplication.
The decomposition of the master equation into a linear alge-
braic equation results in huge gains in efficiency over direct
solution in the &n ,m' basis; the efficiency of all bases pre-
sented in this section is described in Sec. II B and illustrated
in Fig. 3.

Recalling Eqs. !62" and !72", the joint distribution is re-
trieved from Gjk via the inverse transform

pnm = %
jk

(n&j'Gjk(m&k' , !81"

a computation again involving only matrix multiplication.
The mixed product matrices (n & j' and (m &k' are computed as
described in Appendix A.

3. /j ,kj‹ basis

The &j ,k' basis treats both genes similarly by expanding
each around a constant production rate. We may instead
imagine an eigenbasis that more closely reflects the underly-
ing asymmetry imposed by the regulation and make the basis
of the second gene a function of that of the first. That is, we
expand the first gene in a basis &j' with gauge ḡ as before, but
now we expand the second gene in a basis &kj' with a
j-dependent local gauge q̄j. We write the generating function
as

&G' = %
jk

Gjk&j,kj' , !82"

and Eq. !63" at steady state becomes

0 = − %
jk

Gjk#Ĥ0!j" + Ĥ1!j"$&j,kj' , !83"

where we have partitioned the Hamiltonian for each j as

Ĥ0!j" = b̂n
+b̄n

− + 2b̂m
+ b̄m

− !j" , !84"

Ĥ1!j" = b̂n
+(̂n + 2b̂m

+ &̂n!j" , !85"

with b̄n
−= ân

−− ḡ and (̂n= ḡ− ĝn as before and now b̄m
− !j"= âm

−

− q̄j and &̂n!j"= q̄j − q̂n. Note that this basis enjoys the eigen-
value equation

Ĥ0!j"&j,kj' = !j + 2k"&j,kj' . !86"

Projecting the conjugate state (j ,kj& onto Eq. !83" yields,
after some simplification !cf. Appendix C", the equation of
motion

0 = !j + 2k"Gjk + %
j!

( j−1,j!Gj!k

+ %
!=1

k

%
j!

!( j−1,j!Vjj!
! + 2& j j!Vjj!

!−1"Gj!,k−!, !87"

where ( j j! is as in Eq. !76" and

& j j! = (j&&̂n!j"&j!' = %
n

(j&n'!q̄j − qn"(n&j!' , !88"

Vjj!
! =

!− Qjj!"
!

!!
, !89"

with Qjj!= q̄j − q̄j!. Equation !87" can be written linear alge-
braically as

G! k = − !Dk + S−""−1%
!=1

k

#!S−(" ! V! + 2# ! V!−1$G! k−!,

!90"

where Djj!
k and Sjj!

− are defined as before #cf. Eq. !80"$, and !

denotes an element-by-element matrix product. Once again,
Eq. !90" is lower-triangular in k and requires only matrix
multiplication and the inversion of a J-by-J matrix K times.
G! k is initialized as in Eq. !79", and the kth term is computed
from the previous k!'k terms. The joint distribution is re-
trieved via the inverse transform

pnm = %
jk

(n&j'Gjk(m&kj' . !91"

4. /n ,kn‹ basis

Expansion in either the &j ,k' or the &j ,kj' basis conve-
niently turns the master equation into a lower-triangular lin-
ear algebraic equation and replaces cutoffs in protein number
with cutoffs in eigenmode number !which can be smaller
with appropriate choices of gauge". However, these bases
sacrifice the original tridiagonal structure of the master equa-
tion in the copy number of first gene, n. Therefore we now
consider a mixed representation, in which the first gene re-
mains in protein number space &n', and we expand the sec-
ond gene in an n-dependent eigenbasis &kn',
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&G' = %
nk

Gnk&n,kn' . !92"

If the rate parameter of the &kn' basis were the regulation
function qn, it would be natural to make Ĥ0 the entire Hamil-
tonian #Eq. !64"$. For generality we will instead allow the
rate parameter of the &kn' basis to be an arbitrary n-dependent
local gauge q̄n, such that Eq. !63" at steady state naturally
partitions as

0 = − %
nk

Gnk#Ĥ0!n" + Ĥ1!n"$&n,kn' , !93"

where

Ĥ0!n" = b̂n
+b̂n

− + 2b̂m
+ b̄m

− !n" , !94"

Ĥ1!n" = 2b̂m
+ &̂n!n" , !95"

with b̄m
− !n"= âm

− − q̄n and &̂n!n"= q̄n− q̂n. Note that &n ,kn' is not
the eigenbasis of Ĥ0!n" but rather Ĥ0!n"&n ,kn' retains the
original tridiagonal structure in n, i.e.,

Ĥ0!n"&n,kn' = !gn + n"&n,kn' − gn&n + 1,kn'

− n&n − 1,kn' + 2k&n,kn' , !96"

where Eqs. !12", !13", !65", and !67" are recalled in applying
the first term of Ĥ0!n".

Projecting the conjugate state (n ,kn& onto Eq. !93" yields,
after some simplification !cf. Appendix C", the equation of
motion

gn−1Gn−1,k + !n + 1"Gn+1,k − !gn + n + 2k"Gnk

= − gn−1%
!=1

k

Vn!
− Gn−1,k−! − !n + 1"

.%
!=1

k

Vn!
+ Gn+1,k−! + 2&nGn,k−1, !97"

where

&n = q̄n − qn, !98"

Vn!
, =

!− Qn
,"!

!!
, !99"

and Qn
,= q̄n− q̄n,1. Equation !97" can be written linear alge-

braically as

G! k = !Tk"−11− !S−g!" ! diag#V−!S−G̃"T$

− !S+n!" ! diag#V+!S+G̃"T$ + 2&! ! G! k−12 , !100"

where XT indicates the transpose of X, ! denotes an element-
by-element product, Snn!

