Current fellows

Contact us

Contact us


Jean-Marc Berroir
Labex Director
directeur@phys.ens.fr

Sarah Reemers
Administrative manager of Labex
sarah.reemers@phys.ens.fr

Master in Fundamental Physics

Application
https://applicationicfp.phys.ens.fr

Contact
click here

Scholarship
More information

Cyrille has joined the team last August.


PNGCyrille Solaro (from. August 2021)
Cyrille Solaro obtained his PhD in atom interferometry in 2016 under the supervision of F. Pereira dos Santos at the French metrology institute (LNE-SYRTE, Paris Observatory), where he came to like metrology as a way to test fundamental physics. He has since then continued to develop his interest for high precision measurements in atom interferometry as well as in ultra-precise spectroscopy of atoms, ions and molecules.

During his postdoc at Aarhus University (Denmark) he demonstrated, in collaboration with the group of Michael Drewsen, the metrological relevance of using frequency-comb lasers to perform high-precision stimulated Raman spectroscopy, and to search for new physics beyond the standard model.

This leads him to explore with his JRC project the possibilities of using frequency-comb lasers to perform atom interferometry. This project will eventually open up new possibilities in metrology, sensing of gravito-inertial effects and tests of fundamental physics.

Cyrille joins the atom interferometry team at LKB, collaborating with Saïda Guellati-Khélifa.

Selected Publications
- C. Solaro, S. Meyer, K. Fisher, J. C. Berengut, E. Fuchs and M. Drewsen, “Improved isotope-shift-based bounds on bosons beyond the standard model through measurements of the 2D3/2-2D5/2 Interval in Ca+,” Physical Review Letters, vol. 125 p. 123003, Sept. 2020.
- C. Solaro, S. Meyer, K. Fisher, M. V. DePalatis and M. Drewsen, “Direct frequency-comb-driven Raman transitions in the terahertz range,” Physical Review Letters, vol. 120 p. 253601, June 2018.
- X. Alauze, A. Bonnin, C. Solaro, and F. Pereira dos Santos, “A trapped ultracold atom force sensor with a μm-scale spatial resolution,” New Journal of Physics, vol. 20 p. 083014, August 2018.
- C. Solaro, A. Bonnin, F. Combes, M. Lopez, X. Alauze, J.-N. Fuchs, F. Piéchon and F. Pereira dos Santos, “Competition between spin echo and spin self-rephasing in a trapped atom interferometer,” Physical Review Letters, vol. 117 p. 163003, October 2016.

The other chair holders are, by year of arrival :


CostaAntonio Costa (2020-2022)
Antonio Carlos Borges Santos da Costa joined our JRC team for his first postdoctoral position.

Antonio obtained his PhD in 2020 under the supervision of Greg Stephens at Vrije Universiteit Amsterdam (Netherlands). He worked on the physics of animal movement behaviour, studying organism scale movements. He uses physics inspired approaches from statistical mechanics and dynamical systems theory, as well as information theory and statistical inference.

He collaborates with the theoretical neuroscience and biophysics team members :
https://www.lpens.ens.psl.eu/research/biophys/biophysique-neuroscience-theoriques/?lang=en

Selected Publications
- WormPose : Image synthesis and convolutional networks for pose estimation in C. elegans, Hebert, Ahamed, Costa, O’Shaugnessy, Stephens. (preprint) 2020
- Tosif Ahamed, Antonio Carlos Costa, Greg Stephens, Capturing the Continuous Complexity of Behaviour in C. elegans, Nature Physics Oct. 2020
- Stephen Helms*, Mathijs Rozemuller*, Antonio Carlos Costa*, Leon Avery, Greg Stephens, Thomas Shimizu, Modelling the ballistic-to-diffusive transition in nematode motility variation in exploratory behaviour across species, J. Royal Soc. Interface, Aug. 2019
- Antonio Carlos Costa, Tosif Ahamed, Greg Stephens, Adaptive locally-linear models of complex dynamics, PNAS, Jan. 2019

More information : https://antonioccosta.github.io/


Thomas Boulier (2020-2022)
Thomas received his PhD at ENS Laboratoire Kastler Brossel (Paris) in 2014. He has since occupied international postdoctoral positions, including at the Joint Quantum Institute (USA), at ETHZ in Zurich (Switzerland) and at LCF in Palaiseau (France).

Thomas is an experimental quantum physicist interested in many subjects within quantum optics, condensed matter and AMO physics, with a special interest in Rydberg physics.

