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Combinatorial code governing cellular responses to
complex stimuli
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Emmanuel Barillot6,7,8, Philippe Hupé6,7,8,9, Robert L. Modlin4,10 & Vassili Soumelis1,2

Cells adapt to their environment through the integration of complex signals. Multiple signals

can induce synergistic or antagonistic interactions, currently considered as homogenous

behaviours. Here, we use a systematic theoretical approach to enumerate the possible

interaction profiles for outputs measured in the conditions 0 (control), signals X, Y, XþY.

Combinatorial analysis reveals 82 possible interaction profiles, which we biologically

and mathematically grouped into five positive and five negative interaction modes. To

experimentally validate their use in living cells, we apply an original computational workflow

to transcriptomics data of innate immune cells integrating physiopathological signal

combinations. Up to 9 of the 10 defined modes coexisted in context-dependent proportions.

Each interaction mode was preferentially used in specific biological pathways, suggesting a

functional role in the adaptation to multiple signals. Our work defines an exhaustive map

of interaction modes for cells integrating pairs of physiopathological and pharmacological

stimuli.
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S
ignal integration is the process through which cells sense
and compute the response to multiple information signals
captured from their microenvironment. Since all cells

evolve in complex and changing environments, this process is
critical to their adaptation. For example, bacteria differentially
sense various sources of carbon1, pH, antimicrobial peptides2,3

and nitric oxide3,4, each activating different pathways within their
metabolic and genetic networks, which need to be integrated5. In
higher order organisms, cells sense different signals, such as
hormones, cytokines and physical properties of the extracellular
matrix6–8. During inflammation, immune cells integrate a variety
of microbial- and host-derived mediators9,10. In addition to the
multiplicity of input signals, cells respond through multiple
output adaptive responses, at the transcriptional, protein and
phenotypic levels3,11,12, which further increases the complexity of
the system.

A key aspect of the integration process is the possibility for
interactions, when the effects of a combination of signals cannot
be predicted from the effects of each agent acting alone. In this
case, biologists and pharmacologists distinguish two scenarios:
synergism and antagonism. In statistical terms, synergistic (or
antagonistic) interactions occur if the fractional response to a
combination of signals is significantly larger (or smaller) than the
product of the fractional responses to each agent13. The
classification of interactions as either synergistic or antagonistic
has been extensively used to analyse the effect of combinations of
biological stimuli and drugs14. This definition was also applied
to multiple outputs assessed by medium- to high-throughput
technologies15–19. Although synergistic and antagonistic
behaviours are viewed as homogenous classes, combinatorial
considerations related to the nonlinearity of signal interactions
suggest that this conventional classification might confound a
broad variety of biological scenarios.

Here we report an innovative system-level approach associat-
ing mathematical and data-driven analysis that allowed resolving
the theoretical and experimental diversity of interactions,
shedding new light on the integration process.

Results
Formalization of complexity underlying signal integration.
First, we theoretically enumerated the possible interactions
between two abstract signals X and Y. We denoted by e0, eX, eY

and eXþY the log-normalized expression level of a multivariate
output with i components measured, respectively, in the condi-
tions 0 (control), signals X, Y and XþY. Following log nor-
malization, the fractional effects exerted by X, Y and XþY on the
j-th output component relative to the control condition corre-
spond to the increments Dej

X¼ ej
X� ej

0, Dej
Y¼ ej

Y—ej
0, Dej

XþY

¼ ej
XþY—ej

0 (Fig. 1a), while the conditions of positive and
negative interactions are translated, respectively, into the
inequalities Dej

XþY4Dej
XþDej

Y and Dej
XþYoDej

XþDej
Y. For

each output component independently, we used recursion ana-
lysis to enumerate the combinations of k statistically different
groups (rankings) being observed from n experimental condi-
tions. The generalized solution to this problem (An

k¼An� 1
k

þ kAn� 1
k� 1) is illustrated as a modified Pascal’s triangle

(Fig. 1b). Our experimental design involves n¼ 4 conditions
(0, X, Y and XþY), and thus a number of groups varying from a
minimum of k¼ 1 to a maximum of k¼ 4. For example, for
n¼ 4, k¼ 1 group there is only one possible profile where the
output is constant in all conditions (Fig. 1b). By increasing to
k¼ 2, we add 14 non-redundant possible profiles corresponding
to all combinations of the two output levels for the n¼ 4 con-
ditions. Summing each contribution up to a maximum of k¼ 4,
we obtained 75 possibilities (Fig. 1b). We then listed the profiles

compatible with the inequalities Dej
XþY4Dej

XþDej
Y (positive

interactions) and Dej
XþYoDej

XþDej
Y (negative interactions).

