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Biological organisms have evolved a wide range of immune mechanisms to defend themselves
against pathogens. Beyond molecular details, these mechanisms differ in how protection is acquired,
processed and passed on to subsequent generations – differences that may be essential to long-term
survival. Here, we introduce a mathematical framework to compare the long-term adaptation of
populations as a function of the pathogen dynamics that they experience and of the immune strategy
that they adopt. We find that the two key determinants of an optimal immune strategy are the
frequency and the characteristic timescale of the pathogens. Depending on these two parameters,
our framework identifies distinct modes of immunity, including adaptive, innate, bet-hedging and
CRISPR-like immunities, which recapitulate the diversity of natural immune systems.

Immune systems have evolved to protect organisms
against large and unpredictable pathogenic environ-
ments. Yet immunity always comes at a cost (metabolic
and maintenance costs, auto-immune disorders, etc. [1]),
and this cost must be balanced by the benefits that pro-
tection confers [2, 3]. Faced with the problem of evolving
a suitable defense, different organisms, from archae to hu-
mans, have developed different strategies to identify and
target pathogens, which have given rise to a diversity of
mechanisms of immunity.

A lot of effort has been put into elucidating these mech-
anisms down to their molecular details in a variety of
species [4–9]. Beyond many differences, these studies
have revealed many commonalities [10, 11], which hint
at a possible general understanding of the trade-offs that
shape their design [1, 2]. For instance, independently of
the well-known adaptive immune systems of jawed ver-
tebrates, jawless vertebrates (e.g. lampreys) have devel-
oped an alternative adaptive system that uses a distinct
molecular family of receptors, but both systems func-
tion largely in the same way, relying on the generation
of a large number of diverse receptors expressed by two
types of lymphocytes (B or T-like cells). Likewise, the
innate immune systems of invertebrates and vertebrates,
share many similarities, relying on the selected expres-
sion of germline Toll-like receptors upon infection. Some
of the features of vertebrate immunity are even shared
with bacteria, who have developed their own targeted im-
munity based on the CRISPR/Cas system [9, 12], which
itself bears strong resemblance with genome protection
through interfering RNAs in eukaryotes [13].

Independently of how they evolved and their particu-
lar molecular implementation, we may classify these di-
verse mechanisms into a few broad modes of immunity:
heritable but not adaptable within an individuals life-
time, as innate immune systems; heritable and adapt-
able within a lifetime but with the benefits of adapta-
tion being non heritable, as adaptive immune systems;
acquired from the environment and heritable, as the
CRISPR/Cas system; and mixed strategies combining
several of these elements. These broad distinctions call

for general principles to characterize the conditions un-
der which one or another mode of immunity may be ex-
pected to evolve [1, 10, 11]. The diversity and variability
of threats from the pathogenic environment suggests that
different modes of immunity may offer better protection
depending on the patterns of occurrence of pathogens or
the effective population size of the protected population.
Here we apply a general theoretical framework for analyz-
ing populations in a varying environment [14] to predict
the emergence of the basic forms of observed immunity.

Individuals reproduce in the presence of pathogens,
which randomly appear, may persist for several genera-
tions and disappear before possibly reappearing at a lat-
ter time (Fig. 1A). In our framework, a given pathogen
has a probability α to appear and a probability β to dis-
appear from one generation to the next (Fig. 1E). The
pathogenic dynamics is quantified both by the pathogen
frequency πenv = α/(α+β), which is the probability that
it is present at any given generation, and by the charac-
teristic timescale τenv = −1/ ln(1 − α − β), which sets
how fast pathogens appear and disappear.

Pathogens reduce the fitness of the individuals in the
population and the immune system is designed to miti-
gate this effect. An individual’s fecundity, defined as its
expected number of descendants in the next generation
ξ̄, depends on the pathogenic environment and its ability
to protect itself against it. Each pathogen independently
lowers the fecundity of an unprotected individual by a
relatively large cost factor cinfected > 0 (Fig. 1B). This
cost is reduced to a lower cost cdefense < cinfected when
the individual is protected by its immune system, how-
ever this protection comes at a minimal but ever-present
cost of cconstitutive < cdefense of maintaining the immune
defense in absence of the pathogen (Fig. 1C).

