Title: What is superfluidity?
WHAT IS SUPERFLUIDITY?

In 4He – II

1. Frictionless flow through narrow pores
2. Hess-Fairbank effect
3. Persistent currents
4. Quantized circulation (vortices)
5. Zero (or much reduced) friction on object moving with velocity $< v_c$
6. Second sound
7. Josephson effect
8.

In BEC gases:

✓

(?)

✓

(?)

(✓)

Question: What is the relation of the above phenomena to (a) the existence of BEC (b) the nature of the excitation spectrum?

A common view: A necessary and sufficient condition for "superfluidity" is the Landau criterion

$v < c$ where $c \equiv \min. \varepsilon(p)/p$

but some prima facie problems:
not sufficient: glasses, He-I
not necessary: 3He-A, "gapless"
(and cuprate) superconductors

4He - II

$\varepsilon(p) \uparrow$

$p \rightarrow$
SUPERFLUIDITY IN LIQUID 4HE

4He liquefied: 1908

T < T_λ (2.17 K): 1920

Frictionless flow below T_λ: 1938

Modern point of view:

Define

$$\omega_c \equiv \frac{\hbar}{mR^2} \equiv \text{quantum unit of rotation} \quad (\sim 10^{-4} \text{ Hz for } R \sim 1\text{ cm})$$

EXPT. A

(“Hess-Fairbank” effect)

walls rotate with
ang. velocity $\lesssim \omega_c$,
liquid stationary

EQUILIBRIUM EFFECT

EXPT B

(Persistent currents)

walls at rest,
liquid rotating with
ang. velocity $\gg \omega_c$.

METASTABLE EFFECT
GENERAL THEOREMS ON ROTATING SYSTEMS

(classical/QM’l)

Suppose the interparticle potential, isotropic

\[H(t) = \frac{1}{2m} \sum_i p_i^2 + \frac{1}{2} \sum_{ij} U(|r_i - r_j|) + \sum_i V(r_i - r_o(t)) \]

\[\dot{r}_o(t) = \omega \times r_o(t) \]

potential of rotating walls

As calculated by observer rotating with walls:

\[(r'_i \equiv r_i - r_o(t)) \]

\[H_{rot} = \frac{1}{2m} \sum_i p_i' \cdot p_i' + \sum_i (p_i' \cdot (\omega \times r_i')) + \frac{1}{2} \sum_{ij} U(r_i' - r_j') + \sum_i V(r_i') \]

\[\equiv p_i \quad = - \omega \cdot \mathbf{L} \quad \equiv |r_i - r_i'| \]

i.e., time-independent

\[H_{rot} = H_{lab} - \omega \cdot \mathbf{L} \]

Thermodynamic equilibrium state obtained by minimizing

\[F_{rot} \equiv \langle H_{rot} \rangle - TS = F_{lab} - \omega \cdot \mathbf{L} \]

1) All physical properties time-independent as viewed from rotating frame, but does not imply system stationary in that frame!

2) If \(U \) not isotropic, no frame in which \(H \) time-independent \(\Rightarrow \) no stationary state ("Couette flow")
1. Classical systems

Rewrite H_{rot} in form

$$H_{rot} = \frac{1}{2m} \sum_i \left(p_i' - m\omega \times r_i' \right)^2 + \frac{1}{2} \sum_{ij} U(r_i' - r_j') + \sum_i V_{eff}(r_i')$$

$$V_{eff}(r_i) \equiv V(r_i) - \frac{1}{2} m (\omega \times r_i)^2$$

centrifugal potential

In classical mechanics, \tilde{p} and \tilde{r} independent variables

\Rightarrow can change variables,

$$\tilde{r}_i \equiv r_i', \quad \tilde{p}_i \equiv p_i - m\omega \times r_i$$

\Rightarrow

$$\hat{H} = \frac{1}{2m} \sum_i \tilde{p}_i^2 + \frac{1}{2} \sum_{ij} U(|\tilde{r}_i - \tilde{r}_j|) + \sum_i V_{eff}(\tilde{r}_i)$$

$\equiv H_{lab} \ (V \rightarrow V_{eff})$

i.e. equilibrium in rotating frame is exactly as it would be if walls at rest but $V \rightarrow V_{eff}$ (effect of centrifugal term), and thus is at rest:

in classical mechanics, system in thermal equilibrium always rotates completely with walls

(“pseudo-Bohr-van Leeuwen theorem”)

\Rightarrow to get HF effect, \tilde{r} and \tilde{p} must be non commutating.