Five profiles were consistent with a lack of interaction (additivity)
and were removed from subsequent analysis. Twenty-nine pro-
files were consistent with a positive, 29 with a negative and 12
were compatible with both a positive and a negative interaction.
We then split each of these 12 ‘ambiguous’ cases in two in order
to account for both a positive and a negative realization.
Altogether, we obtained 41 positive and 41 negative instances
termed ‘interaction profiles’ (Fig. 1c). We developed a constraint
satisfaction algorithm in order to formalize the mathematical
structure of the different profiles (Supplementary Fig. 1).

Definition of 10 biological interaction modes. Our systematic
combinatorial approach not only demonstrated that positive and
negative interactions are highly heterogeneous classes but also
showed that this broad diversity can be nailed down to a defined
number of well-characterized behaviours. In an effort to simplify
through identification of common patterns of behaviour, we
observed that different interaction profiles could be interpreted as
manifestations of similar biological effects, such as inhibition or
restoration (Fig. 2a). Guided by biological interpretation and
mathematical formalization, we reduced the 82 interaction pro-
files to 10 classes named interaction ‘modes’ (Fig. 2b). The 41
positive interactions were classified in five modes as follows: ‘low
stabilization’, ‘X restores Y’, ‘Y restores X’, ‘positive synergy’ and
‘emergent positive synergy’ (Fig. 2b). The 41 negative interactions
were classified in five additional modes as follows: ‘high stabili-
zation’, ‘X inhibits Y’, ‘Y inhibits X’, ‘negative synergy’ and
‘emergent negative synergy’ (Fig. 2b). In our classification
scheme, each mode has a conjugated counterpart obtained by
switching the sign of interaction, for example, ‘low stabilization’
and ‘high stabilization’. Finally, we defined as opposite modes the
pairs ‘X inhibits Y’/‘Y inhibits X’ and ‘X restores Y’/‘Y restores X’.

Multimodal signal integration in cultured dendritic cells. To
explore the occurrence of interaction modes in a cellular system,
we chose human innate immune cells because of the physio-
pathological importance of the integration process in these cells10.
A first data set was generated using plasmacytoid pre-dendritic
cells (pDCs), specialized in antiviral immunity20. PDC were
stimulated with combinations of microbial- and host-derived
signals, which coexist at sites of infection: interleukin (IL)-3 and
influenza virus (Flu) (Toll-Like Receptor-7 ligand), GM-CSF
(Granulocyte-Monocyte Colony Stimulating Factor) and Flu, and
GM-CSF and antimicrobial peptide LL37 complexed with
mammalian DNA (LL37/DNA, TLR-9 ligand)21.
Transcriptional profiles were generated using Affymetrix
microarrays in the conditions 0, X, Y and XþY, at one or two
time points for each pair of signals, in order to get a
multiparametric assessment of output responses to combined
stimuli. Quality control of the IL-3þ Flu data set was performed
using quantitative PCR (qPCR) on 20 genes, with median
R2¼ 0.98 between microarray and qPCR data (Supplementary
Figs. 2a,b).

In order to classify experimental gene expression profiles into
one of the 82 theoretical profiles (and corresponding mode), we
developed an original computational workflow consisting of the
following steps (Fig. 3a): (1) data pre-processing, (2) selection of
differentially expressed genes (one-way analysis of variance
(ANOVA)), (3) identification of non-additive genes (two-way
ANOVA model) and (4) classification of non-additive genes
using vector-based approach or statistical learning. A false-
discovery rate (FDR) of 0.05 was applied at both steps (2) and (3)
for most subsequent analyses (see Methods section). The same
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framework can be used with a higher or lower FDR in order to
further reduce false-negative or false-positive results, respectively.

Applying this workflow to the pDC data sets, we observed a
range of 212–5,745 regulated genes, depending on the type
of stimuli and on the time point (Fig. 3b). The number of
non-additive genes ranged from 7 (3.3%) with GM-CSF and
LL37/DNA at 6 h to 695 (13.6%) with IL-3 and Flu at 6 h
(Fig. 3b). We focused on the IL-3 and Flu combination, showing
the largest number of interactions. Using the final step of our
flowchart (Fig. 3a), we mapped each non-additive response into
one of the 10 interaction modes. As many as 9 out of the 10
modes occurred in pDC at the same time point (Fig. 3c), revealing
a multimodal signal integration process, which meant that the
same two signals were integrated according to different modes for
different output genes. Decreasing the FDR to 1% lowered the
total number of genes identified as interactions, as expected, but
the multimodality was preserved, indicating a robust biological
observation (Supplementary Fig. 3a,b). Importantly, both positive
and negative interaction modes were observed for the same
combination of signals, including conjugated modes such as ‘low
stabilization’ and ‘high stabilization’ or ‘positive synergy’ and
‘negative synergy’ (Fig. 3c). However, except for a few cases, ‘Flu
inhibits IL-3’ excluded ‘IL-3 inhibits Flu’ and ‘Flu restores IL-3’
excluded ‘IL-3 restores Flu’ (Fig. 3c), indicating that opposite

