Open quantum systems and quantum stochastic processes


Many quantum physics phenomena can only be understood in the context of open system analysis. For example a measurement apparatus is a macroscopic system in contact with a quantum system. Therefore any experiment model needs to take into account open system behaviors. These behaviors can be complex : the interaction of the system with its environment might modify its properties, the interaction may induce memory effects in the system evolution, . . .

These dynamics are particularly important when studying quantum optic experiments. We are now able to manipulate individual particles. Understanding and controlling the environment influence is therefore crucial.

In this thesis we investigate at a theoretical level some commonly used quantum optic procedures. Before the presentation of our results, we introduce and motivate the Markovian approach to open quantum systems. We present both the usual master equation and quantum stochastic calculus. We then introduce the notion of quantum trajectory for the description of continuous indirect measurements. It is in this context that we present the results obtained during this thesis.

First, we study the convergence of non demolition measurements. We show that they reproduce the system wave function collapse. We show that this convergence is exponential with a fixed rate. We bound the mean convergence time. In this context, we obtain the continuous time limit of discrete quantum trajectories using martingale change of measure techniques.

Second, we investigate the influence of measurement outcome recording on state preparation using reservoir engineering techniques. We show that measurement outcome recording does not influence the convergence itself. Nevertheless, we find that measurement outcome recording modifies the system behavior before the convergence. We recover an exponential convergence with a rate equivalent to the rate without measurement outcome recording. But we also find a new convergence rate corresponding to an asymptotic stability. This last rate is interpreted as an added non demolition measurement. Hence, the system state converges only after a random time. At this time the convergence can be much faster. We also find a bound on the mean convergence time.
Keywords : Open systems, Quantum Stochastic Calculus, Quantum trajectories, Non demolition measurement, Reservoir engineering.