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Observation of Volkov-Pankratov states in topological HgTe heterojunctions
using high-frequency compressibility
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It is well established that topological insulators sustain Dirac fermion surface states as a consequence of band
inversion in the bulk. These states have a helical spin polarization and a linear dispersion with large Fermi
velocity. We report on a set of experimental observations supporting the existence of additional massive surface
states. These states are also confined by the band inversion at a topological-trivial semiconductor heterojunction.
While first introduced by Volkov and Pankratov (VP) before the understanding of the topological nature of such
a junction, they were not experimentally identified. Here we identify their signatures on transport properties at
high electric field. By monitoring the ac admittance of HgTe topological-insulator field-effect capacitors, we
access the compressibility and conductivity of surface states in a broad range of energies and electric fields. The
Dirac states are characterized by a compressibility minimum, a linear energy dependence, and a high mobility
persisting up to energies much larger than the transport band gap of the bulk. At higher energies, we observe
multiple anomalous behaviors in conductance, charge metastability, and Hall resistance that point towards the
contribution of massive surface states in transport scattering and charge transfer to the bulk. The spectrum of
these anomalies agrees with predictions of a phenomenological model of VP states in a smooth topological
heterojunction. The model accounts for the finite interface depth, the effect of electric fields including Dirac
screening, and predicts the energy of the first VP state. The massive surface states are a hallmark of topological
heterojunctions, whose understanding is crucial for transport studies and applications.
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I. INTRODUCTION

Topological materials have emerged [1] as a new class of
matter with properties arising from peculiar crystal properties.
These include topological insulators (TIs) with band inversion
due to, e.g., spin-orbit interaction [2,3], induced topological
superconductors [1], and topological semimetals [4,5]. They
have attracted much attention as hosts of exotic modes such as
Majorana, Dirac, or Weyl fermions, depending on symmetry
and dimensionality. Topology also leaves macroscopic foot-
prints such as the quantum spin Hall effect in two-dimensional
(2D) TIs [6], quantum Hall and Dirac screening in 3D TIs
[7], the fractional Josephson effect in topological-insulator–
semiconductor (TI-SC) junctions [8–10], and, more recently,
the quantized Faraday rotation in 3D TIs [11,12].

In spite of intensive studies, some important questions
remain. One concerns the robustness of the topological states in
practical implementations for quantum or classical topological
electronics. Another is the possibility of new members in
the family of topological states and the related question of
higher-energy excitations. Indeed, as predicted in Ref. [13],
a limiting factor for the dynamics of Majorana braiding is
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the existence of surface states at higher energies. One may
wonder if similar high-energy states accompany Dirac states
in 3D TIs. Remarkably, this question has been anticipated
theoretically by Volkov and Pankratov in Ref. [14] who con-
sidered topological heterojunctions (THJs) between inverted
and noninverted PbxSn1−xTe semiconductors. They predicted
the existence of both the helical Dirac ground state and a series
of massive surface states, thereafter called Volkov-Pankratov
states (VPSs). VPS theory is sketched below and detailed in
Ref. [15] with the important addition of field effects. Some of
the properties of a THJ will certainly depend on the existence
of VPSs; let us mention the anomalous screening properties
in 3D TIs reported in Ref. [7]. The present work aims at
unveiling VP states and highlighting their role in transport
by a high-frequency (rf) measurement of compressibility in
high-mobility strained HgTe 3D TIs using a rf capacitor
geometry, which is a building block of topological electronics.

The rf compressibility approach complements the angle-
resolved photoemission spectroscopy (ARPES), which has
proven very efficient in identifying Dirac states (see, e.g.,
Refs. [16–19]). Indeed, ARPES is not fully versatile as it is lim-
ited to vacuum-TI interfaces. It therefore excludes TI capping
and gating, which turn out to be essential to detect VPSs as well
as for future topological electronics. While massive surface
states were reported for oxidized Bi2Se3 and Bi2Te3 samples
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[20,21], they were extrinsically induced by on-purpose surface
doping. On the other hand, the transport technique is sensitive
to buried interface states, even in the presence of capping and
top gating, and is therefore well suited to map Dirac states and
the VPSs in THJs. In fact, a signature of VPSs lies in their
anomalous electric-field E response, coupled with the Dirac
nature of states in a THJ; such an electric-field susceptibility
can be regarded as a pseudomagnetic response with an effective
magnetic field E/vF , where vF is the velocity of Dirac carriers.
With E ∼ 108 Vm−1 and vF ∼ 106 ms−1, one has access
to very large fields, E/vF ∼ 100 T. Our technique is based
on high-frequency compressibility measurements introduced
in Ref. [22]. The device is a metal-insulator–TI field-effect
capacitor (MITI-cap), with a metallic plate acting as a dc and rf
gate and the THJ acting as a rf drain. The broadband admittance
measures the differential capacitance per unit area C(Vg) and
the TI sheet conductivity σ (Vg) as a function of the dc gate
voltage Vg . From C(Vg), we extract the carrier density n(Vg),
the quantum capacitance CQ(Vg), analog to the compressibility
χ = ∂n/∂μ = CQ/e2, from which we deduce the surface
Fermi energy μ(Vg) that is essential for VPS spectroscopy. The
joint measurement of σ and CQ gives access to the diffusion
constant D(μ) = σ/CQ used here as a spectroscopic tool of
the surface states. Below the first VPS gap (μ � E1), we
findD ∝ μ and a large mobility μe = 2D/μ � 12 m2 V−1s−1,
characteristic of the Dirac state. As chemical potential crosses
the VPS1 band edge (μ � E1), an efficient intersubband
scattering sets in [23], which is responsible for a drop ofD. The
scattering spectroscopy turns out to have a better resolution
than compressibility itself, which is eventually blurred by
residual heavy-hole bulk contributions in cubic HgTe.