His research activities focus on exploring systems of many bosonic particles in strong interaction, and on optically exploiting them to give interactions to photons. He has been working with two types of systems : exciton-polaritons in semiconductors and ultra-cold Rydberg atoms in optical lattices. Thomas’ JRC project aims at combining ideas from both communities to explore Rydberg physics in condensed matter.
Thomas has joined Nano-THZ team, collaborating with Sukhdeep Dhillon.
https://www.lpens.ens.psl.eu/research/quant/nano-thz/?lang=en

Selected Publications
- T. Boulier, J Maslek, M Bukov, C Bracamontes, E Magnan, S Lellouch, E Demler, N Goldman, JV Porto, Phys. Rev. X 9 (1), 011047 (2019).
- E. A. Goldschmidt, T. Boulier, R. C. Brown, S. B. Koller, J. Young, A. V. Gorshkov, S. L. Rolston and J. V. Porto, Physical Review Letters 116, 113001 (2016).
- T. Boulier, E. Cancellieri, N. D. Sangouard, Q. Glorieux, A. V. Kavokin, D. M. Whittaker, E. Giacobino and A. Bramati, Physical Review Letters 116, 116402 (2016).
- T. Boulier, M. Bamba, A. Amo, C. Adrados, A. Lemaitre, E. Galopin, I. Sagnes, J.Bloch, C. Ciuti, E. Giacobino and A. Bramati, Nature Communications 5, 3260, (2014).

More information : https://tboulier.github.io/


Raphaël Jeanneret (2019-2022)
Raphaël is an experimental physicist mainly working on micro-organismal systems (micro-algae, bacteria, etc). His research focuses on active and out-of-equilibrium systems and the biology and ecology of microbes.

He has become fascinated by the way life works at the micro-metric scale, thanks to his postdoctoral experiences in England at the University of Warwick (group of Marco Polin and Vasily Kantsler), and in Spain at the Mediterranean Institute for Advanced Studies (IMEDEA, group of Idan Tuval). Prior to that he obtained his PhD at ESPCI, working with Denis Bartolo on the self-organization of confined micro-emulsions under low Reynolds number flows.

Selected Publications
- M. Rieu, T. Vieille, G. Radou, R. Jeanneret, N. Ruiz-Gutierrez, B. Ducos, J.-F. Allemand, and V. Croquette, Parallel, linear, and subnanometric 3D-tracking of microparticles with Stereo Darkfield Interferometry, Sci. Adv, in press (2021)
- J. Font-Munoz∗, R. Jeanneret∗, J. Arrieta, S. Angl`es, A. Jordi, I. Tuval and G. Basterretxea, Collective sinking promotes selective cell pairing in planktonic pennate diatoms, Proc. Nat. Acad. Sci. USA 116, 15997-16002 (2019)
- R. Jeanneret, D.O. Pushkin and M. Polin, Confinement enhances the diversity of microbial flow fields, Phys. Rev. Lett. 123, 248102 (2019)
- R. Jeanneret, D. O. Pushkin, V. Kantsler, and M. Polin, Entrainment dominates the interaction of microalgae with micron-sized objects, Nat. Commun. 7, 12518 (2016)
- R. Jeanneret, and D. Bartolo, Geometrically-protected reversibility in hydrodynamic Loschmidt-echo experiment, Nat. Commun. 5, 3474 (2014)

More information : https://raphjeanneret.wordpress.com
https://www.linkedin.com/in/rapha%C3%ABl-jeanneret-221b6926/


Achilleas Passias (2019-2021)
Achilleas is a theoretical physicist, whose research focuses on the duality between strongly coupled quantum field theories and theories of gravity.

He obtained his Ph.D. from King’s College London, and has conducted research at the University of Milano-Bicocca and Uppsala University.

Selected Publications
- Holographic duals of five-dimensional SCFTs on a Riemann surface, J. High Energy Phys. 1901 (2019) 058 ; with I. Bah and P. Weck
- Holographic microstate counting for AdS$_4$ black holes in massive IIA supergravity, J. High Energy Phys. 1710 (2017) 190 ; with S. M. Hosseini and K. Hristov
- Universal consistent truncation for 6d/7d gauge/gravity duals, J. High Energy Phys. 1510 (2015) 187 ; with A. Rota and A. Tomasiello
- The supersymmetric NUTs and bolts of holography, Nucl. Phys. B 876 (2013) 810-870 ; with D. Martelli and J. Sparks

More information : https://inspirehep.net/authors/1263931
https://www.linkedin.com/in/achilleaspassias/

JPEG - 29.1 ko

Yashar Akrami (2018-2021)
(PhD : Oskar Klein Center, Stockholm ; Postdocs : Leiden University, Heidelberg University, University of Oslo).
Yashar is a theoretical physicist specialised in cosmology and particle physics, with a broad range of interests. He has also a strong interest in cosmological data analysis and his focus is on the interplay between cosmological observations and fundamental physics.