, =$n,1,n! are super-!+" and subdi-
agonal !−" matrices, Tnn!

k =gn−1$n−1,n!+ !n+1"$n+1,n!− !gn+n

+2k"$nn! is a tridiagonal matrix, and G̃, which is G with the
columns reversed !i.e., G̃n!=Gn,k−!", is built incrementally in
k. As with the &j ,k' and &j ,kj' bases, the kth term is slaved to

the previous k!'k terms; in total the solution requires K
inversions of an N-by-N matrix. However, here the task of
inversion is simplified because the matrix to be inverted is
tridiagonal. In fact, using the Thomas algorithm #42$, we
obtain an analytic solution for the case of constant produc-
tion of the first gene and threshold regulation of the second
gene, as described in Sec. II C.

The solution is initialized at k=0 using

Gn0 = (n,!k = 0"n&G' = %
n!m

(n&n!'(0n&m'pn!m = pn !101"

#cf. Eq. !26"$, where pn is known #cf. Eq. !60"$, and the joint
distribution is retrieved via the inverse transform

pnm = (n,m&G' = %
k

Gnk(m&kn' . !102"

5. /j ,kn‹ basis

We now consider a basis which employs both the
constant-rate eigenfunctions &j' in the n sector and the
n-dependent eigenfunctions &kn' in the m sector. Expressing
the joint distribution directly in terms of the eigenbasis ex-
pansion of the generating function #43$, we write

pnm = %
jk

Gjk(n,m&j,kn' , !103"

where, as in the &j ,k' and &j ,kj' bases, the &j' are param-
etrized by the constant rate ḡ, and, as in the &n ,kn' basis, the
&kn' are parametrized by the arbitrary function q̄n. The in-
verse of Eq. !103" is

Gjk = %
nm

pnm(j,kn&n,m' . !104"

Substituting Eq. !103" into Eq. !58" at steady state gives,
after some simplification !cf. Appendix C",

0 = %
jk

Gjk(n,m&1− Ĥ&j,kn' + ân
+ĝn&j,$−kn' + ân

−&j,$+kn'2 ,

!105"

where Ĥ is defined as in Eq. !64", ân
+ and ân

− act as in Eqs.
!12"–!15", and

&$,kn' 3 &kn,1' − &kn' . !106"

We may now partition Ĥ= Ĥ0+ Ĥ1 as

Ĥ0!n" = b̂n
+b̄n

− + 2b̂m
+ b̄m

− !n" , !107"

Ĥ1!n" = b̂n
+(̂n + 2b̂m

+ &̂n!n" , !108"

with b̄n
−= ân

−− ḡ and (̂n= ḡ− ĝn as in the &j ,k' and &j ,kj' bases
and b̄m

− !n"= âm
− − q̄n and &̂n!n"= q̄n− q̂n as in the &n ,kn' basis.

Noting that &j ,kn' is the eigenbasis of Ĥ0!n", i.e.,

Ĥ0!n"&j,kn' = !j + 2k"&j,kn' , !109"

Equation !105" becomes, after more simplification !cf. Ap-
pendix C",
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0 = − !j + 2k"Gj!k − %
j!

( j−1,j!Gj!k − 2%
j!

& j j!Gj!,k−1

+ %
,

%
j!

%
!=1

k

5 j j!
,!Gj!,k−!, !110"

where ( j j! is as in Eq. !76",

& j j! = %
n

(j&n'!q̄n − qn"(n&j!' , !111"

5 j j!
+! = %

n
(j&n'!n + 1"(n + 1&j!'Vnl

+ , !112"

5 j j!
−! = %

n
(j&n'gn−1(n − 1&j!'Vnl

− , !113"

and Vn!
, is as in Eq. !99". Linear algebraically,

G! k = !Dk + S−""−1,− 2#G! k−1 + %
,

%
!=1

k

$,!G! k−!- ,

!114"

with Djj!
k and Sjj!

− defined as before #cf. Eq. !80"$, revealing
once again a lower-triangular equation !i.e., each kth term is
slaved to the previous k!'k terms" requiring only matrix
multiplication and the inversion of a J-by-J matrix K times.
Recalling Eq. !104", the scheme is initialized using

Gj0 = %
nm

pnm(j&n'(!k = 0"n&m' = %
n

pn(j&n' !115"

#cf. Eq. !26"$ with known pn #cf. Eq. !60"$, and the joint
distribution is retrieved using Eq. !103".

B. Comparison of the representations

The spectral representations in Sec. II A produce equa-
tions of motion with similar levels of numerical complexity.
In all cases, the original two-dimensional master equation
has been reduced by the lower-triangular structure in the sec-
ond gene’s eigenmode number k to a hierarchy of evaluations
of one-dimensional problems. The bases differ in the rate
parameters or equivalently gauge freedoms that one is free to
choose: the &j ,k' basis requires two constants ḡ and q̄; the
&j ,kj' basis requires ḡ and a J-valued vector q̄j; the &n ,kn'
basis requires a N-valued vector q̄n; and the &j ,kn' basis re-
quires ḡ and q̄n.

The bases also differ in the types of problems for which
they are most suitable. For example, the &j ,k', &j ,kj', and
&j ,kn' bases, which all expand the parent species in eigen-
functions &j', are best when a cutoff in j is most appropriate,
such as when the parent distribution is a Poisson. The &n ,kn'
basis, on the other hand, is useful when a cutoff is n is most
appropriate, such as when the parent species is concentrated
at low protein number. Different bases are more robust to
numerical errors for different regulation functions as well:
the &n ,kn' and &j ,kn' bases, which both rely upon repeated
manipulation of the object Qn

,= q̄n− q̄n,1, are best for smooth
regulation functions, for which the differences between q̄n

and q̄n+1 are small; the &j ,k' and &j ,kj' bases on the other
hand, which involve the deviations q̄−qn and q̄j −qn respec-
tively, are less susceptible to numerical error given sharp
regulation functions, such as a threshold.

As indicated in Fig. 2, the &j ,k' basis can be viewed as a
special case of either the &j ,kj' basis with q̄j = q̄ #in which
case Eq. !87" reduces to Eq. !75"$ or of the &j ,kn' basis with
q̄n= q̄ #in which case Eq. !110" reduces to Eq. !75"$. Although
possible in principle, expanding in the &j ,m' basis does not
exploit the natural structure of the problem, since it neither
retains the tridiagonal structure in n nor gains the lower tri-
angular structure in k. This example explicitly shows that not
all bases are good candidates for simplifying the master
equation.