A fundamental concern is the distinction between VPS
and classical massive surface states such as reported in
Refs. [20,21]. Indeed, both are massive, doubly degenerate,
and occur at similar energies. The main distinction lies in
the nature of confinement: relativistic VPSs are confined in an
energy gradient, whereas classical states are trapped in a poten-
tial well involving electrostatic band bending. Experimentally,
they can be distinguished by their electric-field sensitivity,
as discussed below (Sec. IV) and in Ref. [15]: VPSs are
redshifted, whereas trivial states are naturally blueshifted as a
positive electric field enhances quantum confinement whereas
a negative one destroys the well altogether. This anomalous
field effect is linked to the existence of a critical field
ET = (�2 + �1)/eξ at which VPSs collapse. As discussed
in Ref. [15], it corresponds to the situation where the gap
alignment between the trivial and topological regions closes.
Here, 2�2 (−2�1) are the positive (negative) band gaps of
the direct (inverted) semiconductors, and ξ is the penetration
depth of the Dirac state. ET sets both the energy scale of
the zero-field VPS subband series, Em(0) = √

2mh̄vF eET

with m a positive integer, and the electric-field dependence
Em(E) = Em(0)(1 − E2/E2

T )3/4. In particular, the E1(E) curve
defines the phase boundary for Dirac screening. Taking
ξ � h̄vF /�1 � 5 nm and �1 � �2/3 � 0.15 eV [24] for the
CdHgTe/HgTe smooth THJs used in this work, the predicted
critical field and VPS1 energy are ET � 1.2 108 Vm−1 and
E1 � �1

√
2(1 + �2/�1) � 0.4 eV. Five signatures of the

VPS are reported here: the observation of a Dirac-state
scattering peak in undoped samples at an energy E1 � 0.35 eV
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FIG. 1. Description of the MITI-caps. (a) Sketch of a
HgTe/Cd0.7Hg0.3Te capped heterostructure. Also shown in the figure
are sketches of the electrostatic potential across the structure in the
case of Dirac screening (solid line) and a mixed surface/bulk state
(BS) screening (dashed line). (b) Colored SEM picture at a capacitor
edge showing the gate and contact metallizations (gold), the HgTe
mesa (purple), and the HfO2 insulating layer (green). (c) Sketch of
the evanescent wave penetration of charge in the HgTe MITI-cap
when driven at rf. (d) Optical image of the capacitor embedded in a
coplanar wave guide. The 44×20 μm gated area is highlighted by a
blue rectangle.

close to the predicted value, the onset of a secondary type of
carrier and Dirac screening breakdown at the same energy, the
observation of three scattering peaks obeying the predicted
VPS series Em = √

mE1, and their electric-field redshift in
oxide capped doped samples.

The paper is organized as follows. In Sec. II, we describe
the experimental principles including the fabrication of high-
mobility CdHgTe/HgTe THJs. Section III is a report of rf
surface compressibility measured over a broad range of electric
field in undoped and doped HgTe samples. Special attention is
devoted to charge metastability effects and their relationship
to VPSs. Observations are confirmed by control experiments
performed in Hall bars with similar gate stacks. Section IV
presents a heuristic model of the VPSs and their electric-field
dependence, complemented by k · P numerical calculations.
The comparison between theory and experiment in Sec. V
supports the existence of VPSs in CdHgTe/HgTe topological
heterojunctions. We conclude in Sec. VI with perspectives
offered by the VPS for future topological electronics.

II. EXPERIMENTAL PRINCIPLES

The MITI-caps are based on high-mobility HgTe/CdHgTe
heterostructures [Fig. 1(a)] grown by molecular-beam epitaxy
[7,25,26] where the HgTe layer, of thickness tHgT e = 68 nm, is
strained by the CdTe insulating substrate so as to open a small
band gap �0.02 eV in the topological HgTe layer between the
light-electron and heavy-hole �8 bands. The gap is smaller
than the light-electron light-hole (�8-�6) inverted band gap,
−2�1 = ��6−�8 � −300 meV [27], responsible for the Dirac
surface states. We use a wet-etching technique [28] to design a
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mesa and optical lithography to deposit contacts and define the
gated area of the capacitor. A gold gate electrode is evaporated
on top of a 10-nm-thin HfO2 insulating layer, grown by
low-temperature atomic layer deposition (ALD) techniques.
An ohmic contact, with a resistance Rc � 50 Ohms, is de-
posited by Ge/Au evaporation. A false-color scanning electron
microscopy (SEM) image of the gate-contact alignment is
shown in Fig. 1(b). Two series of samples have been fabricated.
Type-A samples (SA) are covered by a 5 nm Cd0.7Hg0.3Te
capping layer protecting the HgTe during the process and
providing a well-defined trivial insulator boundary of band
gap 2�A

2 � 0.9 eV [29,30] [Fig. 1(a)]. The total insulator
thickness is tins = 15 nm. Type-B samples (SB) are devoid of
a capping layer and HfO2 is directly deposited on HgTe (not
shown in the figure). This entails an unintentional electron
doping of the HgTe bulk (density n0 � 2.6 1012 cm−2; see
below). The HgTe-HfO2 interface involves an oxidized HgTe
insulating layer of unknown, and presumably small, band gap
(�B

2 � �A
2 ). We have characterized in situ the permittivity,

εHfO2 � 3.6, of the thin oxide layer using a metal-oxide-metal
(MOM) control capacitor. This value is process dependent
and deviates here from the accepted bulk value εHfO2 � 11.7
[31]. Taking εCdHgT e � 8.5 for the capping layer [29,30],
we estimate the capacitance of our insulating stack Cins =
2.65 mF/m2, in agreement with our measurement below. The
MITI-caps are embedded in coplanar waveguides [Fig. 1(d)],
designed for 0–40 GHz measurements. Five similar MITI-caps
of varied dimensions are fabricated per chip complemented
by MOM, dummy, and through-line structures used for
calibration purposes (see below). For definiteness, experiments
reported here refer to two capacitors of dimensions L×W =
44×20 μm, one of type A and one of type B.

