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Recent studies suggest that there are many nonfunctional tran-
scription factor binding sites along a genome. Although these
“decoy” sites compete with the promoter region for binding of
transcription factors, they may also protect these proteins from
degradation. We show that in the limit of perfect protection,
where bound transcription factors are never degraded, the compet-
itive effect of nonfunctional binding sites is completely canceled
out by the stability gained from reduced degradation. We examine
the response of an autoregulated gene to the total number of tran-
scription factors to quantify the consequences of competition for
transcription factors. We show that intuition about this system can
be gained by mathematically constructing a single gene with effec-
tive parameters that reproduce the behavior of a gene with added
decoy sites. In analogy to dressed particles in many-body systems
we term this description a “quasi gene.” We find that protective
decoys buffer against noise by reducing correlations between tran-
scription factors, specifically in the case of production of transcrip-
tion factors in bursts. We show that the addition of protective
decoy sites causes the level of gene expression to approach that
predicted from deterministic mass action models. Finally, we show
that protective decoy sites decrease the size of the region of para-
meter space that exhibits bistability.

autoregulation ∣ noise ∣ stochastic gene expression ∣
nonfunctional binding site

In the simplest view, transcriptional regulation is a process in
which transcription factor proteins bind to the promoter region

of a gene and interact with RNA polymerase to either increase or
inhibit transcription of that gene. Much effort has been expended
to map out networks of gene regulation experimentally and to
model such circuits mathematically (1, 2). The effect that the
cellular environment—composed of DNA and other regulatory
proteins—has on transcriptional regulation has not, however,
been fully understood. It has been shown that in Escherichia coli,
nonspecific transcription factor/DNA binding plays a significant
role in gene regulation (3, 4). In eukaryotes, short transcription
factor binding motifs and long genomes ensure that there can be
significant numbers of decoy sites (5). In this paper we show how
such binding sites influence transcription factor binding to pro-
moters and transcription factor degradation and thereby alter
the expression profiles of genes. One expects that whenever
the number of transcription factors is less than or of the same
order as binding sites there will be significant competition for
binding (6). We will show, however, that in the limit of complete
protection—meaning no degradation of bound transcription
factors—the effects of competition for binding are completely
shielded by the gained transcription factor stability, allowing
the gene to function as in the absence of additional binding sites.

The kinetic consequences of transcription factors being se-
questered by spurious binding sites have been previously consid-
ered (7–9), but without taking account of regulation. These
studies, based on deterministic mass action modeling, suggest
that the protein-DNA recognition landscape must be funneled
(10, 11). These earlier studies of decoy sites did not consider
the possibility that bound transcription factors may be protected

from degradation. It is known, however, that modifications of de-
gradation rate play a key regulatory role. Dimerized transcription
factors have a reduced degradation rate compared to that of
monomers (12), leading to the “cooperative stability” analyzed
by Buchler et al. (13) for small gene networks. Interestingly, in
prokaryotes, only the minority of proteins are actively degraded
by proteases. Most proteins are stable for at least 15–30 h (14).
As a consequence, the major effect that lowers the concentration
of transcription factors is dilution by growth and division (13), so,
in prokaryotes, bound transcription factors are not protected in a
relevant way. In contrast, proteolysis is an important component
of cellular regulation in eukaryotes and eubacteria. In the most
common mechanism, a series of enzymes tags a protein with ubi-
quitin, signaling unfolding and degradation by the proteasome.
Ubiquitination both eliminates misfolded proteins and ensures
that transcription factors have short lifetimes, allowing genes
to respond quickly to external signals. More complex roles for
ubiquitin-mediated proteolysis have recently been discovered
in the context of transcription regulation (15, 16). Recent studies
exploring the question of whether active degradation can occur
when a transcription factor is bound to DNA suggest the answer
is context dependent. There are transcription factors that have
been shown to degrade while bound to DNA. One example is
provided by the so-called “kamikaze activators,” such as VP16
in Saccharomyces cerevisiae, for which ubiquitin-mediated proteo-
lysis a promoter bound transcription factor is required to initiate
transcription (17). This example suggests that protein degrada-
tion might in some cases be even more facile for bound transcrip-
tion factors than for free transcription factors. Additionally, some
studies show that certain transcription factors with mutations in
the DNA binding domain become resistant to degradation (18).
On the other hand, some transcription factors are resistant to de-
gradation when bound, such as p53 (19) and MyoD (20). Because
situations exhibiting both binding vulnerability and binding pro-
tection exist, we will investigate both scenarios here in the context
of an autoregulated gene surrounded by a variable number of
nonfunctional transcription factor binding sites.