We explore the choices and tradeoffs underlying var-
ious modes of immunity along three axes: adaptability,
heritability, and mode of aquisition. The first, adapt-
ability axis concerns how much resources are invested
in the protection for the return of an efficient response.
This tradeoff imposes a relationship between cdefense and
cconstitutive (Fig. 1D): the more effective the defense (the
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FIG. 1: A model to explore the incidence of different modes of immunity on the long-term growth of populations. (A) A
population of organisms, each possibly protected against no, one or several pathogens (no, one or several colored dots) evolves
in presence of a pathogenic environment that varies from generation to generation. The mean number of individuals with
protection σ at generation t, Nt(σ), is given by a recursion equation involving the mean number of offspring ξ̄(σ′, xt) for
individuals with protection σ′ and the probability π(σ|σ′, xt) that each of their offspring inherits a protection σ; both of these
quantities may depend on the current pathogenic environment xt. The long-term growth rate of the population is given by
(1/t) lnNt at large t, with Nt =

∑
σ Nt(σ) the total population size. (B) The ξ offspring produced by an individual inherits

the immune protections of their parent with rules specified in panel E. Each pathogen reduces the mean number of offspring
ξ̄(σ, xt) by a cost cstate that depends on whether the individual is in state ‘infected’, ‘defense’, or ‘constitutive’ relative to the
pathogen, and by a cost c(puptake) that depends on the rate puptake at which protection is directly induced by the presence of
the pathogen. (C) An unprotected organism pays a cost of infection cinfected if the pathogen is encountered, which is reduced
to cdefense if it is protected. A protected organism must, however, pay a constitutive cost cconstitutive even in the absence of
the pathogen, while an unprotected organism pay no cost. (D) We assume a trade-off between the constitutive and defense
costs: a more efficient defense (lower cdefense) requires more resources (higher cconstitutive). (E) Dynamics of appearance and
disappearance of pathogens xt and immune protection σ. A pathogen appears with rate α and disappears with rate β; these
rates define the frequency πenv = α/(α+β) and characteristic time τenv = −1/ ln(1−α−β) of the pathogen. Protection against
a given pathogen is acquired spontaneously with rate p, and lost from one generation to the next with rate q. Additionally,
the presence of the pathogen can increase the rate of acquisition of protection by puptake, as e.g. in the CRISPR/Cas system
of prokaryotes.

lower cdefense), the higher maintenance cost (the higher
cconstitutive). For example, having a large number of im-
mune cells specialized against a specific pathogen allows
for a quick and efficient response in case of invasion, but
this enhanced protection comes at the cost of produc-
ing and maintaining these cells in the absence of the
pathogen. This strategy is adopted, for example, by
much of the innate immune systems of plants and ani-
mals [4]. On the contrary, the adaptive immune system
keeps a very small specialized pool of lymphocytes for
each potential antigen, and makes them proliferate only
in case of infection [10]. The second, heritability axis is
defined by the probability q that the protection is not
transmitted to the offspring (Fig. 1E). Finally, the third,
acquisition axis specifies how individuals may acquire the
protection without inheriting it from their parent. This
acquisition may occur randomly independently of the en-

vironment, with probability p, for instance by mutation
or phenotypic switching, as is the case for antibiotic resis-
tance in bacteria [15]; or it can be induced by the presence
of the pathogen with probability puptake, as in CRISPR-
Cas immunity (Fig. 1E) [9]. This mechanism comes at
an extra cost c(puptake) due to maintenance and the risks
of uptaking foreign genetic material (Fig. 1B).

Each choice of the parameters cconstitutive, q, p and
puptake defines a specific immune strategy. This strategy
is optimal if a population that adopts it outgrows in the
long run any other population following a different strat-
egy. Our goal is to characterize this optimal strategy,
in particular its dependency on the two key properties
of the pathogen, its frequency πenv and its characteristic
time τenv. We achieve this goal by maximizing the long-
term growth rate of populations, defined by (1/t) lnN(t),
where N(t) is the total population size at generation t
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FIG. 2: Optimal immune strategies as a function of the frequency and characteristic time of pathogens. (A) Distinct optimal
immune strategies emerge for different statistics of appearance of the pathogens. Each phase is characterized by the value of
parameters indicated in panel B and named after a known immune system that has similar characteristics. (B) The different
phases of immunity are defined by the values of parameters along three main axes: adaptability (constitutive cost cconstitutive),
heritability (1 − q) and mode of acquisition (p and puptake). (C) and (D) Optimal parameters as a function of πenv for
τenv = 12 (C) and τenv = 0.8 (D). For slowly varying environments (C), rare pathogens are best targeted by CRISPR-like
uptake of protection, while frequent pathogens are best dealt with by spontaneous acquisition of protection, with a crossover
in-between where both co-exist. For faster varying environments (D), the constitutive cost invested in the protection goes from
negligible to maximal as the pathogen frequency increases. When it is maximal, the best strategy transitions from bet-hedging
(q > 0) to a full protection of the population (q = 0). (E) The correlation times of protection in absence of the pathogen,
τ = −1/ ln(1 − p − q), and in its presence, τ = −1/ ln(1 − p − puptake − q), are shown for πenv = 0.7 as a function of τenv.
Both increase with the correlation time of the pathogen. In this figure, an infinite population size is assumed and the following
choices are made: cinfection = 3; cconstitutive = (1.8− cdefense) / (cdefense − 0.2) ; c(puptake) = 0.1 × puptake + p2uptake (see Fig. S2
for other choices).