Compressibility measurements have been considered so far
mainly for the characterization of Bi2Se3 thin crystals [32] and
for the purpose of Landau-level spectroscopy in HgTe films
[33]. Here we subtract the series combination of insulator
capacitance Cins to the total capacitance Ctot to obtain the
quantum capacitance correction, CQ = e2χ . Ctot can be tuned
by a dc gate voltage Vg controlling altogether the charge
density n and the applied electric field E . High-frequency
measurements (�10 GHz) give access to the dissipative
regime, governed by the conductivity σ , and yield the diffusion
constant D = σ/CQ. Thin insulators allow for high fields
eventually exceeding the critical field ET � 1.2 108 Vm−1 of
our CdHgTe/HgTe THJs. Compressibility measurement plays
an important role here. First, it provides an absolute chemical
potential scale with a zero given by the Dirac dip, and second,
it gives the precise behavior of the diffusion constant, which
helps identify the scattering mechanisms.

Following earlier work on graphene [22], we primarily
measure the electronic compressibility by vectorial
network analyzer (VNA) techniques (frequency range
ω/2π = 50 kHz–8 GHz) in a cryogenic rf probe station
at 10 K. Standard in situ calibration techniques enable
one to de-embed the circuitry and the contact resistance
contributions from the MITI-cap admittance Y (ω) of interest.
The admittance spectrum Y (ω) is accurately described
by a distributed resistance-capacitance model, Y (ω)/W =
+jCtotωL × tanh(

√
jσ−1CtotωL2)/

√
jσ−1CtotωL2. With

1/Ctot = 1/Cins + 1/CQ, the measured quantum capacitance

per unit area CQ = e2∂n/∂μ is a nonlocal compressibility,
where n stands for the total TI charge and μ the value of the
chemical potential at the TI surface. When two fluids are in
mutual equilibrium, e.g., Dirac and/or VPSs with bulk states
(BSs), they share the same surface chemical potential and their
respective densities simply add in the total compressibility.
The large thickness of our HgTe-TI samples allows us to
model them as semi-infinite, and the compressibility is the
sum of the upper surface and a semi-infinite bulk contribution.
In the doped sample SB , the sheet conductance includes a
frequency-independent BS contribution.

Typical complex admittance spectra of SA are shown in
Figs. 2(a)–2(c) for Vg = 0 (Dirac point) and Vg = 0.5, 3 V
(electron-doped regime). We observe three frequency
domains: a quasistationary domain Y/W = jCtotLω +
(CtotLω)2σ−1L/3 (green shading), an intermediate do-
main (unshaded), and, finally, the evanescent wave domain
(gray shading), where Re(Y ) � Im(Y ) � W

√
Ctotωσ/2. The

agreement between the experimental spectra and the dis-
tributed resistance-capacitance (RC) line model [solid lines
in Figs. 2(a)–2(c)] is excellent and warrants the accuracy
of the rf MITI-cap approach of compressibility. The RC
line model allows extraction of a reliable value of the
frequency-independent total capacitance Ctot, insulator capaci-
tance Cins = Ctot(Vg → −∞), quantum capacitance CQ(μ) =
CinsCtot/(Cins − Ctot), and conductivity σ (Vg). Accounting
for the nonlinear charge voltage characteristic, we calculate
the total electron density n = 1

e

∫
Ctot(Vg)dVg , the applied

electric field Eins = ne/(Cinstins), and the surface chemical
potential, μ(Vg) = e

∫
Ctot/CQdVg . This allows one to plot

CQ(μ) and σ (μ) in Fig. 2(d) as well as the diffusion constant
D(μ) = σ/CQ used for scattering spectroscopy in Fig. 2(e).

A similar chip with the same HgTe/CdHgTe heterostructure
is produced, hosting 600×200 μm Hall-bar structures, with
the same optical lithography wet-etching technique equipped
with a gold electrode as the gate on top of a 10-nm-thick HfO2

insulator. Standard low-frequency ac techniques in a four-point
measurement configuration are used at a temperature of 2 K
in magnetic fields up to 2 T to measure the magnetic field and
gate voltage Vg-dependent longitudinal sheet resistance Rxx

and Hall resistance Rxy . The carrier density n can be accessed
in the classical Drude transport regime by the magnetic field
dependence of the Hall resistance. Two samples of types A and
B analog to the MITI-cap samples with and without capping
layer (not shown) were measured.

III. EXPERIMENT

Let us first give an overview of the compressibility
measurements in samples SA and SB . As shown in the 10 kHz
lock-in measurements of Fig. 3, a striking feature is the
existence of a fully reversible compressibility in Fig. 3(a)
[and a quasireversible one in Fig. 3(b)] below a maximum
gate voltage V m

g = 3 V. The absence of metastability warrants
the absence of a bulk contribution, consistent with the
magnetotransport measurements of Ref. [7]. In contrast, we
observe above V m

g = 3 V a prominent charge metastability up
to the maximum amplitude, V m

g � 10 V, sustainable by the
insulating dielectric stack. Metastability signals the onset of
a second type of carrier and characterizes the breakdown of
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(a) (d)

(b)
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FIG. 2. Scattering spectroscopy evidence of a Volkov-Pankratov state in a HgTe/CdHgTe topological heterojunction. The quantum
capacitance, conductivity, and diffusion constant are deduced from capacitor rf admittance measurements. (a)–(c) Broadband spectrum of
the SA-capacitor complex admittance Y (f ) [Re(Y ) in red and Im(Y ) in blue] for three typical gate voltages. The green shaded area corresponds
to the quasistationary regime, Y/W = jCtotLω + (CtotLω)2σ−1L/3, where Ctot and σ−1 are the capacitance per unit area and the HgTe sheet
resistivity. The gray shaded area is the evanescent wave regime where Re(Y ) � Im(Y ) � W

√
Ctotωσ/2. (d) The quantum capacitance CQ

(blue dots), deduced by deembedding from Ctot the insulator capacitance Cins, and the sheet resistance σ−1 (red dots), deduced from fits of the
ac-admittance spectra [solid lines in (a)–(c)], are plotted as a function of the chemical potential, as explained in the text. The dc measurement
from Fig. 3(a) (gray dots) is added for comparison. The resistance shows an asymmetric peak close to neutrality. (e) The diffusion constant
D(μ) = σ/CQ shows a dip at the Dirac point (DP), a linear increase in the electron regime corresponding to a Dirac-fermion-like high-mobility
μe = 2eD/μ � 12 m2 V−1 s−1, and a peak at �μ ≈ 0.35 eV from the Dirac dip signaling the onset of a new and efficient scattering channel.
We associate the maximum to the energy of the first Volkov-Pankratov state. Indeed the energy �μ is very close to the theoretical prediction
EV P 1 ≈ 0.4 eV.