modes tend to exclude each other. Although with comparatively
low frequencies, we also detected positive and negative synergies,
including emergent synergies. Of particular interest was the ‘Flu
inhibits IL-3’ class, which was unexpected given that both IL-3
and Flu are strong pDC activators, and there was no prior
observation where one could inhibit the other. This indicated that
a microbial signal may suppress effects of host-derived signals.
Together with the classification of each gene into one of the
interaction modes, we computed the Bliss factor27 that quantifies
the strength of the interaction. The distribution of the Bliss factor
for the four most represented modes within the Fluþ IL-3 data
set showed a marked heterogeneity (Supplementary Fig. 4).
Although the Bliss factor is devoid of statistical value, it may be
used to rank the significant interactions within a given mode in
order to select extreme interaction behaviours. Interestingly,
the ‘Flu inhibits IL-3’ mode contained genes with remarkably
large deviations from additivity (� 6 to � 7) in this data set
(Supplementary Fig. 4).

Figure 3d shows genes representative of each mode identified
in this data set. We could denote a close similarity between the
theoretical (Fig.2b) and experimental (data-driven) interaction
profiles, confirming the efficiency and accuracy of our classifica-
tion workflow (Fig. 3a). Among genes of particular biological
interest, AQP9 (positive synergy) may facilitate pDC migration by

41 Positive interaction profiles: 

41 Negative interaction profiles: 

X Y

X Y Δei
X+Y ?

Δe i
Y

Δe i
Xe1

X+Y

e2
X+Y

e i
X+Y

...

e1
Y

e2
Y

e i
Y

...

e1
X

e2
X...

e i
X

X
Input

a c

b
n=1

N
um

be
r o

f c
on

di
tio

ns 1

1

1

1

1 Rank 2 Ranks 3 Ranks 4 Ranks

14

+

+

+ ++

+

2

6

36 24

6

x2

x2 x3

n=2

n=3

n=4

O
ut

pu
t

X+YY

ei
Ø

Ø

Σ=75

Figure 1 | Theoretical analysis reveals 82 possible interaction profiles of two stimuli. (a) We consider two cues X or Y inducing the transcriptional states

[e1
Xyei

X] or [e1
Yyei

Y], where ei
X and ei

Y denote the expression of gene i due to X or Y. We hypothesize that after simultaneous triggering of the receptors

for X and Y, the transcriptional state [e1
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XþY] cannot be predicted, as the downstream effects induced by both stimuli might interact either

positively [Dei
Xþy4Dei

XþDei
Y] or negatively [Dei

XþyoDei
XþDei

Y]. (b) To enumerate the theoretical outcomes of an interaction, we first counted how

many ways k statistically different groups can be observed from n experimental conditions. The generalized solution [An
k¼An� 1

kþ kAn� 1
k� 1] of this

combinatorial problem is illustrated as a modified Pascal’s triangle. Our experimental design involves n¼4 conditions and therefore a maximum of

k¼4 statistically different groups, which results in 75 possible combinations. We then applied a constraint satisfaction algorithm to compute how many

of these possibilities are mathematically consistent with the inequalities that define positive and negative interactions. We obtained 82 instances

(41 positive and 41 negative) referred to as interaction profiles. (c) Tabular view of example profiles belonging to each of the 82 interaction profiles.

The heights of the bars in each graph represent the expression levels of the four conditions (from left to right): No stimulus, X, Y and XþY. The red

line corresponds to the height of XþY if the integration of the stimuli was additive.
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promoting water flux22, while GJA1 (emergent positive synergy)
plays a role in cell–cell interaction and antigen transfer23.
HBEGF, a cytoprotective agent strongly induced by IL-3, was
not affected by Flu alone, but completely inhibited by the
combination of IL-3 and Flu. CD36, a regulator of dendritic cell

(DC) maturation and function24, displayed a peculiar
antagonistic behaviour (Fig. 3d). Ingenuity pathway analysis
(http://www.ingenuity.com/) showed that IL-3 and TLR
transduction networks share the following five nodes: ERK1 and
ERK2, c-Fos, c-Jun and Elk1, which may suggest interactions
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(Supplementary Fig. 5). However, neither the frequency nor the
diversity of such interactions could be anticipated.