Deterministic Mass Action Models
Using the principle of mass action, we can set up a deterministic
model of an autoregulated gene surrounded by decoy binding
sites. This simple treatment is sufficient to understand the basis
of the central assertion of this paper, namely, that decoy sites that
protect bound transcription factors from degradation do not have
a significant effect on the expression of an autoregulated gene.

We consider a model of an autoregulated gene with a single
promoter binding site, surrounded byM additional decoy binding
sites that are not competent operator sites (see Fig. 1). We
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distinguish between the number of copies of free transcription
factors nF and the number of bound sites m, such that the total
number of transcription factors is nT ¼ nF þm, because the tran-
scription factors bind as monomers. In a mass action description,
the equilibrium binding probability of the promoter depends on
the mean concentration of free transcription factors hnFi accord-
ing to a Hill function (21)

θ¼ hnFi∕ðn†þ hnFiÞ; [1]

where the binding equilibrium constant n† ¼ f
h is defined as the

ratio of the binding rate (h) and the unbinding rate (f ). For each
site, n† is determined by the binding free energy for the transcrip-
tion factor. For simplicity, we assume that theM decoys are iden-
tical and equivalent to the promoter,* so that all of the sites have
the same binding equilibrium constant (n†) and, thus, the same
probability of being occupied at a given number of free transcrip-
tion factors (θ).

The mean concentration of transcription factors in the system
increases due to protein synthesis, which—for an autoactivator—
can occur at an enhanced level (g1), or a basal level (g0), depend-
ing on the occupancy of the promoter (θ):

G½θðhnFiÞ& ¼ g0ð1− θÞþ g1θ: [2]

Combining Eqs 1 and 2, we see it is only the concentration of free
transcription factors, hnFi, that is relevant to the synthesis rate.
Degradation of transcription factors occurs for both bound and
free transcription factors with different rates. We express the de-
gradation rate for bound transcription factors kbound ¼ ð1 − αÞk
in terms of the free degradation rate kfree ¼ k using a tunable
“protection parameter” (α). For α ¼ 0, bound and free transcrip-
tion factors degrade at the same rate (no protection). For α ¼ 1,

bound transcription factors never degrade (full protection). The
bound degradation rate also applies to transcription factors
bound to the promoter site. The average concentration of bound
sites is‡

hmi¼ ðMþ 1Þθ¼ hnTi− hnFi: [3]
Depending on the concentration of bound (hmi) and free (hnFi)
transcription factors, the total degradation rate is

D½θðhnFiÞ& ¼ kfreehnFiþ kboundhmi [4]

¼ k½hnFiþð1−αÞðMþ 1Þθ&: [5]

The form of Eq. 5 shows that as decoy sites are added, coopera-
tive stability ensures that the degradation rate diminishes in pro-
portion to the concentration of bound sites and the protection
coefficient (α). Specifically, if there is bound protection from
degradation (α ≠ 0), adding decoy sites (M > 0) decreases total
degradation rate (D). The effect is strongest for full protec-
tion (α ¼ 1).

The steady-state mass action rate equation for the total
concentration of transcription factors, hnTi, specifies a balance
between the overall production G½θðhnFiÞ& and degradation
D½θðhnFiÞ& rates in terms of the mean concentrations in the sys-
tem:

dhnTi
dt

¼G½θðhnFiÞ&−D½θðhnFiÞ& ¼ 0. [6]

We wish to quantify how decoy binding sites effect the average
concentration of transcription factors and, equivalently, the
steady-state promoter occupancy probability (θ). Solving Eq. 6
for the steady-state free transcription factor concentration
(hnFi) by eliminating θ from the overall rates in Eq. 6 by using
Eq. 1, we obtain

hnFi2þ
!
n† þð1−αÞðMþ 1Þ− g1

k

"
hnFi−

g0
k
n† ¼ 0. [7]