Dirac screening. The hysteresis loops have a butterfly shape
and a trend toward saturation at large negative Vg . We use this
asymptotic value [horizontal lines in Figs. 3(a) and 3(b)] to
estimate the insulator capacitance Cins. Note that the reversible
curves are eventually history dependent themselves, with the
displayed ones corresponding to the first charging cycles after
cool down to T = 10 K. Reversible cycles subsequent to a
high-field sweep are qualitatively similar but with a dip that is
shifted in gate voltage and amplitude signaling the existence
of trapped bulk carriers. We have checked that the MOM
capacitance is linear and reversible in the same conditions,
confirming that hysteresis is indeed associated to metastability
in HgTe charging.

A. Compressibility of Dirac surface states

In both samples, the reversible charge response shows a
capacitance dip attributed to the Dirac surface states near
charge neutrality. In sample SA, the dip is sharp and located
at Vg = 0 V as expected for an intrinsic TI response. In

sample SB , the dip is shifted to Vg = −1.2 V, corresponding
to an n-type doping density n0 = −2.6 1012 cm−2 (bulk donor
density ND = 4 1017 cm−3), and smeared by this bulk carrier
contribution. On subtracting the insulator contribution 1/Cins

and integrating the relevant quantities, we deduce the surface
chemical potential μ in the reversible state, which is plotted
in Fig. 3(d) (sample SA) as a function of Eins. The S-shaped
curve represents the charging path of the MITI-cap in the
μ(Eins) representation. Similar curves are obtained for sample
SB (not shown). Finally, Fig. 3(c) shows the reversible CQ(μ)
plots of SA (blue line) and SB (green line). As expected from
the additivity of compressibilities in a two-fluid system, one
has CB

Q > CA
Q. In order to quantify the effect of bulk carriers,

we have added in the figure the theoretical expectation (green
dashed line) for the additional contribution of a trivial semi-
conductor to quantum capacitance with the above-estimated
dopant density ND . From the good experimental agreement,
we conclude that the reversible CQ(μ) plot of sample SA is a
close estimate of the intrinsic TI response. The linear energy
dependence precludes an interpretation of compressibility in
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FIG. 3. Reversible surface-state compressibility and the breakdown of Dirac screening. Gate-voltage dependence of the capacitance in (a)
the undoped capped sample SA and (b) the uncapped doped sample SB measured by lock-in techniques at 10 kHz. In both cases, we distinguish
a low electric-field regime (bold lines) where Ctot(Vg) is reversible and a high-field regime (Vg > 3V ) where MITI-cap charging is hysteretic.
Both samples show a capacitance dip in the reversible regime corresponding to the Dirac point of the upper surface state. It is shifted in sample
SB , indicating an electron-type chemical doping of density n � 2.6 1012 cm−2. From the capacitance saturation at large gate voltage, we deduce
the insulator capacitance CA

ins � 2.65 mF/m2 and CB
ins � 4.27 mF/m2. (c) The surface chemical potential as a function of the applied electric

field. (d) The quantum capacitance for samples SA and SB . The error bars are calculated taking a 1% uncertainty in the determination of the
insulator capacitance. The main feature is the linear CQ(μ) of sample SA in the electron regime, which is a direct signature of the intrinsic TI
compressibility. It extends over a broad range of electrostatic doping, ∼ 0.3 eV. Details of the analysis of CQ(μ) are given in the main text.

terms of conventional massive surface states. In fact, its energy
dependence can be mapped to a Dirac fermion density of states,
CQ = e2μ/(2πh̄2v2

F ), with vF = 1.6 106 ms−1 in the electron
regime and vF = 0.5 106 ms−1 in the hole regime. These
values are larger than the accepted vF � 1 ± 0.2 106 ms−1

[19]. Remarkably this Dirac-like response extends over a broad
energy range (μ = −0.05 → +0.30 eV), widely exceeding
the bulk transport band gap, consistent with the Dirac screening
reported in Ref. [7]. In the data reduction, we have included
a constant background ∼10 mF m−2 whose origin is not fully
clarified. A possible explanation would be the nesting of the
Dirac point in the heavy-hole �8 branch, meaning that the ob-
served compressibility minimum results from a superposition
of a Dirac contribution with that of a heavy-hole �8 band [42].

B. Scattering spectroscopy evidence of the first VPS

Here we focus on the sample SA, which is the clos-
est realization of an intrinsic CdHgTe/HgTe smooth THJ.
Figure 2(d) shows Ctot(μ) (blue dots) and σ−1(μ) (red dots)
deduced from admittance spectra in the reversible regime.
The dc capacitance (gray dots) has been reproduced for
comparison. The good agreement, besides a small amplitude

shift due to calibration, shows that compressibility is frequency
independent, confirming our analysis of admittance spectra
that dissipative effects mainly stem from finite conductivity
and not from an intrinsic χ (f ) dependence. The resistivity
exhibits a Dirac-like peak (DP) which is slightly shifted
with respect to the capacitance dip, supporting our conjecture
that the DP is nested in the �8 band. The shape of the
resistance reflects the electron-hole asymmetry of HgTe.
The diffusion constant D(μ) = σ/CQ in Fig. 2(e) shows
a minimum at μ � −0.05 eV and a linear increase in the
electron regime up to μ � 0.3 eV, corresponding to a constant
mobility μe = 2eD/μ � 12 m2 V−1 s−1. This large value is
characteristic of massless Dirac fermions and is comparable
with values deduced from magnetotransport experiments [7].
The diffusion constant D(μ) is a marker of the scattering
mechanism; its linear dependence is indicative of a screened
charge disorder [34,35]. The most remarkable feature is a drop
of D(μ) at μ � 0.3 eV. We attribute this scattering peak to the
onset of a new scattering channel for Dirac fermions when the
surface Fermi energy E1 = μ − EDP � 0.35 eV crosses the
bottom of a massive subband [23].