Yashar is interested in questions related to the physics of the early universe and cosmic initial conditions, late-time cosmic acceleration and dark energy, theories of gravity on the largest scales, signatures of new physics beyond standard models of cosmology and particle physics, and implications of high energy theories (quantum gravity, string theory, supergravity) for cosmology.

On the observational side, he is interested in the cosmic microwave background, large-scale structure of the universe, and statistical inference and high-performance computing techniques in cosmology and particle physics. He is an active member of the Planck Collaboration, Euclid Consortium, and the Square Kilometre Array (SKA).

Selected publications
- Akrami, Casas, Deng, Vardanyan : Quintessential α-attractor inflation : forecasts for Stage IV galaxy surveys (2020)
- Chartier, Wandelt, Akrami, Villaescusa-Navarro : CARPool : fast, accurate computation of large-scale structure statistics by pairing costly and cheap cosmological simulations (2020)
- Akrami et al. : Planck intermediate results. LV. Reliability and thermal properties of high-frequency sources in the Second Planck Catalogue of Compact Sources (Planck Collaboration, 2020)
- Akrami, Sasaki, Solomon, Vardanyan : Multi-field dark energy : cosmic acceleration on a steep potential (2020)
- SKA Collaboration (2018) : Cosmology with Phase 1 of the Square Kilometre Array : Red Book 2018 : Technical specifications and performance forecasts. Submitted to Publ. Astron. Soc. Austral. [arXiv:1811.02743].

Full list : https://inspirehep.net/author/profile/Y.Akrami.2
More information : https://www.yashar-akrami.com/

JPEG - 22 ko

Andrei Lazanu (2018-2021)
After completing the Mathematical Tripos at the University of Cambridge, Gonville and Caius College (BA & MMath), Andrei pursued a PhD in theoretical physics at DAMTP, University of Cambridge under the supervision of Prof. P. Shellard, studying the effects of topological defects on the Cosmic Microwave Background and the inflationary bispectrum of the large-scale structure of the Universe. Afterwards, he has been an InDark postdoctoral fellow at INFN, Padua, Italy, focussing on the analytical modelling of the matter bispectrum of large scale structure and on obtaining forecasts for primordial non-Gaussianity.

At ENS, he develops analytical and numerical techniques to model the galaxy bispectrum in order to place stringent constraints on cosmological parameters. These involve both work to model the matter bispectrum towards the nonlinear regime, as well as accurate large-scale studies for the galaxy bispectrum. Part of the work is being pursued in the framework of the Euclid Consortium. He also studies models of dark energy and modified gravity, and in particular he focuses on employing three-point correlation functions to constrain parameters of these models.

Selected publications
- Extracting cosmological parameters from N-body simulations using machine learning techniques, Andrei Lazanu, arXiv : 2106.11061 (to be published soon)
- The reach of next-to-leading-order perturbation theory for the matter bispectrum, D. Alkhanishvili, C. Porciani, E. Sefusatti, M. Biagetti, A. Lazanu, A. Oddo, V. Yankelevich, arXiv : 2107.08054 (to be published soon)
- Scale-dependence in DHOST inflation, Philippe Brax, Andrei Lazanu, JCAP 08 (2021) 061, arXiv : 2106.09319, doi : 10.1088/1475-7516/2021/08/061
- The two and three-loop matter bispectrum in perturbation theories, A. Lazanu, M. Liguori, JCAP 1804 (2018) no.04, 055
- Constraining primordial non-Gaussianity with bispectrum and power spectrum from upcoming optical and radio surveys, D. Karagiannis, A. Lazanu, M. Liguori, A. Raccanelli, N. Bartolo, L. Verde, Mon.Not.Roy.Astron.Soc. 478 (2018) no.1, 1341-1376

More information : https://scholar.google.com/citations?user=UNWdrKYAAAAJ&hl=en
https://www.linkedin.com/in/andrei-lazanu-aa433a1b2/