Equivalently, wave function must satisfy SVBC.
GENERAL THEOREMS, cont.

In QM, many-body wave function must satisfy TDSE, (anti) symmetry and Single-Valuedness Boundary Condition:

\[\Psi \left(r_1, r_2, \ldots, r_i, z_i, \theta_i, \ldots, r_N \right) \]

\[= \Psi \left(r_1, r_2, \ldots, r_i, z_i, \theta_i + 2\pi, \ldots, r_N \right) \]

\[(\forall \ r_1, r_2, \ldots, r_N) \]

\[\Rightarrow \text{ in general, ps-Bohr-vL theorem can be violated} \]

\[(\text{even for } \omega = 0) \]

Question: For \(\omega = 0 \), what is the max. equilibrium ang. momentum of system?

Suppose GSWF \(\Psi_0 \{ r_i \} \) satisfies SVBC, and TISE with eigenvalue \(E_0 \), and suppose ang. momentum is \(L_0 \).

Now consider

\[\Psi_{\text{trial}}^{(r_i)} \equiv (\exp i \sum \theta_i) \Psi_0 \{ r_i \} \quad (l_i \rightarrow l_i - h) \]

still satisfies SVBC and (anti) symmetry

Since \(|\Psi'| = |\Psi| \), potential energy unchanged. KE is changed:

\[\Delta \langle T \rangle = -\frac{\hbar}{m \langle r^2 \rangle} L + \frac{Nh^2}{2m \langle r^2 \rangle} \]

\[\Rightarrow \text{ max. angular momentum in equilibrium is } \hbar/2 \text{ per particle.} \]
EXPLANATION OF HESS-FAIRBANK EFFECT IN TERMS OF BEC:

Walls rotating with ang. velocity
\[\omega \lesssim \omega_c \iff \equiv \hbar/m R^2 \]
What does liquid do?

General principle: Average ang. velocity of atoms (\(\bar{\omega} \))
as close as possible to \(\omega \)

\[\uparrow : \text{ Single-atom states must obey} \]
quantization condition: \(\omega = n\omega_c \) \((\ell = n\hbar) \)

A. "Normal" (non-BEC) system:
many different single-particle
states occupied (typical value of
\(n \sim (kT/\hbar\omega_c)^{1/2} \sim 10^7 \))

\[\Rightarrow \text{to get } \bar{\omega} = \omega, \text{just shift atoms} \]
slightly between states.

B. BEC system \((T \ll T_c) \)
(almost) all atoms in
condensate \(\rightarrow \) must have same
value of \(n \) \((n_0) \) \(\Rightarrow \bar{\omega} \equiv n_0 \omega_c \)

INTERACTIONS
"OPTIONAL"
\(^4\text{He}: \) PERSISTENT CURRENTS

Initially, after walls stopped,
\[
\langle L \rangle = N_0 \ell_0 \hbar, \quad \ell \gg 1 \quad (\tilde{\omega} \gg \omega_c)
\]

But groundstate has \(\langle L \rangle = 0. \quad (\omega = 0) \)

Why no relaxation?

\[\chi_0(r) = \chi_0(r) \exp i \phi(r) \]

condensate w.f.

Df: “winding no.” \(n = \oint \frac{\nabla \phi \cdot dl}{2\pi} \)

Initially, \(n = \ell_0 \): eq\(^m \) state has \(n = 0. \)

To change \(n \), must depress \(|\chi_0(r)| \) to zero somewhere!