Since sample SA is intrinsic, we can rule out the possibility
that the scattering peak corresponds to a doping-induced
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FIG. 4. Additional evidence of Dirac screening breakdown at high electric field. (a) Hysteresis loops of capacitance in sample SA for
increasing gate-voltage sweep amplitudes Vm (rainbow colors). As seen in the inset, the width �V of the hysteresis loops sets in at Vg � 3 V.
It corresponds to the resistance minimum in Fig. 5(a) identified as the occurrence of the first VP state substantially and denoted as VP1 above.
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g loops, indicating the presence of bulk carriers. (b) Longitudinal
resistance Rxx and Hall resistance Rxy (inset) measured in a type-A Hall bar. A secondary resistance peak is observed in Rxx , similar to that in
Fig. 5(a), which is accompanied by an S-shaped anomaly in Rxy(B) (inset). The anomaly is highlighted in the dRxy/dB(Vg) waterfall plot in
(c), where data are fitted by an empirical function α/ cosh2(B/B0) (solid lines). As the anomaly onset coincides with the resistance minimum
(red line), we conclude that a second type of carrier does nucleate at the conductivity maximum denoted as VP1.

massive surface state, as reported in [20,21]. The scattering
peak energy E1 � 0.35 eV is very close to the theoretical
estimate for the VPSs, �1

√
2(1 + �2/�1) � 0.4 eV. Iden-

tifying this energy with that of the first VPS band edge, E1 =√
2h̄vF (�1 + �2)/ξ [see Eq. (5) in the theory section IV],

gives ξ � 6 nm (with vF = 1.106 m/s) close to the estimate
ξ � 5 nm deduced from numerical studies in Ref. [24].
From the agreement between theoretical and experimental
determinations of the peak energy, we conclude that the
scattering peak observed in Fig. 2(d) is a signature of the
topological VPS subband [14,15] described in Sec. IV. A
theoretical modeling of the peak shape, which would involve
a detailed analysis of scattering and screening mechanisms
in HgTe, remains beyond the scope of this work. Since CQ

is monotonic in the VPS1 energy range, the peak in D(μ)
translates into a peak in σ (μ). Figure 5(a) is an extension
of Fig. 2(d) at the maximum gate-voltage span, taking the

upward voltage sweep of the hysteresis loops. It shows that
the conductance peak evolves into a resistance plateau at
large electric field and that no additional conductance peak
is observed in this sample.

C. Additional signatures of VPS carriers

VPSs, charge metastability, and Dirac screening break-
down. In Fig. 4, we analyze two complementary aspects of
the TI charging phenomenology. Figure 4(a) shows a set
of hysteretic charging characteristics Ctot(Vg) for increasing
gate-voltage amplitudes V m

g in sample SA. They have a
butterfly shape with two capacitance minima that are shifted
upward or backward, depending on the direction of the voltage
sweep. We attribute this metastability to the breakdown of
Dirac screening and the nucleation of bulk carriers at high
electric field, i.e., either electrons or holes, depending on the

(a) (b)

FIG. 5. High electric-field capacitance and resistivity measurements in samples (a) SA and (b) SB . The low-frequency data [gray dots in
(a)] are added for comparison. To overcome hysteresis, the data are plotted for an increasing gate voltage. The most prominent features are the
apparition of additional resistance peaks in the electron regime, with the Dirac peak being signaled by the capacitance dip. In sample SA, the
resistance peak is accompanied by a bump in the capacitance.
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field history. The loop width �Vg(V m
g ) (inset of Fig. 4(a)) sets

in at V m
g � 3 V and gradually increases up to �Vg � 3 V

at V m
g � 10 V, corresponding to a bulk charge variation

�nB = ±2 1012 cm−2. Note that the capacitance minima are
shifted upward at large V m

g , supporting the contribution of
additional bulk carriers in the compressibility. The presence of
charge metastability signals the Dirac screening breakdown.

Hall signature of VPS carriers. Figures 4(b) and 4(c) show
the Rxy , Rxx magnetotransport measurements performed in a
type-A Hall bar. The capped sample shows a clear maximum
of the sheet resistance accompanied by a change in the sign
of the Hall resistance (not shown), indicating the state with
lowest carrier density at Vg ≈ −1.0 V. Increasing the gate
voltage (electron side) decreases the sheet resistivity σ−1

up to Vg ≈ 1.0 V. For higher gate voltages, σ−1 increases
monotonically with Vg [Fig. 4(c)] and a nonlinearity in the
Hall resistance develops for low magnetic fields [inset of
Fig. 4(b)]. The uncapped sample consistently shows additional
peaks in the longitudinal resistance (not shown), with the only
difference being that the p-conducting regime could not be
reached in the available gate-voltage range due to the high
(unintentional) n doping. Besides the Dirac peak (at Vg =
−1.1 V), Rxx(Vg) exhibits a secondary peak (at Vg � 3 V)
reminiscent of the one observed in the capacitor measurement
of Fig. 5(a). The Hall resistance Rxy ∝ B develops an anomaly
at Vg � 1 V [inset of Fig. 4(b)], signaling the advent of
a secondary carrier type. The anomaly is best depicted by
plotting the derivative ∂Rxy/∂B in Fig. 4(c), where the base
line is shifted according to the applied gate voltage. Data are
fitted using an empirical function α/ cosh2(B/B0) (solid lines)
used to extract the magnetic field range B0 of the anomaly.
We find B0 ∝ (Vg − Vg1) with Vg1 = 1.0 V, corresponding
to the resistance minimum in that sample. This shows that
the scattering peak is indeed accompanied by the nucleation
of a second carrier type, consistent with the VPS-subband
interpretation. A similar analysis has been carried out in type-B
samples, where we observe multiple Rxx peaks (not shown),
also reminiscent of the capacitor measurement in Fig. 5(b).