Next, we asked whether multimodal signal integration by pDC
was dependent on the nature of the stimuli. We analysed
integrative data sets using a different pair of activating signals,
GM-CSF and Flu (Supplementary Fig. 6). At 6 h, six interaction
modes were observed as follows: ‘low stabilization’, ‘Flu restores
GM-CSF’, ‘positive synergy’, ‘emergent positive synergy’, ‘high
stabilization’ and ‘Flu inhibits GM-CSF’ (Supplementary Fig. 6a).
Similar to IL-3 and Flu, conjugated modes were both represented,
whereas opposite modes were mutually exclusive. At 24 h,
diversity increased from 6 to 9 modes, with a more balanced
representation of positive and negative interactions, and an
increase in ‘high stabilization’ (Supplementary Fig. 6b). This
augmented diversity over time may be due to secondary autocrine
and paracrine loops interfering with the exogenous stimuli.

Altogether, the pDC data sets revealed ‘low stabilization’ and
‘high stabilization’ as the most frequent modes. We performed
additional analyses to address whether such behaviours may be
due to technological aspects related to the methodology and
mRNA read out used for our study. Results suggest that these
modes cannot simply be explained by technological limitations
due to detection limits or to saturation, respectively
(Supplementary Fig. 7). For example, the level of high stabiliza-
tion was in majority lower than the saturation limit of the

microarray. We propose that these modes are driven in large
parts by biological effects, such as stabilization of gene expression
at specific levels and biological saturation of a given pathway or
mRNA transcription, although they are also influenced by the
technology used for data generation. In any case, it is crucial to
identify and interpret these modes as distinct from other positive
and negative interactions (such as synergies), because they
represent very different outcomes.

Multimodal integration of innate signals by human monocytes.
To validate the occurrence of multimodal integration in another
immune cell type, we analysed microarray data of human
monocytes stimulated with combinations of microbial signals
(MDP, muramyl dipeptide and mLP, mycobacterial lipopeptide),
which activate the monocytes via NOD2 and TLR2/1, respec-
tively, BMP4 (bone morphogenetic protein 4) and interferon
(IFN)-g (Fig. 4). These signals are relevant to the micro-
environment of leprosy lesions and mycobacterial infections25,26.
Two time points (6 and 24 h) were selected for each pair of
ligands. The transcriptional profile of monocytes indicated
efficient activation, as assessed by large numbers of regulated
genes (Fig. 4a). Similar to pDC, we observed highly variable
numbers and proportions of interactions, ranging from 0
(for BMP4þmLP and IFN-gþmLP) to 2,436 (50.7%; for
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MDPþmLP; Fig. 4a). The combination of MDPþmLP resulted
in a distribution of four interaction modes at 6 h (‘high
stabilization’, ‘low stabilization’, ‘mLP inhibits MDP’ and ‘mLP
restores MDP’), which increased to nine modes at 24 h (Fig. 4b,c).
By comparing the interaction genes at 6 and 24 h, we found 83
genes in common (Fig. 4d). These genes mostly remained within
the same interaction mode (Fig. 4e), indicating an overall stability
of the interaction modes over time. A shift from positive to
negative interactions was observed in five genes (6%) and was
mostly observed from low stabilization (positive interaction) to a
negative interaction profile (Fig. 4e). The remaining 229 and
2,436 genes changed from interaction to additive and additive to
interaction, respectively.

Contrary to pDC data sets, a majority of negative interactions
were observed with a large proportion of emergent negative
synergies at 24 h (Fig. 4c). However, the mutual exclusivity of
opposite modes was even more apparent than in the pDC data
sets. For example, ‘Y inhibits X’ almost completely excluded ‘X
inhibits Y’ at both 6 and 24 h (Fig. 4c). Figure 4f shows
representative genes for each interaction mode observed with the
combination MDPþmLP at 24 h. SERPINB7 (emergent positive
synergy) not only may function as an inhibitor of Lys-specific
proteases but also influences the maturation of megakaryocytes27.
The costimulatory molecule CD40 (high stabilization) was
compatible with a plateau in DC maturation. The Major

Histocompatibility Complex (MHC) -related CD1E (negative
synergy) participates in the presentation of lipid antigens26.

In summary, we could establish multimodality in large-scale
signal integration as a general principle occurring in different cell
types responding to a diversity of combined stimuli.