(a) Electron in atom:

Schrödinger eqn. linear \(\Rightarrow \) nodes cost no extra energy, e.g.

\[
\psi(t) = a(t) \psi_p + b(t) \psi_s \quad \left\{ \begin{array}{l}
t \rightarrow -\infty: \quad a = 1, \quad b = 0 \\
t \rightarrow +\infty: \quad a = 0, \quad b = 1 \\
\end{array} \right.
\]

\[
\langle E \rangle(t) = |a(t)|^2 E_p + |b(t)|^2 E_s = \text{monotonically decreasing}
\]

(b) BEC (\(^4\text{He}\)):

Extra term in energy: \(\langle V \rangle = V_0 \int |\chi_0(r)|^4 \, dr \)

\(\Rightarrow \) energy NOT monotonically decreasing!

(REPULSIVE) INTERACTIONS ESSENTIAL!
DECAY FROM p-STATE TO s-STATE

\[\psi_\circ (t = -\infty) = f_p(r) \exp i\theta \]
\[\equiv \psi_p(\theta) \]

irrelevant

\[\psi (t = +\infty) = f_s(r) \times \text{const} (\theta) \equiv \psi_s(\theta) \]

Try interpolation formula

\[\psi(\theta:t) = a(t)\psi_p(\theta) + b(t)\psi_s(\theta) \]

\[|a(t)|^2 + |b(t)|^2 = 1, \quad a(-\infty) = 1, \quad a(+\infty) = 0 \]

note: irrespective of phase of \(b\), must be node at some value of \(\theta\) at time s.t. \(|b(t)| = |a(t)|\).

Then:

(a) If system obeys linear (Schrödinger) equation:

\[E(t) = |a(t)|^2 E_p + |b(t)|^2 E_s \]

\[= \text{const.} + \Delta E_{ps} (|a(t)|^2 - |b(t)|^2) \]

\[\frac{dE(t)}{dt} < 0, \quad \forall t. \]

(b) If extra GP-like term

\[E_{cp} = g \int |\psi(\theta)|^4 \, d\theta \quad (g > 0): \]

then

\[E_{cp}(t) = \text{const.} + g |a(t)|^2 \cdot |b(t)|^2 \]

nonmonotonic!

\[\frac{dE(t)}{dt} \not< 0 \text{ (necessarily)} \]
A "toy" model to illustrate the basic phenomena of superfluidity in an annulus:

Single-particle states: \(\psi_0 = \text{const.} \) (s-state)
\[\psi_1 = \text{const.} \ e^{i\theta} \] (p-state)

If we consider \(0 < \omega < \omega_c \) and interactions (etc.) weak enough, only those two states are relevant.

Characteristic energies:

(a) single-particle splitting \((2)(E_1 - E_0) = \frac{\hbar^2}{mR^2} = \hbar \omega_c\)

(b) asymmetry energy
\[-\int \psi_1^* (r) \ V_{\text{ext}} (r) \ \psi_0 (r) \ dr \equiv V_0 (> 0) \]

(c) mean-field interaction energy per particle
\[\frac{4\pi N\alpha h^2}{m} \int dr \ |\psi_0(r)|^4 \equiv g \] (can have either sign)

Limit of weak asymmetry and interaction:
\[g, \ V_0 \ll \hbar \omega_c, \ g/V_o \text{ arbitrary} \]
WHAT IS SUPERFLUIDITY? (cont.)

Under stated conditions, the effective Hamiltonian is

\[\hat{H}_{\text{eff}} = \hat{H} - \omega \cdot \hat{L} = -\hbar \delta \omega \left(a_1^+ a_1 - a_0^+ a_0 \right) - V_0 \left(a_0^+ a_1 + \text{H.c.} \right) + g(a_0^+ a_0 a_1^+ a_1) \]

- s.p. rotational splitting
- asymmetry en.
- const. "Fock" term

Note: asymmetry en. favors 0-1 mixing, Fock term opposes it.

GP ansatz for many-body w.f. at \(T = 0 \):

\[\Psi_N = (a_0^+ \cos \frac{\chi}{2} \exp i\Delta \phi/2 + a_1^+ \sin \frac{\chi}{2} \exp -i\Delta \phi /2)^N |\text{vac}\rangle \]

\(\Delta \phi \) only affects term in \(V_0 \), which is minimized by choice \(\Delta \phi = 0 \) (i.e. \(\psi(\theta) \) min. where \(V(r) \) most repulsive).