D. The VPS phase diagram

The heuristic model below predicts a VP state series, Em =√
mE1. In sample SA, the second VPS, at E2 � 0.5 eV, is at

the limit of experimental reach and deep in the metastable
regime. This difficulty is circumvented in sample SB , which
has a finite n-type chemical doping and smaller Em’s due to
a smaller capping band gap �2 (see below). As shown in

Fig. 5(b), the scattering spectroscopy is even richer: besides the
Dirac peak identified by the capacitance dip, we observe two
resistance peaks in the electron side and one faint resistance
peak in the hole side. Similar to sample SA [Fig. 5(a)], the
conductance peaks (resistance dips) are not accompanied by
capacitance features.

For direct comparison with theory, we provide in Fig. 6
a summary of our experimental observations. Figures 6(a)
and 6(c) show the quantum capacitance and conductivity
as a function of the TI charge density for both samples.
We identify the Dirac peak position by the coinciding
capacitance/conductance minima, and the VP states by the
conductance maxima. These peaks are reported in the density–
electric-field n(Eins) diagrams of Figs. 6(b) and 6(d), which
facilitates contact with more standard measurements where
the surface chemical potential is not accessible experimentally.
Note that Eins is the surface electric field at the insulator side,
which differs from the HgTe-TI side by the ratio εins/εHgT e

of permittivities. The green lines in Figs. 6(b) and 6(d) are
theoretical fits with the model below. As mentioned before,
an advantage of this n(Eins) diagram lies in the fact that the
capacitor charging law reduces to a straight line. Actually, this
is strictly true for the total TI charge, including bulk carriers.
Later on, when comparing with theory, one should keep in
mind that the theoretical phase diagram holds only for the
surface-state density.

IV. THEORY

In this section, we describe the topological-normal junction
giving rise to surface states over a penetration depth ξ within
a simplified effective four-band model and a gradual interface
of length ξ between the topological (inverted-gap) and the
trivial (normal-gap) insulator. Besides the Dirac fermion, we
find a set of degenerate massive surface states and we study the
effect of an applied electric field on the surface-state spectra.
Our theoretical modeling is corroborated with numerical k ·
P calculations of a gradual junction using six-band models
particularly designed for HgTe.

A. Effective model of surface states

In order to model the insulating phases, we use the
simplified linear four-band k · P Hamiltonian describing the
bands around the � point of an inverted band structure [1],

Ĥ0(k,�) =

⎡
⎢⎣

� h̄vF ky 0 h̄vF (kz − ikx)
h̄vF ky −� h̄vF (kz − ikx) 0

0 h̄vF (kz + ikx) � −h̄vF ky

h̄vF (kz + ikx) 0 −h̄vF ky −�

⎤
⎥⎦, (1)

for which the spectrum consists of two doubly degenerate
bands, ε(±)

k = ±
√

�2 + h̄2v2
F k2 . This spectrum is independent

of the sign of the gap parameter �. In the following, we model
HgTe as an inverted insulator of gap −�1 < 0 that is in contact
with a normal insulator of gap �2 > 0. The corresponding bulk

Hamiltonians are Ĥ0(k, − �1) and Ĥ0(k,�2) as represented
on the left- and right-hand sides of Fig. 7(a).

We consider that HgTe is located in a region z < 0 and
that the normal insulator (CdHgTe or HfO2) is located at
z > ξ . We model the interface 0 < z < ξ between the two
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(a) (b)

(c) (d)

FIG. 6. Density–electric-field phase diagram of strained bulk HgTe. The compressibility-conductance data (blue-red data points) from
samples (a) SA and (c) SB are compared to the prediction of the model in Sec. IV. By adjusting the resistance peak positions with respect to the
Dirac point, we deduced the model parameters (see the text). (b),(d) The green solid lines correspond to the theoretical predictions of energies
of the surface states. Square signals correspond to energies of VP states extracted from experiment. The MITI-cap charging paths are included
in the n–E phase diagram as depicted in (b) and (d). These phase diagrams are obtained from the E behavior of the VP surface states (6) plotted
in Fig. 7(b) (see theory section IV). From this analysis, we deduce the critical electric field of the THJ beyond which surface states completely
disappear: EA

T = 2.64×108 Vm−1 and EB
T = 0.81×108 Vm−1. The smaller ET in SB is due to the absence of a capping layer. Above ET , the

topological-trivial insulator interface behaves as a normal, nontopological interface. Two such subbands can be seen in SB due to chemical
doping and a lower excitation gap.

semiconductors using an interpolating Hamiltonian Ĥs0 =
Ĥ0[k, − �1 + eET z] with the characteristic field

ET = �1 + �2

eξ
. (2)

This field plays the role of a confinement or gap field that
we have chosen to have the same physical dimension as

an electric field. The evolution of the gap is sketched as a green
line in Fig. 7(a) and can be viewed as a three-dimensional
generalization of the procedure described in Ref. [13] for a
one-dimensional system and in Ref. [37] for Weyl semimetals.
The Hamiltonian contains a pair of noncommuting variables
[z,kz] 
= 0 that can be merged into the same matrix elements
with the help of a k-independent unitary transformation |〉 =
Û | ′〉. One finds, in this new basis,

Ĥ ′
s0 = Û †Ĥs0Û =

⎡
⎢⎢⎣

h̄vF kx h̄vF ky 0
√

2h̄vF eET â†

h̄vF ky −h̄vF kx

√
2h̄vF eET â† 0

0
√

2h̄vF eET â h̄vF kx −h̄vF ky√
2h̄vF eET â 0 −h̄vF ky −h̄vF kx

⎤
⎥⎥⎦, (3)

where we have introduced the ladder operators â = [h̄vF kz −
i(eET z − �1)]/

√
2h̄vF eET and â† = [h̄vF kz + i(eET z −

�1)]/
√

2h̄vF eET such that [â,â†] = 1. This Hamiltonian is
similar to that in a magnetic field [38] and we introduce

the number states |m〉 associated to the number operator
m̂ = â†â, with m̂|m〉 = m|m〉. These states are localized at
the interface between two insulators with a mean position
〈z〉 = �1/eET = �1ξ/(�1 + �2) ∈ [0,ξ ].
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(a)