Eq. 7 verifies that the concentration of free transcription fac-
tors (hnFi) and, consequently, the equilibrium binding probability
(θ) have no functional dependence on the number of sites (M)
when there is full protection (α ¼ 1). The total concentration
of transcription factors (hnTi) increases because of the decreased
overall degradation rate (D). At the same time, any excess tran-
scription factors in the system are concealed from the promoter
by being bound to decoy sites. On the other hand, if bound tran-
scription factors are vulnerable to degradation (α ≠ 1), then θ can
decrease dramatically in proportion to the number of sites (M)
and their equilibrium binding probabilities (θ). These effects
occur in the case of autoactivation (g1 > g0), autorepression
(g0 > g1), and no regulation (g0 ¼ g1). In Fig. 2 we plot the free
(dashed lines) and total protein (solid lines) concentrations as a
function of the number of decoy binding sites, for the case of full
(Fig. 2A) and no (Fig. 2B) protection from degradation. Because
hnFi has no dependence on the number of added decoy sites as
long as the sites are perfectly protective, the slope of the depen-
dence of hnTi on the number of decoys is equal to the equi-
librium binding constant (θ) because hnTi ¼ hnFiþ ðM þ 1Þθ.
In (Fig. 2C) and (Fig. 2D) we plot the concentrations as a func-
tion of the production rate in units of the degradation rate (g1∕k).
In the presence of nonprotective decoys, we note that the depen-
dence of the concentrations on the production rate is especially
nonlinear. A system with nonprotective decoys requires a much
larger synthesis rate to produce the same mean total concentra-
tion of transcription factors as a system without decoys. For fully
protective decoys, the effect is the opposite: Smaller production
rates are needed to yield the same total concentration of tran-
scription factors.

Fig. 1. The processes involved in our model of an autoactivating gene and
decoy binding sites along with the notation we employ. All sites can either
have a transcription factor (TF) bound (1) or are unoccupied (0), but only
binding on the promoter site (adjacent to gene) has consequences for the
production rate of the transcription factor. For an autorepressing gene,
the lower (OFF) production rate occurs when a transcription factor is bound
to the promoter region, excluding the binding of RNA-polymerase, i.e.,
g0 > g1. The number of transcription factors is indexed by n. Parameters (rate
constants and number of decoy sites) are in italics.

*We could easily choose to make the decoy and promoter binding equilibrium constants
different. This complication will not be discussed in this paper, except to say that
weakening a decoy site’s binding affinity (by increasing n†) diminishes the effect the
decoy makes on the gene’s behavior. ‡We include binding to the promoter in counting bound sites, hence the factor of M þ 1.
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The Quasi Gene
We will now show how one can obtain a description of the system
in terms of an effective gene “dressed” by decoy binding sites, the
expression of which depends on the total rather than the free con-
centration of transcription factors.§ As a consequence, we are
able to isolate the effect of competition for binding transcription
factors from the effect of cooperative stability. In the previous
approach, which focused on the free concentration of transcrip-
tion factors, these effects canceled each other out in the case of
full protection from bound degradation.

In order to motivate the idea of a quasi gene, we quantify the
expression level of a regulated gene as the conditional probability
that the promotor is bound given the concentration of total tran-
scription factors, θðhnTi;M; n†Þ. These “promoter response”
curves can be obtained by plugging Eq. 3 into Eq. 1 and solving
a quadratic equation for θ. Fig. 3A shows typical promoter re-
sponse functions to the total concentration of transcription fac-
tors for a promoter that binds monomers with M decoy binding
sites included. To quantify the change in the promoter’s response
as decoy sites are added, we fit the profiles in Fig. 3A with the
function

θ¼
#
hnTi
n†eff

$
Heff

∕
!
1þ

#
hnTi
n†eff

$
Heff"

[8]

by finding an effective binding equilibrium constant (n†eff ) and
effective Hill coefficient (Heff). In the absence of decoys, the
fit reproduces Eq. 1. Because the effective equilibrium constant,
n†eff , is simply the total concentration of transcription factors that
are present when θ ¼ 0.5, rather than fitting the entire function
we examined the region of each curve around θ ¼ 0.5. The effec-
tive Hill coefficient (21) is estimated as Heff ¼ 4 ∂θ