Coupling of interaction modes with cellular functions. To
investigate its biological implications, we hypothesized that
multimodal signal integration might enable cells to couple the
integration process to specific functional modules. This would
allow a refined adaptation to environmental changes tailored to
each cellular function, and would imply that genes in each
interaction mode would be enriched in specific biological func-
tions. We tested this hypothesis on the monocyte MDPþmLP
data set. Ingenuity pathway analysis revealed that seven modes
were indeed enriched in genes contributing to specific functional
pathways (Fig. 5a). For example, ‘high stabilization’ was enriched
in the ‘Th17 pathway in disease’, not over-represented in other
modes, while ‘emerging negative synergy’ was enriched in the
‘tRNA charging pathway’ (Fig. 5a). These findings supported the
hypothesis that specific interaction modes underlie particular
functional responses. This was validated using an additional
of our own data sets on pDC integrating IL-3 and Flu
(Supplementary Fig. 8), which revealed a significant enrichment
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in the pathway ‘NRF2-mediated oxidative stress’ within genes
belonging to the high stabilization mode and ‘coagulation system’
within genes of the mode Y inhibits X. We also analysed a public
microarray data set on monocytes integrating lipopolysaccharide
(LPS) and anti-TREM1 (ref. 28) obtained from Gene Expression
Omnibus (GEO; Supplementary Fig. 8). The pathways ‘PPARa/
RXRa activation’ and ‘role of hypercytokinemia’ were sig-
nificantly enriched in genes of the modes low- and high

stabilization, respectively, but not in other modes. Overall, three
independent data sets, obtained from various cell types and input
signals, all point at a coupling between interaction modes and
specific functional pathways.

To further explore the possibility of a link between interaction
modes and specific functional responses, we developed an
alternative strategy based on comparing the distribution of
the Bliss Independence Index29 over a background of genes to
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its distribution over genes in given annotation terms. The
distribution of this parameter for all genes could be approximated
by a normal distribution (continuous curve in Fig. 5b), which
served as reference background. We then generated analogous
distributions for the genes contained in the MSigDB pathways
(over 8,000 entries)30, and systematically compared them with the
background using an information criterion (see Methods section).
This allowed us to identify signalling and biological pathways
showing consistently large interaction effects. Among those, we
found terms almost exclusively dominated by specific interaction
modes. For example, the terms ‘DC maturation’ (Fig. 5c) and
‘aminoacyl tRNA’ (Fig. 5d) were dominated by ‘high stabilization’
and ‘emergent negative synergy’, respectively. Interestingly, ‘DC
maturation’ was partially overlapping with the class ‘Th17 in
disease’, found independently with ingenuity pathway analysis
(Fig. 5a), in particular for the genes TNF, IL1B, IL8 and CCL20.

By mapping the hits in these terms onto a database of
molecular interactions31, we could extract connected networks in
both cases (Fig. 5e,f), which supports the existence of monomodal
molecular networks. While the genes contained in these networks
are a relatively minor fraction of the modes from which they are
extracted (respectively, 21/602¼ 3% and 11/679¼ 2%), they
cover a relevant fraction of the annotation term in which they
are embedded (respectively, 21/60¼ 35% and 11/40¼ 27.5%).

The structure of the ‘DC maturation’ network (Fig. 5e) revealed
a coordinated regulation of multiple aspects related to the DC
maturation process. Distinct subnetworks contained inflamma-
tory cytokines (IL1B and TNF), chemokines (IL8, CCL20, CCL2,
CCL4, CXCL1 and CXCL2), surface molecules (CD40, CD44,
ICAM1 and PLAUR), amino acid transporters (SLC3A2, SLC7A5
and SLC7A11) and transcription regulators (ATF5 and NFKBIE;
Fig. 5e). Thus, a single integration mode can be coupled to a
functional pathway including a diversity of coordinated
components.

Discussion
Previous studies have used independence models to assess
synergistic and antagonistic interactions in a quantitative manner
based on phenotypic or molecular measurements29,32. For over
80 years, such models have remained a reference, although
improvements have been made13. Our study revealed an
unrecognized diversity in the possible interaction modes
between two signals, within categories of behaviour previously
thought to be homogeneous. Most importantly, it enabled to
precisely quantify the spectrum of possible interactions and their
link to particular biological functions.

To reach our objectives, we had to overcome the following four
main challenges: (1) the enumeration of theoretically possible
interaction profiles, (2) the classification of such profiles into
biological interaction modes, (3) the projection of high-
throughput data onto the theoretical space and (4) the link
between interaction modes and biological functions.

A careful examination of the 82 elementary profiles obtained
with combinatorial approaches led us to observe that common
terms such as ‘inhibition’, ‘synergy’ and ‘restoration’ could be
realized in several ways. Guided by pattern-matching related to
biological interpretation, and mathematical formalization, we
could define 10 classes of biologically similar interactions termed
interaction modes. While the definitions proposed in this work
are not the only possible, they encompass all the theoretical space
and they are objectively reproducible, which may help to promote
a consensus terminology still lacking in the field of signal
integration. Another advantage behind the introduction of
biological modes is the possibility to gain biological insight, for
example, by linking modes to specific functional pathways.

To explore the functional role of the different interaction
modes, we performed enrichment analysis separately for each
sufficiently represented mode. Our results, obtained from several
independent data sets, suggest that each mode preferentially
contributes to a particular function or pathway. However, we do
not rule out the possibility for more complex scenarios. For
example, different modes may participate in the same pathway,
and/or the same mode may participate in different pathways.