(b) (c)

FIG. 7. Model of massive surface states (VPSs) in topological insulators. (a) Simplified model for the interface of a topological insulator
(left) and a normal insulator (right). In the interface, one observes multiple surface states. (b) Band gaps of the Dirac and VP states as a function
of the reduced electric field β = E/ET . The blue solid line is a sketch of a capacitor charging line measured in Fig. 3(d). (b) Equivalent to
the n − E phase diagram of Figs. 6(b) and 6(c). (c) Illustration of the double effect of electric field in the quantum capacitance CQ(μ,E) for
selected values of the parameters represented by colored lines in (b). The group velocity of the Dirac fermion decreases with increasing electric
field and its density of states rises up to the critical field with a vanishing of the Fermi velocity CQ(μ)E→∞ at the critical field ET . At finite
doping, the subbands cross the Fermi energy at E < ET , giving rise to a stepwise increase of CQ(E)μ=Cte.

For m � 1, one finds an infinite number of states
of the form |m,k〉 = (α1|m〉,α2|m〉,α3|m − 1〉,α4|m − 1〉).
Their band dispersion is doubled in that one finds, for each
value of m, a band at positive and negative energy,

ε
(±)
m,kx ,ky

= ±
√

h̄2v2
F

(
k2
x + k2

y

) + 2h̄vF eET m, (4)

which yields the relevant k = 0 separation,

E±m = ε
(±)
m,kx=ky=0 = ±

√
2h̄vF eET m

= ±
√

2h̄vF (�1 + �2)m/ξ, (5)

between the VPSs, as already mentioned in Sec. III B in
the estimation of the surface width ξ . In addition, these
states, which were first identified by Volkov and Pankratov
in 1985 [14], are doubly degenerate and depend explicitly
on the characteristic field (2) and thus on the parameters
characterizing the interface. In the limit of a sharp surface,

i.e., ξ → 0 so that ET → ∞, these states are shifted to high
energies and do not play any physical role.

In contrast to these bands, the m = 0 surface states are not
degenerate. They are of the form |0,k〉 = (α1|0〉,α2|0〉,0,0)
and their energy dispersion is that of a two-dimensional Dirac
cone, ε

(±)
0,kx ,ky

= ±h̄vF

√
k2
x + k2

y . It is independent of ET and
one can show [37] that this state is of a topological nature. This
topological surface state survives in the limit of an infinitely
sharp interface, as expected, and shows a dispersion that only
depends on the bulk parameter vF , in agreement with previous
studies [1]. We represent the spectra of the VPS±m states and
the Dirac state in Fig. 7(a).

Most saliently, the VPS can be modified to great extent
by an electric field applied perpendicular to the interface.
As an effect of charge screening, the associated electrostatic
potential drops in the interface and generates an electric
field E ≡ −Eez ≈ −V0/ξez, where V0 = μ/e is the sur-
face potential. The interface Hamiltonian, for 0 < z < ξ , is
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now Ĥs = Ĥ ′
s0 + (V0 − eEz)1. Notice that the added term

remains invariant under the above-mentioned rotation that
leads to the form of the Hamiltonian given by Eq. (3). As
detailed in the Appendix, the spectrum now depends on the
ratio β = E/ET between the applied and the characteristic
electric fields. The spectrum for the m � 1 states is still
doubly degenerate with the dispersion relations εm,kx ,ky

(β) =√
(1 − β2)h̄2v2

F (k2
x + k2

y) + 2m(1 − β2)3/2h̄vF eET . One ob-
serves that the gap (5) is reduced by the applied electric field
according to

E±m(E) = ±√
m

√
2h̄vF eET

(
1 − E2

/
E2

T

)3/4
, (6)

and that the critical surface density obeys

nm(E) = m(m + 1)

2

eET

2πh̄vF

(
1 − E2

/
E2

T

)1/2
. (7)

At the same time, the dispersion relation flattens out because
of the reduced Fermi velocity that vanishes at ET according to

vF (E) = vF

(
1 − E2

/
E2

T

)1/2
. (8)

The special m = 0 surface state is also flattened and one finds
ε

(±)
0,kx ,ky

= ±(1 − β2)1/2h̄vF

√
k2
x + k2

y .
In Fig. 7(b), we represent the extrema of the VPS±m (in

green) and of the Dirac state at kx = ky = 0 (in red) as a
function of β = E/ET . We observe that VPSs merge for an
electric field close to the critical field ET . Beyond this limit,
our model (A1) has no bound state so that the interface behaves
as a conventional semiconducting heterojunction. This shows
that ET is not only a characteristic field governing the massive
surface-state spectrum, but is actually a genuine critical field
for the topological nature of the interface. The applied electric
potential also influences the chemical potential (blue line in
Fig. 7) that will eventually cross the VPSs. This leads to kinks
in the compressibility and features in the conductivity that we
discuss in detail in the following section.

We finish this theoretical section with a discussion of
the density of states ρ(ε), which is directly proportional to
the quantum capacitance (at T = 0). The density of states
associated with the surface states per unit area reads

ρ(ε) = |ε|
2πh̄2v2

F (1 − β2)

∑
l

�[|ε|

− (1 − β2)3/4
√

2h̄vF eET m], (9)

where �(x) is the Heaviside function. The corresponding
behavior of the quantum capacitance is represented in Fig. 7(c)
for typical values of β = E/ET . One observes that the gaps are
smaller and that the density of states becomes enhanced for
larger electric fields (in red). This is a direct consequence of
the reduced Fermi velocity in the presence of an electric field,
as pointed out above. Notice, however, that in the experimental
setup, the chemical potential depends on the applied electric
potential and therefore jumps from one curve to the other.
Moreover, we expect this density of state to be smeared in the
presence of disorder.