∂ðlogðnT ÞÞ
jθ¼0.5,

with derivatives taken by sampling incremental data very close
to θ ¼ 0.5. The results of the fits are shown in Fig. 3 C and D.
The effective equilibrium binding constant found from the fit
follows the relation:

n†effðMÞ ¼ n† þðMþ 1Þ∕2. [9]

When described in terms of total transcription factor concentra-
tions, decoys effectively appear to increase the equilibriumbinding
constants. Fig. 3D shows that as decoy sites are added, the effective
Hill coefficient rises above one, the mass action value for mono-
mer binding. The effect is most pronounced when the equilibrium
constant is small, because the competitive region of the response
occurs for a small concentrations of transcription factors.

The above analysis of expression profiles shows the emergence
of a description based on an effective gene after being dressed by
decoy sites (a quasi gene). In order to more concretely compare
the properties of the quasi gene to those of the real gene and
decoys, we choose a fitting function for the expression level with
effective cooperativity Heff ¼ 1 and treat the effective binding
equilibrium n†eff as changing nonlinearly with the addition of
decoy sites, such that

θ¼ hnTÞ
n†eff þ hnTi

: [10]

We equate the two expressions for the promoter response,
Eqs. 1 and 10, to find the effective binding constant n†eff ¼
n† · hnT ihnFi

¼ n†∕χ, where χ is the probability that a transcription fac-
tor is free. Using Eqs. 1 and 3, one obtains
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Fig. 2. Addingprotective decoy binding sites to an autoregulatinggenedoes
not alter the free concentration of transcription factors. InAwe show the var-
iation in the total (solid) and free (dashed) average concentration of transcrip-
tion factors as M decoys sites are added to an autoactivator that binds
monomers. Because bound transcription factors are fully protected from de-
gradation, the total number of transcription factors increases linearly (with
slope θ) as decoy sites are added, leaving the free number of transcription fac-
tors unchanged.When binding gives no protection from degradation, as in B,
decoy sites act as a sink by “abducting” and degrading transcription factors.
For C and D we show the dependence of the concentration of transcription
factors on the production rate including (light curves) and not including (dark
curves) 15 decoy sites. Parameters include: n† ¼ 5, g0 ¼ g1∕10.
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Fig. 3. Promoter responses to the total concentration of transcription factors
illustrate the competition between multiple binding sites and facilitate the
description of a quasi gene. In Awe show how the equilibrium binding prob-
ability (θ) varies in response to a total concentration of transcription factors as
decoy sites are added (dashed lines) for different binding equilibrium con-
stants (n†). In B we show the fraction of transcription factors that are free
(χ). In Eq. 12 we give an expression for the quasi-gene binding rate in terms
of χ as well as a functional form for χ. In C and Dwe plot the quasi-gene para-
meters of Eq. 8, n†

eff and Heff, respectively, as fitted to the curves in A.

§In many experimental setups, tagging all copies of one type of protein by a fluorescent
marker allows all of them to contribute to the total fluorescence. In this case, fluorescence
profiles measure the total concentrations of transcription factors, which can differ signif-
icantly from the free concentrations of transcription factors (see Fig. 2). As a result, the
characteristics of a quasi gene are generally more experimentally accessible than the
characteristics of the bare, isolated gene. A beautiful, notable exception can be found
in the recent papers by Elf et al. (4), where the bound transcription factor concentrations
are measured directly.
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n†eff ¼ n† þðMþ 1Þð1− θÞ [11]

At θ ¼ 0.5, Eq. 9 is recovered. The most reasonable way of inter-
preting Eq. 11 is by suggesting that as decoy sites are added the
effective binding rate decreases in a manner that depends on the
number of binding sites and their occupancy:

heff ¼ f∕n†eff ¼ h · χ ¼ h ·
n†

n†þðMþ 1Þð1− θÞ
: [12]