The strength of all the spectral bases discussed in this
section and of the proposed spectral method in general is that
it allows for a fast and accurate calculation of full steady-
state probability distributions of the number of protein mol-
ecules in a gene regulatory network. In Fig. 3 we demon-
strate this property for the two-gene system by plotting error
versus computational runtime for each spectral basis, as well
as for a stochastic simulation using a varying step Monte
Carlo procedure #28$. For error we use the Jensen-Shannon
divergence #41$ !a measure in bits between two probability
distributions" between the distribution pnm computed in the
&n ,m' basis !via iterative solution of the original master
equation" and the distribution computed either via the spec-
tral formulas in this section or by stochastic simulation. We
plot this measure against the runtime of each method scaled
by the runtime of the iterative solution in the &n ,m' basis !all
numerical experiments are performed in MATLAB". We find
that the computations via the spectral bases achieve accuracy
up to machine precision 4103–104 times faster than the it-
erative method’s runtime and 4107–108 times faster than the
runtime necessary for the stochastic simulation to achieve
the same accuracy. Computation in the &j ,k' basis is most
efficient since its equation of motion is simplest #cf. Eq.
!80"$; the &j ,kj' and &j ,kn' bases tend to be slightly less effi-
cient since they require inner loops over ! #cf. Eqs. !90" and
!114"$. Figure 3 demonstrates the tremendous gain in perfor-
mance achieved by the joint analytic-numerical spectral
method over traditional simulation approaches.

C. Analytic solution

In general, the equations of motion in the spectral repre-
sentations #Eqs. !75", !87", !97", and !110"$ need to be evalu-
ated numerically. In the case of the &n ,kn' basis, however, we
can exploit the tridiagonal structure of Eq. !97" to find an
exact analytic solution. Specifically, in the case of a Poisson
parent !gn=g=const" and for threshold regulation, i.e.,

qn = 5q− for n " n0

q+ for n 6 n0,
6 !116"

setting q̄n=qn makes Eq. !97"

gGn−1,k + !n + 1"Gn+1,k − !2k + g + n"Gnk

= − g7k
−$nn1

− n17k
+$nn0

, !117"

where
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7k
− = %

!=1

k !− &"!

!!
Gn0,k−!, !118"

7k
+ = %

!=1

k
&!

!!
Gn1,k−!, !119"

&=q+−q−, and n1=n0+1. Equation !117" is solved using the
tridiagonal matrix algorithm !also called the Thomas algo-
rithm #42$", as described in detail in Appendix D. The result
is an analytic expression for the kth column of Gnk in terms
of its previous columns !i.e., the matrix inversion has been
performed explicitly",

Gnk =
n1

g

!n0 − 1"!
n!

8n
k

8n0−1
k

.5!7k
+ + fkFn1

k "/!9n0

k − 1" n " n0

fkFn
k/.i=n0

n−1 !9i
k − 1" n 6 n0,6 !120"

where

fk = 7k
+ −

gn0

n1

8n0−1
k

8n0

k !9n0

k − 1"7k
−, !121"

Fn
k = %

i=0

N−n

.
!=n

n+i
1

9!
k − 1

, !122"

9n
k =

2k + g + n

gn

8n
k

8n−1
k , !123"

8n
k = %

i=0

n
n!

i ! !n − i"!
gn−i.

!=0

i−1

!2k + !" !124"

=
1

(!2k"70

t

dte−tt!2k−1"!g + t"n, !125"

and N is the cutoff in protein number n. Along with the
analytic form of the mixed product

(m&kn' = !− 1"ke−qn!qn"mk !

. %
!=0

min!m,k"
1

! ! !m − !" ! !k − !" ! !− qn"! !126"

!cf. Appendix A", Eq. !120" in the limit N→: constitutes an
exact analytic solution for the joint distribution pnm as calcu-
lated using Eq. !102".

D. Threshold-regulated gene approximates the on/off gene

If a gene is regulated via a threshold function #cf. Eq.
!116"$, its steady-state protein distribution pm can be well
approximated by the two-state process discussed in Sec. II C.
To make the connection clear, we first observe that the

off-state !z=−" corresponds to the first gene expressing the
same or fewer proteins n than the threshold n0, i.e.,

pm
− = %

n"n0

pnm, !127"

and the on state !z=+" corresponds to the first gene express-
ing more proteins than the threshold, i.e.,

pm
+ = %

n6n0

pnm. !128"

The dynamics of pm
, are then obtained by summing the mas-

ter equation for two-gene regulation #Eq. !58"$ over either all
n"n0 or all n6n0, giving

ṗm
, = 2#q,pm−1

, + !m + 1"pm+1
, − !q, + m"pm

,$

- n1pn1m , gn0
pn0m, !129"

where n1=n0+1. Making the approximations

pm
−

#−
= p!m&− " 0 p!m&n0" =

pn0m

pn0

, !130"

pm
+

#+
= p!m&+ " 0 p!m&n1" =

pn1m

pn1

, !131"

where

#− = %
m

pm
− = %

n"n0

pn, !132"

#+ = %
m

pm
+ = %

n6n0

pn !133"

are the total probabilities of being in the off and on states,
respectively, and noting from Eq. !59" that gn0

=n1pn1
/ pn0

,
Eq. !129" at steady state becomes

0 = qzpm−1
z + !m + 1"pm+1

z − !qz + m"pm
z + %

z!

!zz!pm
z!,

!134"

with z=, and

! = ,− )+ )−

)+ − )−
- , !135"

where

), =
n1pn1

2#-

. !136"

Equations !134" and !135" have the same form as Eqs. !1"
and !47" at steady state with n→m and g→q, and Eq. !136"
relates the effective switching rates ), to input and regula-
tion parameters pn1

, #,, and n1, and the ratio 2 of the deg-
radation rate of the second gene to that of the first. Note that
Eq. !136" satisfies
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#−

#+
=

)−

)+
, !137"

in agreement with Eq. !48", and exhibits the intuitive behav-
ior that increasing 2 !i.e., decreasing the relative response
rate of the first gene" is equivalent to decreasing the switch-
ing rates ),.