To further elucidate the role of the interaction modes in
shaping the global functional response of a cell to combined
signals, it will be important to include the time dimension
because, for example, the same genes may be classified in different
modes at different times. Despite the fact that time series are not
explicitly modelled in this work, our framework may still serve as
a basic ‘grammar’ for future extensions to the dynamic case.
Other methodologies may be additionally used to account for the
time factor, such as Bayesian methods33, Gaussian models34 or
Fourier transformation35.

Although we used transcriptomics analysis to assess the
multivariate cellular response, our methodological and conceptual
frameworks do not rely on a specific type of measurement. Any
quantitative output may be analysed for signal integration, at low-
medium- or high throughput. As for each measurement method,
transcriptomics data have an intrinsic noise36, which in our study
did not prove major, since we obtained a very good correlation
following qPCR validation (Supplementary Fig. 2). Importantly,
for high-throughput data, our major conclusions were
maintained using very stringent statistical criteria (1% FDR).
Depending on the objective of each study, authors may decide to
use lower or higher FDR according to whether they wish to
privilege specificity or sensitivity, respectively36.

Current views generally consider that positive and negative
interactions are mutually exclusive, that is, two signals cannot be
synergistic and antagonistic14,37. Multimodality, as defined by the
use of multiple modes in integrating the two same stimuli, implies
a shift in our understanding, characterization and interpretation
of signal integration from the nature of the signals to the output
response that is considered. In other words, a simple assumption
such as ‘signal X inhibits Y’ does not stand unless explicitly
associated to specific cellular outputs.

Previous large-scale studies have been instrumental in
estimating the frequency of occurrence of an interaction between
two signals for different cellular outputs15,17–19, which showed
that high-throughput measurements are the most effective in
capturing interactions. In our study, interactions were observed
for 0–50% of output genes, and may have been missed or
underestimated if only few output responses were measured. This,
combined to the marked multimodality, further supports the use
of large-scale, systems level assessment of output cellular
responses in order to get a global and unbiased view of the
integration process.

Our methodological framework may bring important biologi-
cal insight through systematic evaluation of integration modes
specific to a given cell type integrating physiopathologically
relevant signals. We could uncover an unexpected inhibition of
cytokine-induced pDC activation effects by TLR ligands, although
both of these pDC stimuli exert strong activating effects when
used as single agents. This ‘paradoxical inhibition’ is in line with
results on combinations of antibiotic drugs, showing that effective
antibiotics may cross-inhibit each other, instead of increasing
their potency15,38. Application of our framework to other cell
types and pairs of signals should allow to address complex
biological questions involving combinatorial stimulation, such as
microbial hijacking of immune receptor cross-talk39, cytokine
interactions in inflammatory diseases40 or immune checkpoint
integration41.
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The exhaustive map of interaction modes established in this
study enables comparative studies of signal integration, in order
to establish the relative contribution of the species, cell type,
stimuli and cellular outputs, in determining the integration
spectrum of multiple signals. It may also be applied to the
integration of pharmacological agents in order to optimize drug
combination strategies14,42 targeting specific cell types, such as in
cancer or immune-mediated diseases.

Methods
Identification of the interaction profiles. The number of ways to rank the
numbers e0, eX, eY and eXþY was computed using the recurrence relation
An

k¼An� 1
kþ k An� 1

k� 1 which, for n¼ 4 and summing up for k¼ 1, 2, 3 and 4
gives 75 possible rankings. Each ranking can be seen as a set of outcomes of the
following qualitative pairwise comparisons:

(1) eX versus e0

(2) eY versus e0

(3) eXþY versus e0

(4) eY versus eX

(5) eXþY versus eX

(6) eXþY versus eY

In our framework, the outcome of a qualitative comparison can take on the
following three values: 0 (equal numbers), 1 (first larger than the second) and � 1
(first smaller than the second). Each of 75 rankings was coded uniquely as a vector
of six components describing the qualitative outcome of the comparisons 1–6 as
listed above. For example, the vector (0,0,1,0,1,1) corresponds to:

eX¼ e0, eY¼ e, eXþY4e0, eY¼ eX, eXþY4eX, eXþY4 eY

To identify which rankings were compatible with positive or negative
interactions, we considered the equations 1–6 together with the inequalities that
define positive and negative interactions:

(1) DeXþY4DeXþDeY (positive interaction)
(2) DeXþYoDeXþDeY (negative interaction)

which can be written as
(7a) eXþY � eX� eYþ e040
(8a) eXþY � eX� eYþ e0o0
If a ranking is consistent with a positive (or negative) interaction, the inequality

constraints encoded in the corresponding vector can be solved simultaneously with
7a (or 8a). To verify this, we developed a constraint satisfaction that attempts to
solve the six constraints of each ranking together with the inequality 7a (or 7b).
The solution is searched numerically with a MATLAB linear solver. The variables
e0, eX, eY and eXþY were constrained to the interval 2–16, taken as an approximate
of the range of expression values from Affymetrix chips in log2 scale. The method
is implemented in the MATLAB code and is available upon request.