Then:

\[E(\chi)N = \delta \omega \cos \chi - V_0 \sin \chi + \frac{g}{2} \sin^2 \chi \]

\[L(\chi)/N = \frac{1}{2} (1 - \cos \chi) \]

(a) For \(\delta \omega \) close to \(-\omega_c/2 \) (i.e. \(\omega \to 0 \)):

since \(|\delta \omega| \gg V_0, g, \cos \chi \approx 1 \)

and so:

\[L = 0 \quad \left(+ o \left(V_0, g \right)^2 \right) \]

so (almost) complete Hess-Fairbank effect

\[\mathcal{H}_z = -\delta \omega \quad \text{"easy" axis} \]

\[\mathcal{H}_x \equiv V_0 \]
(b) Behavior near $\delta \omega = 0$ ($\omega \approx \omega_c/2$):

A. $g < V_o$

$\delta \omega > 0$

Behavior nonhysteretic.

B. $g > V_o$

Behavior hysteretic (supercurrent metastable)

Hysteresis terminated for $|\delta \omega| > \delta \omega_{\text{crit}}$.

$$(\delta \omega_{\text{crit}})^{2/3} = g^{2/3} - V_o^{2/3}$$
WHAT IS SUPERFLUIDITY? (cont.)

Conclusions we can draw within the “toy” model
\(g, V_o \ll \hbar \omega_c \) but \(g/V_o \) arbitrary:

Hess-Fairbank effect occurs for any \(g/V_c \), but

metastability of supercurrents requires both

(a) \(g > V_o \) (interaction repulsive & sufficiently strong) and

(b) \(\delta \omega \) not too large.

Thus, **metastability of superflow \(\neq \) HF effect**!

More realistic model for \(^4\text{He-II} (+ \) probably BEC gases):

\(g \gg \hbar \omega_c, V_o \).

Then many flow states (“winding no.” \(n \gg 1 \)) metastable, and

(a) \(L/N \) always close to \(nh \)

(b) **Criterion for metastability is**

\[g > n^2 \hbar^2/mR^2 \]

Since \(v_s = n\hbar/mR \) and \(c_s = \sqrt{g/m} \), this is equivalent to

\(v_s < c_s \)

which for this simple model is just the Landau criterion. However, **in general criterion for sup\(\gamma \). \(\neq \) Landau one.**
EFFECT OF A HYPERFINE DEGREE OF FREEDOM ON
MESTABILITY OF SUPERFLOW

(T-L. Ho, 1982)

can p-state \((\Psi(\chi) = \exp i\chi)\)

decay to s-state \((\Psi(\chi) = \text{const})?\)

(a) Scalar OP (recap):

\[p \rightarrow s \text{ requires system to go through} \]

states with \(|\Psi(\chi)|^2 \neq \text{const.} \text{ actually, must have node!}\)

for interaction repulsive, free energy barrier.

(b) Spin \(\frac{1}{2}\): \((E \text{ ind. of spin direction})\)

\[\Psi_{\text{in}} = \exp i\chi |\uparrow\rangle \rightarrow \Psi_{\text{f}} = \text{const.} \langle \chi|?\]

Try: family of states parametrized by \(\theta, 0 \leq \theta \leq \pi:\)

\[\Psi(\theta) = \cos \frac{\theta}{2} |\Psi_{\text{in}}\rangle + \sin \frac{\theta}{2} |\Psi_{\text{f}}\rangle \leftarrow \text{const.} \langle \chi|\downarrow\rangle \]

i.e. (apart from overall phase factor)

\[\Psi(\theta; \chi) = \cos \frac{\theta}{2} \exp i\chi/|2|\uparrow\rangle + \sin \frac{\theta}{2} \exp -i\chi/|2|\downarrow\rangle \]

original state rotated through < \(\theta\) around axis in xy-plane making

\(\angle \chi\) with x-axis!

\[\Rightarrow |\Psi(\theta)|^2 = \text{const} \Rightarrow E = E_o \text{ (no barrier!)} \]

(c) spin \(F\): can only change winding no. in this way by \(2m_F\)

[Formally: \(\Pi_1(SU(2)) = Z_{2m}\)]