A comparison of the distributions of a threshold-regulated
gene with those of an on/off gene for various parameter set-
tings reveals that Eqs. !130" and !131" are a good approxi-
mation. Figure 4 shows a demonstration for a threshold-
regulated system with a Poisson input distribution. In the
first column, the mean g of the input lies above the threshold
n0, making the output more likely to be in the on-state, i.e.,
#+6#−; in the second column, g'n0, making #+'#−. In
the first row 2'1; in the second row 261, corresponding to
lower effective switching rates ), and producing bimodal
distributions with peaks near the on/off rates q,. In all ex-
amples, the approximation as a two-state process with
switching rates given by Eq. !136" agrees well with the ac-
tual output from threshold regulation.

IV. REGULATION WITH BURSTS

The final system we consider combines the multistate pro-
cess used to model bursts of expression in Sec. I with gene
regulation as discussed in Sec. II. Specifically we consider a
system of two species, with protein numbers n and m, exist-
ing in Z possible states, distinguished by the settings of the
two production rates gz and qz respectively, where 1"z"Z.
Regulation is achieved by allowing the rates of transition

among states affecting the production of the second gene to
depend on the number n of proteins expressed by the first
gene. Recalling Eqs. !1" and !58", the master equation de-
scribing the evolution of the joint probability distribution pnm

z

reads

ṗnm
z = gzpn−1,m

z + !n + 1"pn+1,m
z − !gz + n"pnm

z + 2#qzpn,m−1
z

+ !m + 1"pn,m+1
z − !qz + m"pnm

z $ + %
z!

!zz!!n"pnm
z! ,

!138"

where the dependence of the stochastic matrix !zz! on n
incorporates the regulation.

As with the previously discussed models, Eq. !138" ben-
efits from spectral expansion, and for simplicity we present
only the formulation in the &j ,k' basis, parametrized by con-
stant rates ḡ and q̄ respectively, as in Secs. II B and III A 2.
As before the first step is to define the generating function

&Gz' = %
nm

pnm
z &n,m' , !139"

with which Eq. !138", upon summing over n and m against
&n ,m', becomes

&Ġz' = − Ĥz&Gz' + %
z!

!̂zz!&Gz!' , !140"

where

Ĥz = b̂n
+b̂nz

− + 2b̂m
+ b̂mz

− !141"

b̂n
+ = ân

+ − 1, !142"

b̂m
+ = âm

+ − 1, !143"

b̂nz
− = ân

− − gz, !144"

b̂mz
− = âm

− − qz, !145"

and !̂zz! is !zz!!n" with every instance of n replaced by the
number operator ân

+ân
−. Defining b̄n

−= ân
−− ḡ and b̄m

− = âm
− − q̄,

we partition the Hamiltonian as Ĥz= Ĥ0+ Ĥ1
z , with

Ĥ0 = b̂n
+b̄n

− + 2b̂m
+ b̄m

− !146"

as the operator of which &j ,k' is the eigenbasis, i.e.,

Ĥ0&j,k' = !j + 2k"&j,k' !147"

and

Ĥ1
z = b̂n

+(z + 2b̂m
+ &z !148"

capturing the deviations (z= ḡ−gz and &z= q̄−qz of the con-
stant rates from the state-dependent rates. Upon expanding
the generating function in the eigenbasis,

! "! #! $!!
!%!&
!%"
!%"&
!%#

'()
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,./
0'
1

! 2 !%"

"34"! 2 5%67!8

! "! #! $!!
!%!&
!%"
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!%#

"34"! 2 !%$6"&6

! "! #! $!!
!%!&
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!%"&
!%#

9:1*;( )< '().;,9=0 1
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*,-
,./
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1

! 2 "!

! "! #! $!!
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!%"&
!%#

9:1*;( )< '().;,9=0 1

FIG. 4. Protein distributions for a gene regulated by a threshold
function #dots; calculated via Eq. !75"$ and a gene with two sto-
chastic states #circles; calculated via Eq. !43"$. The relationship
between regulation parameters and state transition rates is given by
Eq. !136". In all panels the input to the regulation is a Poisson
distribution with mean g=7, and the regulation rates #cf. Eq. !116"$
are q−=2 and q+=15. In the first column the threshold is n0=4
making #+=0.8276#−=0.173; in the second column n0=8 making
#+=0.271'#−=0.729. In the first row the ratio of the second
gene’s degradation rate to that of the first is 2=0.1; in the second
row 2=10.
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&Gz' = %
jk

Gjk
z &j,k' , !149"

and taking dummy indices j→ j! and k→k!, projecting the
conjugate state (j ,k& onto Eq. !140" gives

Ġjk
z = − !j + 2k"Gjk

z − (zGj−1,k
z − &zGj,k−1

z

+ %
z!

%
j!

(j&!̂zz!&j!'Gj!k
z! , !150"

where the components of !̂zz! need only be evaluated in the
j sector, not the k sector, because the transition rates depend
on only n, not m #cf. Eq. !138"$. Like Eqs. !43" and !75", Eq.
!150" is subdiagonal in k and thus far more efficient to solve
than the original master equation #Eq. !138"$ as we demon-
strate for a special case in the next section. The joint distri-
bution is retrieved from Gjk

z via inverse transform,

pnm
z = %

jk
(n&j'Gjk

z (m&k' , !151"

with the mixed products calculated as in Appendix A.

A. Four-state process

As a simple example of the model in Eq. !138", we con-
sider a system in which each of the two species has an on

state and an off state, and the transition rate of the second
species to its on state is a function of the number of copies of
the first species. This system models both !i" a single gene
for which the production of proteins depends on the number
of transcripts, and each is produced in on and off states by
the binding and unbinding of ribosomes and RNA poly-
merase, respectively, and !ii" one gene regulating another
with each undergoing burstlike expression.