(Fig. 1A; see SI for a derivation) [16]. Conveniently, since
the fecundity is affected independently by the different
pathogens, each pathogen contributes additivitely to the
growth rate and can be studied separately (Fig. 1B and
SI). Remarkably, we obtain qualitatively different opti-
mal solutions for given values of πenv, τenv, with sharp
transitions between these strategies as one varies the pa-
rameters of the pathogen statistics, allowing us to define
distinct immune regimes (Fig. 2A). The emergence of
these very distinct regimes is not an assumption, but the
result of the optimisation itself.

Fig. 2B describes these optimal strategies along the
three axes of variation outlined earlier. Along the first
axis of variation, adaptability, we find that frequent or

persistent pathogens are best dealt with by constitu-
tively expressed immunity (cconstitutive = cdefense), and
rare and transient pathogens by investing minimally in
the defense (cconstitutive = 0, in blue); between these two
extremes, only a limited form of adaptation is required
(cconstitutive < cdefense, in green). Along the second axis,
heritability, we find that carrying the protection at all
times (q = 0) is beneficial for fast pathogens but that
losing the protection with probability q > 0 is more ad-
vantageous for slow ones. Finally, along the third axis,
acquisition, we verify that there is no need to pay the
price of informed acquisition (puptake = 0) whenever pro-
tection is systematically inherited (q = 0); when it is not
the case (q > 0), we find that uptake is advantageous for
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sufficiently infrequent pathogens (yellow and orange re-
gions) but that only for very infrequent pathogens does it
becomes the exclusive mode of acquisition of protection
(p = 0, puptake > 0, in yellow).

Each of these distinct regimes, or phases, is instanti-
ated by natural immune systems. For transient and rare
pathogens (blue phase), the optimal strategy is to inherit
a defense with minimal constitutive cost. This strategy
is characteristic of the adaptive immune system in verte-
brates, where an effective immune response is mounted
from a small number of precursor cells, the marginal cost
of which is negligible [10]. For transient but frequent
pathogens (purple phase), the optimal strategy consists
instead in inheriting a maximally efficient protection that
makes the individuals effectively insensitive to the pres-
ence of the pathogen at the expense, however, of a large
constitutive cost. The recognition of pathogen-associated
molecular patterns by pattern recognition receptors, as
for instance the recognition of lipopolysaccharide by Toll-
like receptors, is an example of such an innate strategy
[4]. An intermediate phase (in green) separates these two
extremes, where adaptation is present with a non-zero
constitutive cost. This strategy, which we call proto-
adaptive, is represented by certain specialized cells of the
innate immune system, such as natural killer cells [17],
whose abundance can vary as a function of experienced
infections, effectively implementing an adaptive memory
within a single generation.

For slow and frequent pathogens (red phase), protec-
tion is acquired with probability p > 0 and lost with
probability q > 0 independently of the presence of the
pathogen. This bet-hedging strategy is implemented in
bacteria that can switch on or off the expression of phage
receptors [8]. For slow but unfrequent pathogens (yellow
phase), a form of bet-hedging is again present, but this
time with a non-zero probability to acquire protection
only in presence of the pathogen. An example of such a
Lamarckian strategy is the CRISPR-Cas immune system
in bacteria [9]. Finally, a mixed phase (in orange) is also
possible where protection is randomly acquired at a rate
that is increased by the presence of the pathogen.

It is instructive to examine how the parameters of im-
munity vary within the phases (Fig. 2C-D and S1). As
one may expect, the statistical properties of the protec-
tion tend to track the pathogen statistics [18]. The more
frequent the pathogen, the more prevalent the protec-
tion in the population (Fig. 2C). Likewise, the charac-
teristic time of the protection, τ , grows with that of the
pathogen, τenv (Fig. 2E).