In Fig 3B, we plot the fraction of transcription factors that
are free, χ ¼ hnFi

hnT i
, as a function of the total concentration of tran-

scription factors. We see that χ deviates from one when the
concentration of transcription factors is small compared to the
concentration of unbound binding sites, essentially when
M > n† > hnTi.¶ Essentially, χ is a measurement of the competi-
tion between the binding sites because the more χ deviates from
1, the more the rate constants of the quasi gene deviate from the
rate constants of an isolated gene (without decoy sites). When χ is
small, the effective binding rate heff ¼ h · χ is substantially de-
creased because the binding sites are competing with each other
for an insufficient concentration of transcription factors. In the
opposite regime, hnTi > n† > M, there is an abundance of tran-
scription factors, and therefore most sites are bound (θ ≈ 1). As a
result, the binding rate increases to the isolated gene binding rate,
heff ≈ h. These concepts are explored more fully in SI Text
and Table S1. Similarly, we can derive an effective degradation
rate by equating the expression for the degradation rate in
Eq. 5 to an effective degradation rate of the total concentration
of transcription factors, i.e., D ¼ keffhnTi. Again applying Eqs. 1
and 3, we find

keff ¼ k · ½χþð1−αÞð1− χÞ& ¼ k ·
n† þð1−αÞðMþ 1Þð1− θÞ

n† þðMþ 1Þð1− θÞ
:

[13]

When there is no protection (α ¼ 0), we recover the free degra-
dation rate, keff ¼ k. In the case of perfect protection (α ¼ 1), the
degradation rate and the binding rate are decreased in the same
proportion because keff ¼ k · χ. This deterministic mathematical
treatment of an effective gene clearly illustrates the balance be-
tween “abduction” (Eq. 12) and protection, i.e., “asylum”
(Eq. 13), when decoy sites are added to a gene and, more impor-
tantly, the regimes where the breakdown of this balance can sig-
nificantly impact gene expression.

Stochastic Modeling
So far we have discussed the effects of adding decoy binding sites
to a system containing a single autoactivating gene within a de-
terministic description. Due to the relatively small number of
both protein molecules and the discrete number of DNA binding
sites involved in gene expression, however, gene regulation is a
stochastic process (22). Molecular noise has been shown to
alter observable expression levels of proteins (23, 24). In the
deterministic analysis we have shown that by increasing the num-
ber of binding sites, the pool of free transcription factors is de-
pleted, and the apparent equilibrium binding properties are
altered. We now turn to the question of how the existence of de-
coy binding sites alters expression characteristics of noisy gene
systems.

The numerical results presented in this paper are extracted
from the steady-state probability distributions of a master equa-
tion for the stochastic processes of synthesis, degradation, bind-
ing, and unbinding. To describe and solve the stochastic system we

(i) enumerate all of the possible states of the system; (ii) deter-
mine the transition rates into and out of all of these states in
terms of the constant parameters (Fig. 1); (iii) convert this infor-
mation into a master equation in matrix form, dP

dt ¼ A · P such
that P is the vector of probabilities that the system can be found
in each state and A is the transition matrix; and (iv) numerically
find the null space of that matrix, PSS, which gives dPSS

dt ¼ 0. PSS is
the steady-state joint probability of finding the system in each
possible state. The results presented in this paper will primarily
focus on the fraction of time that the promoter is bound,
θ ¼ ∑m;nP1;m;n, and the moments of the free transcription factor
number distribution, hnqi ¼ ∑i;m;nn

qPi;m;n.
This stochastic system is described by three variables: the oc-

cupancy of the promotor site, i ∈ f0; 1g (unbound, bound); the
number of bound decoy sites, m ∈ f0; 1;…;Mg; and the number
of free transcription factors, n ¼ f0; 1;…;∞g. The master equa-
tion for this system is written as follows:

∂tPi;m;n ¼ gi½Pi;m;n−1 −Pi;m;n&þ kfree½ðnþ 1ÞPi;m;nþ1 −nPi;m;n&

þ ð−1Þ1−ihpromoterðnþ iÞP0;m;nþi

þð−1Þif promoterP1;m;nþi−1 þð−1ÞikboundP1;m;n

þhdecoy½ðnþ 1ÞðM −mþ 1ÞPi;m−1;nþ1 −nðM −mÞPi;m;n&

þ f decoy½ðmþ 1ÞPi;mþ1;n−1 −mPi;m;nÞ&

þ kbound½ðmþ 1ÞPi;mþ1;n −mPi;m;n&: [14]

This master equation describes the following processes:
(i) transcription factor production, (ii) free transcription factor
degradation, (iii) promoter binding, (iv) promoter unbinding,
(v) degradation of a transcription factor that is bound to the pro-
moter, (vi) decoy binding, (vii) decoy unbinding, and (viii) degra-
dation of a transcription factor that is bound to a decoy.