There are a total of Z=4 states, i.e.,

pnm
z = !pnm

−− ,pnm
+− ,pnm

−+,pnm
++" , !152"

where the first signed index denotes the state of the first gene
!with protein count n" and the second signed index denotes
the state of the second gene !with protein count m". Defining
g, as the production rates of the first species in its on !+" and
off states !−", and similarly q, for the second species, the
production rates of the Z=4 states are

gz = !g−,g+,g−,g+" , !153"

qz = !q−,q−,q+,q+" . !154"

Defining ), as the transition rates of the first species to !+"
and from !−" its on state, and similarly 0, for the second
species, the transition matrix takes the form

!zz!!n" =*
− )+ − 0+!n" )− 0− 0

)+ − )− − 0+!n" 0 0−

0+!n" 0 − )+ − 0− )−

0 0+!n" )+ − )− − 0−

+ . !155"

The simple form 0+!n"=cn4 for constant c and integer 4
corresponds to the first species activating the second as a
multimer, with 4 the order of the multimerization. In the
limit of fast switching this description reduces to a Hill func-
tion with cooperativity 4 #23$. Recalling that b̂n

+= ân
+−1 and

b̄n
−= ân

−− ḡ, the n-dependent terms of (j&!̂zz!&j!' are evaluated
as

(j&0+!ân
+ân

−"&j!' = c(j&#!b̂n
+ + 1"!b̄n

− + ḡ"$4&j!' . !156"

Since b̂n
+ and b̄n

− raise and lower &j!' states respectively #cf.
Eqs. !22" and !23"$, the modified transition matrix (j&!̂zz!&j!'
is nearly diagonal, with nonzero terms only for &j− j!&"4.

Equation !150" at steady state,

− !j + 2k"Gjk
z − (zGj−1,k

z + %
z!

%
j!

(j&!̂zz!&j!'Gj!k
z! = &zGj,k−1

z ,

!157"

is solved successively in k, requiring the inversion of a
4J-by-4J matrix K times. It is initialized at k=0 by comput-

ing the null space of the left-hand side and normalizing with
%zG00

z =1 #cf. Eq. !35"$. The joint distribution pnm
z is retrieved

via inverse transform #Eq. !151"$.
With 4=2, a typical solution of Eq. !157" takes a few

seconds !in MATLAB", which, depending on the cutoff N, is
4102–103 times faster than direct solution of the master
equation #Eq. !138"$ by iteration for equivalent accuracy. The
advantage of such a large efficiency gain is that it allows
repeated evaluations of the governing equation, necessary for
parameter inference or optimization #31$. We demonstrate
this possibility in the next section by finding and interpreting
the solutions that optimize the information flow from the first
to the second species.

B. Information-optimal solution

Cells use regulatory processes to transmit relevant in-
formation from one species to the next #44–48$. Informa-
tion processing is quantified by the mutual information I,
which, between the first and second species in the four-state
process, is
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I = %
nm

pnm log2
pnm

pnpm
, !158"

where the distributions pnm, pn, and pm are obtained from
summing the joint distribution pnm

z #cf. Eq. !151"$, and the
log is taken with base 2 to give I in bits.

Upon optimization of I for the four-state process, two
distinct types of optimal solutions become clear: those in
which the distribution pnm has one peak and those in which
pnm has two peaks. The former occur when copy number is
constrained to be low, and switching rates are constrained to
be near the decay rates of both species, producing a single
peak at low copy number #see lower left inset of Fig. 5!B"$.
As these constraints are lifted, it is optimal for the switching
rates of the parent species to become much less than the
decay rate. The slow switching produces a second peak
whose location is specified by the on rate of each species
#see upper right inset of Fig. 5!B"$.

To quantify the transition between the two types of solu-
tions, we numerically optimized mutual information over pa-
rameters g+, q+, )−, )+, 0−, and c !the off-rates g− and q−
were fixed at 0; the cooperativity 4 was fixed at 2; and the
decay rate ratio 2 was fixed at 1". Information may always be
trivially optimized by allowing infinite copy number or arbi-
trary separation of relevant time scales. We limit copy num-
ber by constraining the gain

; =
( + &

2
, !159"

defined as the average of the parent gain (=g+−g− and the
child gain &=q+−q−. Since g−=q−=0, the maximum number
of particles is dictated by the on rates g+ and q+ and thus

constraining ; limits the copy number. We limit separation
between the switching time scales and the decay time scales
by constraining the stiffness

< =
1
4

!&log10 )−& + &log10 )+& + &log10 0−& + &log10#0+(n4'$&" ,

!160"

where the average (n4' is taken over pn. Stiffness < is the
average of the absolute deviation of !the logs of" all four
switching rates from the !unit" decay rates so constraining <
prevents fast or slow switching. Gain is fixed by varying g+
and q+ such that ; is a constant, and stiffness is constrained
by optimizing the objective function

L = I − 3< !161"

for a given value of the Lagrange multiplier 3.
As shown in Fig. 5!A", one-peaked solutions are more

informative at low stiffness, while two-peaked solutions are
more informative at high stiffness. We compute the convex
hulls of the one- and two-peaked data to remove suboptimal
solutions, and the transition occurs at the stiffness value at
which the convex hulls intersect #cf. Fig. 5!A"$. Repeating
this procedure for many choices of gain allows one to trace
out the phase transition shown Fig. 5!B", which makes clear
that one-peaked solutions are most informative at low stiff-
ness, two-peaked solutions are most informative at high stiff-
ness, and the critical stiffness decreases weakly with increas-
ing gain.

Examining the two-peaked solutions, which are optimal at
high stiffness, we find that the marginal probability to be in
the !− ,+" state, where the first gene is off and the second
gene is on, #−,+=%nmpnm

−,+, is much smaller than the marginal
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FIG. 5. !A" Mutual information I #cf. Eq. !158"$ versus stiffness < #cf. Eq. !160"$ for fixed gain #;=16, cf. Eq. !159"$ obtained by
optimizing Eq. !161" for 3 values between 10−3 and 101. Squares denote solutions whose joint distribution pnm has one peak !cf. B, lower
left inset", and dots denote solutions for which pnm has two peaks !cf. B, upper right inset". Solid lines show the convex hulls of the one- and
two-peaked solutions. Dotted lines indicate the stiffness value at which the hulls intersect and the stiffness values of the hull points to the left
and right of the intersection. !B" Phase diagram between one- and two-peaked optimal solutions in the gain-stiffness plane. Circles and left
and right error bars at each gain are determined by the stiffness values at the intersection of the one- and two-peak convex hulls and at the
hull points to the left and right of the intersection, respectively !see dotted lines for the example case in A". Solid line shows a line of best
fit. Insets show examples of one-!lower left" and two-peaked !upper right" optimal distributions pnm.
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probabilities to be in the other three states ##−,+ /#z'0.01,
where z= 1!+,+" , !+,−" , !− ,−"2$. This result states that it is
unlikely for the regulated gene to be expressing proteins at a
high level, if the regulator protein or mRNA !depending on
the interpretation of the model" is not being expressed. Op-
timizing information, we find rates which result in this intui-
tive solution.