The phase portrait of Fig. 2A rationalizes the salient
differences between the immune systems of prokary-
otes and vertebrates. Bacterial and archeal pathogens
evolve on timescales that are much closer to those of
their pathogens than vertebrates. From the viewpoint
of microbes, the pathogenic environment is relatively
constant (τenv > 1), while for vertebrates a particular
pathogenic strain is unlikely to survive a single gener-
ation (τenv � 1). Consistently with our results, ver-

tebrates use fully heritable modes of immunity, and do
not rely on bet-hedging. To deal with unfrequent and
fast evolving pathogens such as viruses, they recourse to
adaptive mechanisms by which they can upregulate their
protection in case of an invasion. The three predicted
strategies – adaptive, proto-adaptive, and innate – cor-
respond to the known modes of immunity in vertebrates
[19]. Prokaryotes, on the other hand, almost systemati-
cally use bet-hedging strategies. They recourse to both
the CRISPR-Cas system of acquired immunity [9], and
to innate immunity through e.g. restriction endonucle-
ases [8], which correspond to the predicted Lamarckian
and innate bet-hedging strategies of the diagram, respec-
tively. These results are robust to changes of parameters,
although increasing costs can make bet-hedging benefi-
cial even at short characteristic times (SI Fig. S2).

Bacteria and vertebrates also have very different pop-
ulation sizes, which influence their overall survival prob-
ability. To evaluate this impact, we ran stochastic simu-
lations competing different strategies for increasing pop-
ulation sizes (see SI Text and SI Fig. S3). The phase dia-
gram of Fig. 2A was recovered for populations as small as
a thousand, while for smaller populations the boundaries
between regimes were smeared. Adaptive strategies were
generally favored over CRISPR-like strategies in small
populations. In addition, for finite populations it is al-
ways beneficial to recourse some degree of bet-hedging
in order to react quickly to environmental changes and
avoid extinction.

By analyzing the long-term fate of populations un-
der minimal assumptions concerning the rules govern-
ing adaptability, heritability and acquisition of immune
protections, we have recovered the basic known modes
of immunity. Remarkably our results hold even for a
single pathogen. The key determinants of optimal im-
mune strategies are found to be the statistical features
of pathogen occurrence: its frequency and its character-
istic timescale. As an implication, a diverse pathogenic
environment, with varying statistics, will favor mixed so-
lutions, consistently with the observation of multiple im-
mune systems within a same organism – such as adaptive
and innate immune systems in vertebrates, or CRISPR
and innate defense in bacteria. Naturally, the molecular
implementation of these general principles differs greatly
even between organisms sharing the same type of immu-
nity. Yet an evolutionary perspective that accounts for
the costs and benefits of protection is enough to explain
the most salient features of immunity. It will be interest-
ing to extend our framework to account for other essential
features of immunity, e.g. the acquisition of protection
by horizontal transfer or the coevolutionary dynamics be-
tween pathogens and their hosts. In view of our analysis,
it is already less surprising that complex forms of immu-
nity such as the adaptive immune system have evolved
separately in jawed and non-jawed vertebrates, with the
same general features but different molecular encodings.
Acknowledgements. The work was supported by

grant ERCStG n. 306312.
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Appendix A: Setup of the model and recursion equation

We mathematically study the dynamics of a population of organisms defending against a stochastic pathogen
environment using a combination of various immune strategies.

In the model the pathogenic environment is desribed by a L-dimensional vector x (here bold symbols refer to
vectors) of 0s and 1s, where xi = 1 if pathogen i is present, 0 otherwise. Protection of an organism against these
pathogens is also described by a L-dimensional vector σ, where σi = 1 if the protection (antibody, TCR, CRISPR
spacer) against pathogen i is present, and 0 otherwise.

We consider the dynamics of a population of organisms reproducing at discrete times t. Let Nt(σ) be the mean
number of organisms in the population at time t with protection σ, for a given environment history [16]. The change
in population composition from one generation to the next is governed by the reproductive success of individuals in
each state s, modulated by state switching from parents to offspring:

Nt+1(σ) =
∑
σ′

Nt(σ
′)ξ̄(σ′,xt)π(σ|σ′,xt), (A1)

where ξ̄(σ,xt) is the mean number of offspring of an organism of type σ in environment xt and π(σ|σ′,xt) is the
switching probability from protection state σ′ to state σ. Note that the protection state switching probability,
which represents to what extent protection is inherited, acquired or lost, generally depends on the state xt of the
environment.