Classification algorithm. To classify the measured expression levels of the genes
into the interaction modes, we developed a MATLAB algorithm consisting of the
following steps:

(1) For all genes: identification of differentially expressed genes. This is done with
a one-way ANOVA (MATLAB function anova1), and subsequent correction of
the P values through the function mafdr (Benjamini–Hocheberg) and a
significance threshold of 5%.

(2) For differentially expressed genes: identification of non-additive genes. This
step is done with a two-way ANOVA (MATLAB function anova2),
and subsequent correction of the P values through the function mafdr
(Benjamini–Hocheberg) and a significance threshold of 5%.

(3) For non-additive genes: match between theoretical and experimental
interaction profiles.

To obtain the match, we performed the pairwise comparisons in 1–6 in
statistical terms by calculating the confidence interval (CI) of the differences of all
the group means. Consistent with the theoretical analysis, a comparison between
two experimental groups was assigned 0 if the CI contained 0; 1, if the CI was
always positive; and � 1, if the CI was always negative. This allowed producing a
six-dimensional vector for each gene, which we matched with one of the vectors
defined theoretically. If, due to statistical inconsistencies, a non-additive gene could
not be classified in any of the theoretical profiles, it was assigned to the class
containing its nearest neighbour. Such step was done using a k-nearest neighbour
algorithm (MATLAB function knnclassify) with the correlation distance. We refer
to these cases as ‘learned interaction profiles’.

The above workflow was implemented in a MATLAB function available upon
request.

Functional interpretation of the interaction modes. Enrichment analysis of the
gene lists corresponding to the interaction modes was done with ingenuity pathway
analysis. For pathway differential analysis, for each gene i, we calculated the
parameter si¼oDei

XþY4�oDei
X4þoDei

Y4, where the symbol o �4
denotes the average with respect to multiple donors and i¼ 1, y, n. The number n
is the size of the background, which was chosen as the set of all genes passing the
step of independent filtering. The parameter si measures the deviation from
additive integration and can thus be defined as the average interaction strength for
gene i. The background distribution of si can be modelled by a Gaussian function
with average mb, and s.d. sb, where the subscript refers to background. The para-
meters of the background distribution were estimated by maximizing the max-
imum Likelihood criterion.

Next, we downloaded the Molecular Signature Database (MSigDB, Broad
Institute). For each term having at least 10 members, we computed the distribution
of the interactions strength. The within-term distributions again modelled as
normal functions with parameters mp and sp, and compared with background
using the Akaike Information Criterion (AIC) corresponding to the following
alternatives:

(1) The background distribution and the within-term distribution can be described
by the same normal function (mp¼ mb¼ m, sp¼ sb¼s). In this case, we have
AIC¼ (nþm)(log(2ps2)þ 1)þ 2� 2,

(2) The background distribution and the within-term distribution can be described
by two normal functions with different average but same s.d. (mpa mb,
sp¼ sb¼ s)AIC¼ (nþm)(log(2ps2)þ 1)þ 2� 3

(3) The background distribution and the within-term distribution can be described
by two normal functions with same average but different s.d. (mp¼ mb¼m,
spasb)AIC¼ (nþm)(log(2p)þ 1)þ nlog(s2

b)þmlog(s2
p) 2� 3

(4) The background distribution and the within-term distribution can be described
by two normal functions with different average and different s.d.’s. There are
four parameters (mpamb, spasb)AIC¼ (nþm)(log(2p)þ 1)þ nlog(s2

b)þ
mlog(s2

p) 2� 4.

The optimal scenario was identified as resulting in the minimum AIC.

PDC purification and culture. Blood buffy coats from healthy human donors were
obtained from Etablissement Français du Sang, Paris, Saint-Antoine Crozatier
blood bank through an approved convention with the Institut Curie. All donors
gave their informed consent for research use of the blood samples. Experimental
procedures with human blood have been approved by the Curie Hospital Ethical
Committee for human research and were performed in accordance with European
Union guidelines and the Declaration of Helsinki. Peripheral blood mononuclear
cells (PBMCs) were isolated using Ficoll gradient (Amersham). Fresh pDCs were
isolated from PBMCs using the negative selection pDC untouched isolation kit
(Miltenyi Biotec) followed by fluorescence-activated cell sorting using staining
(CD11c� , CD4þ and CD123þ ; all obtained from BD Biosciences). pDC purity
was over 98%. Freshly isolated pDC were cultured in RPMI 1640 (Invitrogen)
containing 10% fetal bovine serum (Hyclone) for 6 h at 37 �C and 5% CO2 in
culture medium alone or supplemented with the following compounds or com-
binations: Flu, which is heat-inactivated influenza virus at a concentration of 10E7
PFU per ml (PR8 strain; Charles River Laboratories). IL-3 and GM-CSF were both
used at a concentration of 10 ng ml� 1 (R&D Systems). And LL37 coupled to DNA
(from PBMC, Escherichia coli digested). Synthetic LL37 (Innovagen) was premixed
with human genomic DNA as described by Lande et al.43 Final concentration used
for LL37 (50 mg ml� 1) and for the DNA (10 mg ml� 1).