V. CONCLUSIONS

The presented spectral method exploits the linearity of the
master equation to solve for probability distributions directly
by expanding in the natural eigenfunctions the linear opera-
tor. We demonstrate the method on three models of gene
expression: a single gene with multiple expression states, a
gene regulatory cascade, and a model that combines multi-
state expression with explicit regulation through binding of
transcription factor proteins.

The spectral method permits huge computational gains
over simulation. As demonstrated for all spectral expansions
of the two-gene cascade !cf. Fig. 3", directly solving for the
distribution via the spectral method is 4107–108 times faster
than building the distribution from samples using a simula-
tion technique. This massive speedup makes possible optimi-
zation and inference problems requiring full probability dis-
tributions that were not computationally feasible previously.
For example, by optimizing information flow in a two-gene
cascade in which both parent and child undergo two-state
production, we reveal a transition from a one-peaked to a
two-peaked joint probability distribution when constraints on
protein number and time scale separation are relaxed. We
emphasize that this optimization would not have been pos-
sible without the efficiency of the spectral method.

The spectral method also makes explicit the linear alge-
braic structure underlying the master equation. In many
cases, such as in two-state bursting and the two-gene thresh-
old regulation problem, this leads to analytic solutions. In
general, such as shown in the case of the linear cascade, this
leads to a set of natural bases for expansion of the generating
function and reveals the features of each basis that are better
suited to different types of problems. Specifically, bases in
which the parent species is expanded in eigenfunctions are
best when the parent distribution is Poissonian, and bases in
which the parent is left in protein number space are best
when the parent distribution is concentrated at low protein
number. As well, bases in which the eigenfunctions of the
child depend on the number of copies of the parent’s protein
are best suited for smooth regulation functions, whereas a
basis in which the eigenfunctions of the child are param-
etrized by a constant is more numerically robust for sharp
regulation functions such as thresholds. In all cases the linear
algebraic structure of the spectral decomposition yields nu-
merical prescriptions that greatly outperform simulation
techniques. We anticipate that the computational speedup of
the method, as well as the removal of the statistical obstacle
of density estimation inherently limiting simulation-based
approaches, will make spectral methods such as those dem-
onstrated here useful in addressing a wide variety of biologi-
cal questions regarding accurate and efficient modeling of
noisy information transmission in biological systems.
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APPENDIX A

In this appendix we describe two ways to compute the
mixed products (n & j' and (j &n' between the protein number
states &n' and the eigenstates &j': by direct evaluation and by
recursive updating.

The direct evaluation follows from Eqs. !8"–!10" and !20",
and the fact that repeated derivatives of a product follow a
binomial expansion. Introducing g as the rate parameter for
the &j' states,

(n&j' =) dx

2#i
(n&x'(x&j' !A1"

=) dx

2#i

eg!x−1"!x − 1" j

xn+1 !A2"

=
1
n!

!x
n#eg!x−1"!x − 1" j$x=0 !A3"

=
1
n!%!=0

n
n!

! ! !n − !"!
!x

n−!#eg!x−1"$x=0

. !x
!#!x − 1" j$x=0 !A4"

=%
!=0

n
1

! ! !n − !"!
#gn−!e−g$

. 8 j!
!j − !"!

!− 1" j−!%!j − ! + 1"9 !A5"

=!− 1" je−ggnj ! =nj , !A6"

where

=nj = %
!=0

min!n,j"
1

! ! !n − !" ! !j − !" ! !− g"! . !A7"

Similarly, noting Eqs. !7" and !21",

(j&n' = n ! !− g" j=nj , !A8"

with =nj as in Eq. !A7". Equations !A6" and !A8" clearly
reduce to Eqs. !26" and !27" for the special case j=0.

It is more computationally efficient to take advantage of
the selection rules in Eqs. !12"–!15" and !22"–!25" to com-
pute the mixed products recursively. For example, using Eqs.
!14", !16", and !22",
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(n&j + 1' = (n&b̂+&j' = (n&!â+ − 1"&j' = (n − 1&j' − (n&j' ,

!A9"

which can be initialized using (n &0'=e−ggn /n! #cf. Eq. !A6"$
and updated recursively in j. Equation !A9" makes clear that
in n space the !j+1"th mode is simply the !negative of the"
discrete derivative of the jth mode.

Alternatively, Eqs. !15", !17", and !23" give

!n + 1"(n + 1&j' = (n&â−&j' = (n&!b̂− + g"&j'

= j(n&j − 1' + g(n&j' , !A10"

which can be initialized using (0 & j'= !−1" je−g #cf. Eq. !A6"$
and updated recursively in n.

One may similarly derive recursion relations for (j &n',
i.e.,

(j&n + 1' = (j − 1&n' + (j&n' , !A11"

!j + 1"(j + 1&n' = n(j&n − 1' − g(j&n' , !A12"

initialized with (j &0'= !−g" j / j! or (0 &n'=1, respectively #cf.
Eq. !A8"$ and updated recursively in n or j, respectively.

One may also use the full birth-death operator b̂+b̂− to
derive the recursion relations

!n + 1"(n + 1&j' = !g + n − j"(n&j' − g(n − 1&j' , !A13"

g(j&n + 1' = !g + n − j"(j&n' − n(j&n − 1' , !A14"

initialized with (0 & j'= !−1" je−g and (1 & j'= !−1" je−g!g− j" #cf.
Eq. !A6"$, and (j &0'= !−g" j / j! and (j &1'= !−g" j!1− j /g" / j!
#cf. Eq. !A8"$, respectively, and updated recursively in n. We
find Eqs. !A13" and !A14" are more numerically stable than
Eqs. !A9"–!A12", as the former are two-term recursion rela-
tions while the latter are one-term recursion relations.