A similar recursion to Eq. A1 can be rewritten for the fraction of the population in each state, nt(s) = Nt(σ)/Nt,
with Nt =

∑
σ Nt(σ) the total population size:

nt+1(σ) =
1

Zt

∑
σ′

nt(σ
′)ξ̄(σ′,xt)π(σ|σ′,xt), (A2)

where Zt is a normalization constant enforcing
∑

σ nt(σ) = 1. The population size verifies Nt = N0

∏t−1
t′=0 Zt′ , so that

the long-term growth rate, Λ = limT→∞
1
TNT , is given by:

Λ = lim
T→∞

1

T

T∑
t=0

log(Zt). (A3)

This rate provides a measure of long-term fitness [16].
We assume that the mutation and inheritance probabilities of different pathogen-protection pairs are independent

of each other, i.e. that π(σ|σ′,xt) factorizes over the pathogens,

π(σ|σ′,xt) =
∏
i

πi(σi|σ′i, xi;t). (A4)
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The entries of πi(σi|σ′i, xi;t) are given by Fig. 1E of the main text: πi(1|0, x) = p+ xpuptake, πi(0|1, x) = q.
In addition, the effects of different pathogen-protection pairs on the growth rate are taken to be additive, so that,

following the definitions of Fig. 1C:

log ξ̄ = Rmax −
L∑

i=1

[cinfection,i(1− σi)xi + cconstitutive,iσi(1− xi) + cdefense,iσixi + c(puptake,i)] , (A5)

where Rmax is the growth rate in absence of any immune cost. With these assumptions, the distribution nt(σ) also
factorizes over i:

nt(σ) =

L∏
i=1

(rtiσi + (1− rti)(1− σi)), (A6)

where rti is the fraction of the population having protection i at time t. Plugging this Ansatz into Eq. A2 with Eqs. A4
and A5 yields the following recursion for rti :

rt+1
i =

(1− rti)e−cinfection,ix
t
i (pi + puptake,ix

t
i) + rtie

−cdefense,ixt
i−cconstitutive,i(1−x

t
i)(1− q)

(1− rti) e−cinfection,ixt
i + rtie

−cdefense,ixt
i−cconstitutive,i(1−xt

i)
. (A7)

The recursion depends on the sequence of xti, which is a stochastic binary process switching from 0 to 1 with probability
α, and from 1 to 0 with probability β, as in Fig. 1E of the main text. Note that the sequence xti is the same for the

whole population (a quenched variable in the statistical mechanics sense). We have Zt = eRmax
∏L

i=1 z
t
i , with:

zti = e−c(puptake,i)
[(

1− rti
)
e−cinfection,ix

t
i + rtie

−cdefense,ixt
i−cconstitutive,i(1−x

t
i)
]

(A8)

From Eq. A3 it then follows that

Λ = Rmax +

L∑
i=1

(
lim

T→∞

1

T

T∑
t=1

log zti

)
. (A9)

The long-term growth rate is a sum of independent terms for each pathogen-protection pair, which allows us to treat
the problem of maximizing long-term growth rate one pathogen at a time.

Appendix B: Numerics

The cost function of the optimization, Λ, can be approximated by solving the recursion equation (Eq. A7) for a large
enough number of generations (we used at least 106 generations). Since the process is ergodic, averaging over very
long periods is equivalent to repeating the process multiple times. The longer the simulation, the more accurate the
evaluation of Λ. Our goal is to optimize Λ over the four parameters p, q, pind, cconstitutive constrained to their domain
of definition. For numerical purposes, all four parameters are first mapped onto the unit interval (0, 1). The noise
in the evaluation of Λ makes the optimization challenging. It can be reduced by prolonged simulation or repeated
sampling at the expense of a higher computational cost per function evaluation. To optimize under these constraints
we use a two-phase algorithm. In the first phase the DIRECT algorithm [20] provides us with a rough, but global
optimization for which we use a relatively low quality approximation. The results of this first phase are then refined by
a pattern search algorithm [21]. To minimize the effects of stochasticity, the algorithm takes averages over an adaptive
number of independent runs in this step. By estimating the standard error of the computed long-term growth rate
from the independent runs, this number can be adapted so that differences between compared parameter values are
statistically significant. In the same manner we can ascertain that the final set of parameter values is locally optimal
within some tolerance.