JPEG - 24.5 ko

Stéphane Perrard (2018-2022)
Stéphane is an experimental physicist in non-linear Physics and fluid dynamics. After his studies at Ecole normale supérieure of Paris & Lyon, he did his PhD with Y. Couder and E. Fort at university Paris-Diderot, studying the dynamics of a pilot-wave system formed by a drop bouncing on a liquid surface and the waves it generates. In 2015, he joined the James Franck Institute (University of Chicago) and Pr. W. Irvine, studying hydrodynamics turbulence in inhomogeneous and un-stationnary situations. He started his collaboration with Pr L. Deike at Princeton University in 2017, on turbulent two-phase flows and their application to ocean-atmosphere exchanges. In 2017-2018, through a joined position between University Paris-Sud and Ecole Polytechnique he studied generation of waves by the wind.
His current work focuses on fundamental aspects of large scale in turbulent flows, interface-turbulence interactions and pilot-wave systems.

Selected publications

- Creation of an isolated turbulent blob sustained by vortex ring injection, T Matsuzawa, N Mitchell, S Perrard, Bulletin of the American Physical Society (2021)
- Effect of a weak current on wind-generated waves in the wrinkle regime, C Nové-Josserand, S Perrard, A Lozano-Durán, M Benzaquen, ..., Physical Review Fluids 5 (12), 124801 (2020)
- Bubble deformation by a turbulent flow, S Perrard, A Rivière, W Mostert, L Deike, arXiv preprint arXiv:2011.10548 (2020)
- Surface waves along liquid cylinders. Part 1. Stabilising effect of gravity on the Plateau–Rayleigh instability, CT Pham, S Perrard, G Le Doudic, Journal of Fluid Mechanics 891 (2020)
- Wind Wave Generation : Turbulent Windprint below the Wave Onset and its Link with OM Phillips 1957 Theory, S Perrard, C Nové-Josserand, A Lozano-Duran, M Rabaud, ..., Ocean Sciences Meeting (2020)

More information : https://scholar.google.fr/citations?user=drKqDrUAAAAJ&hl=fr


JPEGManuel Gessner (2018-2021)
Manuel works in the fields of quantum information and quantum metrology. With a PhD from the University of Freiburg (Germany), he first worked in the groups of H.-B. Breuer and A. Buchleitner and later he joined A. Smerzi’s theory group at LENS (Florence, Italy), working on interferometry, quantum correlations and Bose-Einstein condensates.

At ENS, Manuel’s worked on quantum precision measurements, addressing in particular the problem of multiple parameters and quantum optical superresolution. He further developed techniques for the detection of quantum correlations and studied many-body physics in Bose-Einstein condensates.

He will join the Institute of Photonic Sciences (ICFO) in Barcelona (Spain) at 2021 autumn as “La Caixa” Junior Leader, to work on the intersection of quantum information and metrology, and its applications in optical and atomic systems.

Selected publications
- P. Feldmann, C. Klempt, A. Smerzi, L. Santos, M. Gessner, Interferometric Order Parameter for Excited-State Quantum Phase Transitions in Bose-Einstein Condensates, Physical Review Letters 126, 230602 (2021).
- B. Yadin, M. Fadel, M. Gessner, Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox, Nature Communications 12, 2410 (2021).
- Z. Ren, W. Li, A. Smerzi, M. Gessner, Metrological Detection of Multipartite Entanglement from Young Diagrams, Physical Review Letters 126, 080502 (2021).
- M. Gessner, C. Fabre, N. Treps, Superresolution limits from measurement crosstalk, Physical ReviewLetters 125, 100501 (2020).
- M. Gessner, A. Smerzi, L. Pezzè, Multiparameter squeezing for optimal quantum enhancements in sensor networks, Nature Communications 11, 3817 (2020).
- L. Pezzè, M. Gessner, P. Feldmann, C. Klempt, L. Santos, A. Smerzi, Heralded Generation of Macroscopic Superposition States in a Spinor Bose-Einstein Condensate, Physical Review Letters 123, 260403 (2019).

For a complete list : https://sites.google.com/view/qinfo/publications
More information : https://sites.google.com/view/qinfo/home
https://www.linkedin.com/in/manuel-gessner-0b78251b6/

Contact us


Jean-Marc Berroir
Labex Director
directeur@phys.ens.fr

Sarah Reemers
Administrative manager of Labex
sarah.reemers@phys.ens.fr

Master in Fundamental Physics

Application
https://applicationicfp.phys.ens.fr

Contact
click here

Scholarship
More information