Noise Reduction and Approach to Mass Action
For an unregulated gene, the synthesis and degradation of pro-
teins occur randomly but with a constant average rate. The dis-
tribution of protein copy numbers is Poisson, so that the variance
in copy number equals the mean. Non-Poissonian distributions
arise because of nonlinear processes in gene regulation that cre-
ate correlations. One can quantify the deviations from a Poisson
distribution by plotting the noise strength, σ2∕hni, which, for
Poisson noise, equals to one (25, 26). An autoactivator will have
a noise strength proportional to θð1 − θÞ, and an autorepresor
will have a noise strength proportional to ð1 − θÞ because these
are the most sensitive regions of their response curves. An
autoactivator will be overdispersed (noise strength >1) and an
autorepressor will be underdispersed (noise strength <1) because
of the correlations between the transcription factors created by
self regulation (27). The noise strength is also proportional to
the ratio of the elevated to basal production rate (28).

Another aspect of the gene regulatory mechanism that has
been shown to alter noise strength is the production of proteins
in bursts. Instead of explicitly considering the two steps of gene
expression, transcription and translation, one can model the pro-
duction of many protein copies from one mRNA transcript in
terms of a “burst” of proteins produced in one synthesis event
(23–26, 28–33). Such an approximation is especially useful in
the stochastic description, where it has been experimentally
shown that transcription is a noisier process than translation
(22). To include bursting in our stochastic model, we alter the
production term, such that one synthesis event produces a burst
of b proteins (32). To compare systems with the same expression
levels but different burst sizes, we decrease the production event
rate in proportion to the burst size. In unregulated situations,
burst size is directly proportional to the deviation from Poission
noise strength, i.e., σ2∕hni ∝ 1þ b (23). Autorepressors are
capable of decreasing this noise (24).

¶The form of 1 − χ in Eq. 12 resembles a Hill function from the perspective of a transcription
factor, where the substrate is the supply of unbound binding sites.

Burger et al. PNAS ∣ March 2, 2010 ∣ vol. 107 ∣ no. 9 ∣ 4019

PH
YS

IC
S

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y



In Fig. 4 we show that for autoregulators, protective decoy sites
reduce deviations from mass action binding responses and de-
crease the noise strength so as to approach Poisson characteris-
tics. In Fig. S1 we show corresponding results for nonprotective
decoys, which do not decrease the noise strength in the same
manner. The occupancy probability (θ), average number of free
transcription factors (hnFi), and noise strength in the free tran-
scription factor distribution (σ2F∕hnFi) are calculated from the nu-
merical steady state of the master equation (Eq. 14) for constant
binding equilibrium (n† ¼ 5) and sweeping production rate (g1).
In Fig. 4A the promoter occupancy response to hnFi for an auto-
activator is compared to the deterministic Hill function (Eq. 1).
We show that adding protective decoy sites (dashed curves) in-
creases the probability that the promoter site will be bound, both
in the case of continuous production (burst size ¼ 1, dark curves)
and bursty production (burst size ¼ 10, light curves). This effect
coincides with a decrease in the noise strength of the free
transcription factor distribution, as shown in Fig. 4C. The results
for autorepressors are similar, as shown in Fig. 4B and D, except
for the case of burst size ¼ 1, where the distribution is underdis-
persed. In this case, decoys actually increase the noise strength
slightly so that the distribution becomes more Poissonian.

These results are restricted to the strongly adiabatic regime
where binding and unbinding rates happen very quickly in
comparison to the other rates of the system (32, 34–37). The ra-
pid equilibration between bound and free transcription factor
subpopulations means that fluctuations in the free transcription
factor distribution are buffered and correlations are diminished,
resulting in noise that is more nearly Poisson.