APPENDIX B

In the limit g−=0, Eq. !54" reads

G!x" =
)+

)+ + )−
ey/#)−,)+ + )− + 1;− y$

+
)−

)+ + )−
/#)+,)+ + )− + 1;y$ , !B1"

where y=eg+!x−1". Using the fact that #49$

ey/#0,1;− y$ = /#1 − 0,1;y$ , !B2"

Eq. !B1" can be written

G!x" =
)+

)+ + )−
/#)+ + 1,)+ + )− + 1;y$

+
)−

)+ + )−
/#)+,)+ + )− + 1;y$ , !B3"

or noting Eq. !55" and the fact that (!z+1"=z(!z" for any z,

G!x" = %
j
, )+

)+ + )−

(!j + )+ + 1"
(!)+ + 1"

+
)−

)+ + )−

(!j + )+"
(!)+" -

.
(!)+ + )− + 1"

(!j + )+ + )− + 1"
yj

j!
!B4"

=%
j
, )+

)+ + )−

!j + )+"(!j + )+"
)+(!)+"

+
)−

)+ + )−

(!j + )+"
(!)+" -

.
!)+ + )−"(!)+ + )−"

!j + )+ + )−"(!j + )+ + )−"
yj

j!
!B5"

=%
j

(!j + )+"
(!)+"

(!)+ + )−"
(!j + )+ + )−"

yj

j!
!B6"

=/#)+,)+ + )−;y$ , !B7"

as in Eq. !56".
The marginal pn is given by

(n&G' =
1
n!

!x
n#G!x"$x=0 !B8"

#cf. Eq. !10"$. Using Eq. !56" and the derivative of the con-
fluent hypergeometric function,

!y
n/#0,1;y$ =

(!n + 0"
(!0"

(!1"
(!n + 1"

/#0 + n,1 + n;y$ ,

!B9"

one obtains Eq. !57".

APPENDIX C

In this appendix, we fill in the details of the derivations of
the equations of motion for the latter three of the four spec-
tral bases discussed in Sec. II A.

1. /j ,kj‹ basis

Projecting the conjugate state (j ,kj& onto Eq. !83" !in
which dummy indices j and k are changed to j! and k!,
respectively" gives

0 = %
j!k!

!j! + 2k!"(j&j!'(kj&kj!
! 'Gj!k! + %

j!k!

(j&b̂n
+(̂n&j!'

.(kj&kj!
! 'Gj!k! + 2%

j!k!

(kj&b̂m
+ &kj!

! '(j&&̂n!j!"&j!'Gj!k!.

!C1"

From the orthonormality of states, the first term of Eq. !C1"
simplifies to

%
k!

!j + 2k!"(kj&kj!'Gjk! = !j + 2k"Gjk. !C2"

Recalling Eq. !30", the product (kj &kj!
! ' simplifies to
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(kj&kj!
! ' =

!− Qjj!"
k−k!

!k − k!"!
%!k − k! + 1" , !C3"

with Qjj!= q̄j − q̄j!, whereupon Eq. !C1", separating the part
of its second term which is diagonal in k from that which is
subdiagonal and applying Eq. !24" to its third term, becomes

0 = !j + 2k"Gjk + %
j!

( j−1,j!Gj!k

+ %
k!'k

%
j!

( j−1,j!

!− Qjj!"
k−k!

!k − k!"!
Gj!k!

+ 2 %
k!'k

%
j!

& j j!

!− Qjj!"
k−k!−1

!k − k! − 1"!
Gj!k!, !C4"

with ( j j! as in Eq. !76" and

& j j! = (j&&̂n!j!"&j!' = (j&!q̄j! − q̂n"&j!' !C5"

=(j&!q̄j − q̂n"&j!' !C6"

=%
n

(j&n'!q̄j − qn"(n&j!' !C7"

#where the orthonormality of &j' states is used in going from
Eq. !C5" to Eq. !C6"$. Defining !=k−k! and

Vjj!
! =

!− Qjj!"
!

!!
, !C8"

Eq. !C4" can be written more compactly as Eq. !87".

2. /n ,kn‹ basis

Projecting the conjugate state (n ,kn& onto Eq. !93" !in
which dummy indices n and k are changed to n! and k!,
respectively" gives

0 = %
n!k!

!gn! + n! + 2k!"(n&n!'(kn&kn!
! 'Gn!k! − %

n!k!

gn!(n&n! + 1'

.(kn&kn!
! 'Gn!k! − %

n!k!

n!(n&n! − 1'(kn&kn!
! 'Gn!k!

+ 2 %
n!k!

&n!(n&n!'(!k − 1"n&kn!
! 'Gn!k!, !C9"

where &n= q̄n−qn. Noting that, as in Eq. !30",

(kn&kn,1! ' =
!− Qn

,"k−k!

!k − k!"!
%!k − k! + 1" , !C10"

where Qn
,= q̄n− q̄n,1, Eq. !C9" becomes

0 = !gn + n + 2k"Gnk − gn−1 %
k!"k

!− Qn
−"k−k!

!k − k!"!
Gn−1,k!

− !n + 1" %
k!"k

!− Qn
+"k−k!

!k − k!"!
Gn+1,k! + 2&nGn,k−1.

!C11"

Separating the parts of the second and third term that are
diagonal in k and defining !=k−k! and

Vn!
, =

!− Qn
,"!

!!
, !C12"

Eq. !C11" becomes Eq. !97".