PDC RNA extraction and evaluation. Total RNA was extracted with RNeasy
Micro kit (Qiagen) including on-column DNase digestion. RNA concentration
and absence of protein contamination were determined using the NanoDrop
instrument. All RNA samples had 260 nm/280 nm absorbance ratios between 1.9
and 2.1, indicating high purity. RNA quality was assessed using RNA 6000 Nano
chips on the Agilent 2100 Bioanalyzer. Only samples with RIN47 were further
used for gene chip hybridization and qPCR.

PDC gene chip data generation. RNA amplification and labelling was performed
according to the protocol recommended by Affymetrix with 100 ng initial totRNA
per sample. Samples were hybridized to Affymetrix Human Genome U133 Plus 2.0
arrays. This pDC Affymetrix data are already submitted to GEO and access can be
given to the reviewers. Sample preparation, hybridization, washing, staining and
scanning was performed by the Institut Curie Gene Chip core facility. The raw
data.CEL files were imported into Partek Genomics Suite software for normal-
ization with the GC-RMA algorithm. For all subsequent analyses, the log2 of
expression values were used. Then, independent filtering of the data was performed
with each data set independently and consisted of following steps: (1) for genes
with multiple probe sets, only the probe set with the highest average value was
retained. (2) Genes not detected in any experimental condition were removed from
the data set. In this study, we used exclusively data generated with the HG U133
Plus 2.0 arrays, for which we defined the detection threshold to be 4. Every
replicate of at least one condition had to be 44, for a given gene to be selected for
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further analysis. This pre-processed data was then imported into MATLAB for
further computational analysis.

Quantitative reverse transcription PCR. cDNA was synthesized with a mix
containing random hexamers, oligo(dT)15 (Promega) and SuperScript II reverse
transcriptase (Invitrogen). Transcripts were quantified by real-time quantitative
reverse transcription PCR on Light Cycler 480 (Roche) with Applied Biosystems
predesigned TaqMan Gene Expression Assays and Absolute qPCR ROXmix
(Thermo Fisher Scientific). All cycle thresholds (Cts) were normalized to the
housekeeping gene B2M (beta 2 microglobulin) by subtracting the target gene Ct
from the housekeeping gene Ct. In that way, the qPCR data are represented as a
raw delta Ct value, which is a log2 relative expression scale. This simple way to
calculate relative expression values enables direct comparison of expression
differences between two conditions in qPCR and the log2 Affymetrix values.
The following gene expression assays were used: ATP5O: Hs00426889_m1;
CCL3: Hs00234142_m1; CCL4: Hs99999148_m1; CCL5: Hs00982282_m1;
CCND2: Hs00277041_m1; CD86: Hs00199349_m1; CXCL10: Hs00171042_m1;
CXCL11: Hs00171138_m1; DUSP6: Hs01044001_m1; EEF1A1: Hs00742749_s1;
FOXP1: Hs00212860_m1; GJA1: Hs00748445_m1; ICOSLG: Hs00323621_m1;
IFNA2: Hs00265051_s1; IL1B: Hs00174097_m1; IL6: Hs00174131_m1; IL8:
Hs00174103_m1; NDUFA1: Hs00244980_m1; TNF: Hs00174128_m1; TNFRSF17:
Hs00171292_m1 and B2M: Hs99999907_m1.

Monocytes purification and culture. This data was published by Schenk and
colleagues25 and is accessible through the GEO number: GSE34156.

Briefly, whole blood from healthy donors (UCLA I.R.B. no. 92-10-591-31) with
informed consent was obtained. PBMCs were isolated using Ficoll (GE Healthcare)
gradient centrifugation and monocytes were further purified using negative
selection with microbead-coupled IgG (Miltenyi Biotec). Cells were cultured for in
RPMI and 10% fetal calf serum (FCS) (Omega Scientific). For activation via TLR2/
1, the 19-kDa mLP (EMC Microcollections) was used at a final concentration of
1 mg ml� 1 in all experiments. BMP4 was used at 100 ng ml� 1 (R&D Systems).
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