Disruption of Bistability
In certain regions of parameter space, when the promoter site
binds transcription factors as dimers, depending on initial condi-
tions, autoactivators can reach two relatively stable quasi-steady
states, i.e., they become bistable. In the case of slow time
scales, the transcription factor numbers will fluctuate between
a “low” and a “high” value. Transitions back and forth between
these quasi-steady states are caused by the molecular noise
(28, 34). In Fig. 5 we show a phase diagram delineating the bis-
table regime in terms of the equilibrium binding constant (n†) and
the production rate (g1∕k). The contour lines show the bound-
aries of the bistable region of parameter space for zero, one,
and five decoy sites. The addition of protective decoy sites de-
creases the size of the bistable region by stabilizing the high state.
The region of parameter space where the low state is the only
possible solution is unaltered by the addition of decoy sites. Much
as in the case of binding monomers, the addition of protective
decoy sites does not drastically alter the mean number of free
transcription factors, amplifying the total number of transcription
factors. The larger total numbers of transcription factors buffer
the fluctuations in the free transcription factor distribution. We
note that this is a stochastic effect, and the stochastic phase dia-
gram with many decoys added resembles that of the deterministic
model (see Figs. S2 and S3).

Discussion
In this paper we have explored the effects of adding decoy binding
sites to an autoregulated gene. We have shown that a gene
regulatory system with decoy binding sites can often be described
as a quasi gene, a gene with effective binding and degradation
parameters that mimics a realistic gene in an environment of de-
coy binding sites. We found that there is a qualitative difference
between those cases where the added decoy sites allow bound
transcription factors to be degraded and those where bound
transcription factors are immune to degradation. Nonprotective
decoys compete with a gene for transcription factors and reduce
the probability that the gene’s promoter will be bound. Protective
decoys do not alter the probability that the promoter is bound but
instead provide stability by reducing correlations between the
transcription factor copy numbers. We found that decoy sites0 2 4 6 8 10 12
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Fig. 4. Protective decoy sites reduce noise and allow the promoter’s re-
sponse to the free number of transcription factors to approach that which
is expected by mass action. In A we show that when decoy sites are added
to an autoactivator (dashed lines), the promoter is more likely to be bound,
diminishing the deviation from mass action expression. This effect is even
more pronounced when the transcription factors are produced in bursts
of 10 at a time (gray lines). In C we show that decoy sites also decrease
the noise strength in the distribution of free transcription factors, approach-
ing Poisson noise. In B and D we show the same results for an autorepressor.
Autorepressors are noticeably less noisy than autoactivators and even under-
dispersed when the burst size is one. Regardless of the type of regulation,
decoy sites assist the gene in attaining mass action binding and Poisson noise
because of their ability to reduce correlations between transcription factors.
Adding decoy sites Parameters: n† ¼ 5, g0 ¼ g1∕10. The binding and unbind-
ing rates are maintained much higher than the production and degradation
rates by maintaining the adiabaticity parameter, κ ¼ ðh · g2

1Þ∕k3 ¼ 104, in the
so-called strongly adiabatic regime.
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Fig. 5. Protective decoy sites decrease the region of parameter space that
exhibits bistability. The region of bistability in the free transcription factor
copy number distribution decreases in size as protective decoy sites are
added. The boundary of the bistable region is outlined and decreases in area
as zero, one, and five decoy sites are added to the system. By protecting a
pool of bound transcription factors, decoy sites buffer fluctuations, convert-
ing bistable systems into monostable “high state” systems. See SI Text for
more details. Parameters: g0 ¼ g1∕10, κ ¼ 104.
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can reduce molecular noise, especially when transcription factors
are produced in bursts.

The issues considered in this paper have practical implications.
Appreciating how decoy sites impede or assist specific molecular
recognition is a prerequisite for developing physically based
models for distinguishing true expression sites bioinformatically
from decoys. Understanding nonfunctional binding sites may also
have an application in the development of new gene therapies
that use transfected synthetic binding sites to inhibit the expres-
sion of disease related genes (38). Artificial noise reduction
through engineered decoys may also be desirable in the labora-
tory design of specific gene expression circuitry. We do point out
that the question of the evolutionary benefits of under- or over-
representation of nonfunctional binding sites in real genomes

remains open. Any benefits gained from protective decoy sites
could easily be negated by substantial side effects that have
not been considered here. For example, there is clear metabolic
cost to having a lot of chemical energy stored in a large number of
unused transcription factors. We also suspect that the speed of
the response to external signals can be reduced by the buffering
effects of protective decoy sites, which may or may not be desir-
able in the biological context.
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