Computational physics and Numerical analysis

Accès rapides

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP
Stages M2 ICFP

Actualités : Séminaire de Recherche ICFP
du 6 au 10 novembre 2017 :

Retrouvez le programme complet

Emploi du temps 2017-2018 :
Emploi du temps L3
Emploi du temps M1 ICFP
Emploi du temps M2 ICFP

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 61
enseignement@phys.ens.fr

Faculty : Emmanuel Dormy,
Tutor : Marylou Gabrié
Projects supervision : Emmanuel Dormy, Marylou Gabrié, Kris Van Houcke
ECTS credits : 6
Language of instuction : English (French if spoken by all students taking the course)
Web site : http://www.phys.ens.fr/~dormy/NUM

 Description

Numerical modelling is now an essential tool to understand physical phenomena. It is complementary to experimental work as well as analytical models. Numerical models allow an easy modification of the governing parameters. They also allow direct and non-destructive measurement of all quantities, which is often not the case for experiments. Finally they allow to test theoretical models and in particular hypothesis on the relative strength of various terms in partial differential equations.
It should be noted however, that these models are not free of dangers. Building a numerical model too rapidly may lead to the erroneous physical interpretation of what really is a spurious numerical effect.
The first eight lectures will introduce computational physics and illustrate the physical and mathematical difficulties associated with numerical modelling. Finally, for students of the physics cursus, the seven last weeks will be devoted to projects developed by the students and relying on the course.

The course will cover the various approaches to build a numerical model for macroscopic physics and emphasise the strength and limitation of each method. Many practical applications will guide us throughout the course.

 Content :

  • Finite differences, Compact methods, Finite Volumes, Finite Elements, Spectral Methods.
  • Convergence, stability, order of approximation, complexity.
  • Discontinuities, numerical diffusion, numerical dispersion, numerical anisotropy.
  • Complex geometries, boundary conditions, adaptativity.

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP
Stages M2 ICFP

Actualités : Séminaire de Recherche ICFP
du 6 au 10 novembre 2017 :

Retrouvez le programme complet

Emploi du temps 2017-2018 :
Emploi du temps L3
Emploi du temps M1 ICFP
Emploi du temps M2 ICFP

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 61
enseignement@phys.ens.fr