To obtain a phase diagram such as the one shown in Fig. 2A we performed a global optimization over all four
parameter values as described above, for every environment condition (πenv, τenv). Based on the results of this first
step we defined the features of the obtained phases. All phases are defined by a subset of the variables lying at a
constraint boundary. In order to get more precise boundaries with reasonable computational effort we look at the
difference in growth rates between pairs of strategies across environmental conditions. To decrease noise the difference
is calculated across pairs of simulations using the same sequence of pathogens {xt}. Using interpolation, this allows
us to obtain the line of transition between the two strategies very precisely. To prevent e.g. the mixed strategy to
reduce to a CRISPR-like strategy we impose that the parameters that are not constrained in a particular strategy
are not closer than a tolerance 0.005 (0.0005 for q) of the boundary.
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Appendix C: Influence of finite population size

To study the influence of the effects of finite population size we perform direct agent-based simulations of a popu-
lation of adapting individuals with strategies evolving on a slow timescale. The population has a finite size N that
remains fixed over the course of the simulation. At every generation the parents of the N individuals are drawn from
the individuals making up the previous generation with probabilities proportional to the mean number of offspring ξ̄
of these individuals. The offspring’s state σ is determined from the state of its parent σ′ according to the switching
rates π(σ|σ′, xt) defined previously. Along with the state σ, the switching rates themselves, π(σ,σ′,x), as well as
the degree of adaptability, cconstitutive – in other words, the parameters defining the immune strategy – are also trans-
mitted to the offspring. They also change from parent to offspring, although at a much slower rate than the state to
preserve a clear separation of timescales between short-term and long-term adaptations. In this setup, selection acts
on the strategies. After an equilibration phase, we collect statistics on the strategies adopted by individuals in the
population. To get rid of the effect of deleterious mutations that do not eventually fix in the populations the mutation
rate and size were scaled down exponentially with time. As population size is finite deleterious mutations can fix in
the population, which means that even in the limit of zero mutation rate there remains a spread in the distribution
of strategies. Hence we do not only represent the median as a measure of the central tendency of a parameter, but
also the interquartile range as a measure of its spread. Results are shown in Fig. 5. For a population size of 1000 the
median of strategies follows very closely the optimal strategy for an infinite population. For smaller population sizes
the median starts to deviate from the optimum in the infinite population limit. One of the most notable changes is an
increased adaptability of the strategies as seen in the upward shift of the cconstitutive curves with smaller population
size at πenv = 0.3. To lower the chances of all of the population being mal-adapted, the evolved strategies in small
populations diversify the protection state more strongly, as seen from the higher mutation rates for smaller population
sizes. Finally, the quite large interquartile ranges show that as expected significant variation of the evolved strategy
coexists in small populations.
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FIG. 3: Optimal parameters from a global optimization of long-term growth rate. Regions where a parameter is unconstrained
at the optimum are shown in purple. Phase boundaries pertaining to the shown parameter in white. A maximum number of
5000 function evaluations is used for the first phase of the optimization. The second phase of the optimization is terminated
at a tolerance in the parameter values of 0.005. The same model parameters as in Fig. 2 are used.
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FIG. 4: Phase diagrams for different costs as those assumed in Fig. 2. Phases represent adaptive, proto-adaptive, innate,
innate bet hedging, and CRISPR-like strategies as defined previously. The phase boundaries shift but the ordering of the
phases is robust. (A) More costly CRISPR and adapted defense, i.e. cconstitutive = (1.9− cdefense) / (cdefense − 0.1) ; c(puptake) =
0.2× puptake + 2× p2uptake. (B) More permissive costs, i.e. all costs scaled down by a factor of 2. (C) Less permissive costs, i.e.
all costs scaled up by a factor of 1.5.
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FIG. 5: Influence of finite population size on optimal immune strategies from an agent-based simulation with evolving strategy
parameters (switching rates and degree of adaptability) as described in Sec. C. Subplots shows the median (solid line) and
interquartile range (shaded area) of the strategy parameters at the end of a simulation of 100000 generations length. Both
are calculated from 500 independent simulations. In each simulation the strategy parameters evolve from a random initial
distribution via mutation and selection. Mutations take place with a rate 0.01 exp(−t/10000) per generation and are normally
distributed with mean zero and standard deviation 0.25 exp(−t/10000). The bound constraints on the parameters were enforced
by setting the strategy parameters to the boundary value if outside after a mutation. Costs of different immune states as in
Fig. 2.
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