3. /j ,kn‹ basis

Substituting Eq. !103" into Eq. !58" at steady state gives

0 = %
jk

Gjk1gn−1(n − 1,m&j,kn−1' + !n + 1"(n + 1,m&j,kn+1'

− !gn + n"(n,m&j,kn' + 2#qn(n,m − 1&j,kn'

+ !m + 1"(n,m + 1&j,kn' − !qn + m"(n,m&j,kn'$2 , !C13"

or in terms of raising and lowering operators #cf. Eqs. !14"$

0 = %
jk

Gjk(n,m&1ân
+ĝn&j,kn−1' + ân

−&j,kn+1' − !ĝn + ân
+ân

−"&j,kn'

+ 2#âm
+ q̂n&j,kn' + âm

− &j,kn' − !q̂n + âm
+ âm

− "&j,kn'$2 . !C14"

Using the definitions in Eqs. !64"–!68", Eq. !C14" can be
written as Eq. !105".

Using Eqs. !107"–!109", Eq. !105" can be written

0 = − (n,m&%
j!k!

!j! + 2k!"&j!,kn!'Gj!k!

− (n,m&%
j!k!

b̂n
+(̂n&j!,kn!'Gj!k! − (m&2%

j!k!

!q̄n − qn"

.(n&j!'b̂m
+ &kn!'Gj!k! + (m&%

j!k!

gn−1(n − 1&j!'&$−kn!'Gj!k!

+ (m&%
j!k!

!n + 1"(n + 1&j!'&$+kn!'Gj!k!, !C15"

where

&$,kn' 3 &kn,1' − &kn' , !C16"

and the dummy indices j and k have been changed to j! and
k! respectively. Using Eq. !C10" to note that

(kn&$,kn!' =
!− Qn

,"k−k!

!k − k!"!
%!k − k!" , !C17"

where Qn
,= q̄n− q̄n,1, we multiply Eq. !C15" by (kn &m' and

sum over m to obtain
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0 = − (n&%
j!

!j! + 2k"&j!'Gj!k − (n&%
j!

b̂n
+(̂n&j!'Gj!k − 2%

j!

!q̄n

− qn"(n&j!'Gj!,k−1 + %
j!

gn−1(n − 1&j!'%
!=1

k

Vn!
− Gj!,k−!

+ %
j!

!n + 1"(n + 1&j!'%
!=1

k

Vn!
+ Gj!,k−!, !C18"

in which we exploit the completeness of &m' states, i.e.,
%m&m'(m&=1, and Vn!

, is as in Eq. !99". Multiplying Eq.
!C18" by (j &n', summing over n, and exploiting %n&n'(n&=1
for the first two terms, we obtain Eq. !110".

APPENDIX D

In this appendix we explicitly solve for Gnk in Eq. !117"
using the tridiagonal matrix or Thomas #42$ algorithm. We
start by identifying the subdiagonal, diagonal, superdiagonal,
and right-hand side elements of Eq. !117", respectively, as

An = g !n = 1, . . . ,N" , !D1"

Bn = − !2k + g + n" !n = 0, . . . ,N" , !D2"

Cn = n + 1 !n = 0, . . . ,N − 1" , !D3"

Rn = − g7k
−$nn1

− n17k
+$nn0

!n = 0, . . . ,N" , !D4"

where N is the cutoff in protein count n and n1=n0+1. Aux-
iliary variables are defined iteratively as

C0! =
C0

B0
, !D5"

Cn! =
Cn

Bn − Cn−1! An
!n = 1, . . . ,N − 1" , !D6"

R0! =
R0

B0
, !D7"

Rn! =
Rn − Rn−1! An

Bn − Cn−1! An
!n = 1, . . . ,N" , !D8"

and the solution is obtained by backward iteration with

GN
k = RN! , !D9"

Gn−1
k = Rn−1! − Cn−1! Gn

k !n = N, . . . ,1" !D10"

!where k has been moved from subscript to superscript for
ease of reading".

Computing the first few terms of Eq. !D6" reveals the
pattern

Cn! = − !n + 1"
8n

k

8n+1
k , !D11"

where

8n
k = %

i=0

n
n!

i ! !n − i"!
gn−i.

!=0

i−1

!2k + !" , !D12"

with the convention that .a
b# · $=1 if a6b. Note that since

.!=0
i−1 !2k+!"=(!2k+ i" /(!2k", we may also use the integral

representation of the Gamma function to write

8n
k =

1
(!2k"%i=0

n
n!

i ! !n − i"!
gn−i7

0

t

dte−tt!2k+i−1" !D13"

=
1

(!2k"70

t

dte−tt!2k−1"%
i=0

n
n!

i ! !n − i"!
gn−iti !D14"

=
1

(!2k"70

t

dte−tt!2k−1"!g + t"n. !D15"

Using Eq. !D8" it is immediately clear that

Rn'n0
! = 0. !D16"

The first nonzero term is

Rn0
! =

n17k
+

gn0

8n0

k

8n0−1
k

1

9n0

k − 1
, !D17"

where we have defined

9n
k =

2k + g + n

gn

8n
k

8n−1
k . !D18"

Further iteration of Eq. !D8" makes clear that

Rn6n0
! =

n1

g
fk.

i=n0

n ,1
i

8i
k

8i−1
k

1

9i
k − 1

- !D19"

=
n1

g

!n0 − 1"!
n!

8n
k

8n0−1
k fk.

i=n0

n
1

9i
k − 1

, !D20"

where

fk = 7k
+ −

gn0

n1

8n0−1
k

8n0

k !9n0

k − 1"7k
−. !D21"

Computing the first few terms of Eq. !D10" reveals that

Gn6n0

k = !9n
k − 1"Rn6n0

! Fn
k !D22"

=
n1

g

!n0 − 1"!
n!

8n
k

8n0−1
k fkFn

k .
i=n0

n−1
1

9i
k − 1

, !D23"

where

Fn
k = %

i=0

N−n

.
!=n

n+i
1

9!
k − 1

. !D24"
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At the threshold Eq. !D10" gives

Gn0

k =
n1

gn0

8n0

k

8n0−1
k

1

9n0

k − 1
!7k

+ + fkFn1

k " !D25"

and since Rn'n0
! =0, the solution is easily completed using

Eq. !D10", giving

Gn'n0
= Gn0 .

i=1

n0−n

!− Cn0−i! " !D26"

=
n1

g

!n0 − 1"!
n!

8n
k

8n0−1
k

7k
+ + fkFn1

k

9n0

k − 1
. !D27"

These results are summarized in Eqs. !120"–!125".
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