Hybrid cavity quantum electrodynamic with Rydberg atoms and superconducting qubits ETH Zurich

Accès rapides

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP
Stages M2 ICFP

Actualités : Séminaire de Recherche ICFP
du 6 au 10 novembre 2017 :

Retrouvez le programme complet

Emploi du temps 2017-2018 :
Emploi du temps L3
Emploi du temps M1 ICFP
Emploi du temps M2 ICFP

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 61
enseignement@phys.ens.fr

Light-matter enhancement in cavity quantum electrodynamics systems is a powerful resource for quantum information processing. Superconducting qubits coupled to microwave resonators are among the most promising systems to build a quantum computer. Indeed, as solid state micron-scale devices they offer excellent scalability, and their strong coupling allows to perform fast entanglement and measurement operations in a few tens of nanoseconds. However, these devices suffer from relatively low coherence times on the order of ten microseconds and they are limited to interactions with microwave photons. In contrast, atoms have very long coherence times which can reach minute scale and also provide optical transitions. Moreover, when they are excited to Rydberg states, they also couple strongly to microwave electromagnetic modes.

In our lab, we aim to combine the advantages of both systems by coupling Rydberg atoms to superconducting qubits in a hybrid cavity quantum electrodynamics experiment.

More on this document

Supervisor S. Garcia & A. Wallraff

Documents joints

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP
Stages M2 ICFP

Actualités : Séminaire de Recherche ICFP
du 6 au 10 novembre 2017 :

Retrouvez le programme complet

Emploi du temps 2017-2018 :
Emploi du temps L3
Emploi du temps M1 ICFP
Emploi du temps M2 ICFP

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 61
enseignement@phys.ens.fr