FIG. 8. Numerical dispersion relation E(k‖) for an HgTe/CdTe
interface obtained within a six-band Kane model. k‖ corresponds to
the momentum along the interface. The color encodes the density of
eigenstates in a region of ∼6 nm around the interface. The existence
of localized states around the interface is shown within the gap but
also at high energy around 1 eV.

B. Numerical k · P treatment of surface states

To complement the previous analytical study, we have
performed a numerical study of the band structure of an
HgTe/CdTe interface, based on a k · P model. Our numerical
approach amounts to discretizing a standard Kane model
for the six-band �6,±1/2,�8,±1/2,�8,±3/2 Hamiltonian with
parameters for HgTe and CdTe known from the literature
[39]. The parameters of the model are interpolated between
their values in both materials over a distance ξ corresponding
to the size of the interface. This description incorporates
the stress induced by the lattice mismatch through a Bir-
Pikus term. The resulting band structure is shown in Fig. 8,
where the color encodes the eigenstate’s density around the
HgTe/CdTe interface. The band structure is calculated for
an HgTe thickness of 70 nm and ξ = 5 nm. Note that this
band structure is obtained at zero electric field and using
CdTe (2�2 � 1.5 eV) as a capping layer boundary. We find
a massive surface subband at 1 eV, which is accompanied by
a strong depletion of the bulk state amplitude in the surface
layer that confirms the above picture of high-energy surface
states (VPSs). The excitation energy is quite large (still smaller
than 2�2) and found to be sensitive to the detail of the shape
of the smooth interface. This is consistent with the analytical
approach of Sec. IV A, which focuses on a linear interpolation
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between the two materials and neglects asymmetry between
the two materials beyond the gap inversion. We stress that these
VPSs are predicted at zero electric field and assume that they
follow the electric-field dependence predicted by the approach
of Sec. IV A, as corroborated by Ref. [15].

V. COMPARISON WITH EXPERIMENT

The main evidence of VPSs is the scattering peak observed
in the intrinsic sample SA [Figs. 2(e) and 6(a)], where the
absence of the classical massive surface state and the Dirac
screening of bulk states have been previously warranted
experimentally [7]. The measured VPS1 gap E1 = 0.35 eV
is close to the theoretical value E1(0) � 0.4 eV, deduced from
Eq. (6), and is accompanied by a second carrier type observed
in the Hall-bar measurements. In addition, we report that the
VPS1 triggers the onset of charge metastability, signaling the
breakdown of Dirac screening [7].

The second evidence is the observation of a series of
scattering peaks in the uncapped sample SB [Figs. 5(b)
and 6(c)]. Since the capping of sample SB is ill defined, we
cannot make a direct comparison of VPS energy with theory
so that �2 becomes a fitting parameter. Still, we can adjust the
peaks series with the predicted sequence nm ∝ m(m + 1)/2 of
Eq. (7).

The third evidence relates to the electric-field redshift.
As seen in Fig. 6(d), the agreement of VPS spectroscopy
with theory involves a ∼10% electric-field redshift for the
VPS2 state of sample SB , consistent with Eq. (6). As for
the VPS-1 state, its observation fully relies on a strong-field
renormalization of the gaps, meaning that the VPS-1 peak
position signals the vicinity of the critical field ET . The fact that
VPS-1 is smeared is also consistent with theory since the Fermi
velocity vanishes at ET according to Eq. (8). Moreover, the
conductivity becomes featureless above ET , also in agreement
with theory. Our scattering spectroscopy measurements thus
support the field-effect-induced redshift and suppression of
VPS predicted in Sec. IV. Although a deeper insight into the
field suppression is desirable, it remains very challenging as
a full mapping of the n(E) diagram would require an in situ
tuning of the insulator permittivity and/or TI chemical doping.
An extension of this work can be envisioned using a series of
similar HgTe THJs with varied capping band gap �2 and/or
insulator permittivity εins.

Before concluding, let us detail our analysis of the
n(E) phase diagrams in Figs. 6(b) and 6(d). Equation (7)
predicts subband minima for a surface-state density nm =
n1 × m(m+1)

2

√
1 − β2, where n1 = eET /2πh̄vF and β =

EHgT e/ET = εinsEins/εHgT eET . Taking ET = 1.2 108 V/m,
εA

ins = Cinstins/ε0 � 4.5, and εHgT e � 20 [29,30], we es-
timate for sample SA the applied critical field EA

c =
εHgT eET /εA

ins � 5 108 Vm−1, and a surface critical density
nA

1 = 2.9 1012 cm−2 (with vF = 106 m/s). The direct total
charge measurement gives a larger n1 � 4 1012 cm−2 due
to the presence of bulk carriers. The same analysis can be
carried out for the doped sample SB , where we obtain a
quantitative agreement for the position of three VPS peaks
(VPS-1, VPS2, and VPS3) with a single parameter EB

T =
(0.4 ± 0.1) 108 Vm−1, yielding nB

1 = 1×1012 cm−2. The fact

that EB
T � EA

T /3 highlights the importance of a capping layer
in strengthening the robustness of surface topological states.

Finally, we have plotted in Figs. 6(a) and 6(c) (solid black
lines) the theoretical prediction for the quantum capacitance
calculated from the density of states of surface states in
Eq. (9). While we see the linear increase of a secondary carrier
density in the Hall-bar measurements, we do not resolve the
compressibility steps signaling the onset of massive subbands.
A possible reason for this discrepancy is the presence of
residual bulk carriers, obscuring the compressibility resolution
and explaining the compressibility background observed in
Fig. 3(d). These carriers can be disorder-induced small-
scale charge puddles or, more likely, in our high-mobility
samples, large-scale puddles induced by the nonuniformity
of the applied electrostatic surface potential. Considering the
small transport band gap of HgTe, the potential uniformity
requirements are especially stringent.

VI. CONCLUSION

Our comprehensive set of measurements, complemented by
a heuristic model, supports the existence of intrinsic massive
surface states, the Volkov-Pankratov states, and accompanying
Dirac states at the interface between TI HgTe and the insulator
CdHgTe. Such high-energy topological states, which are in-
trinsic to topological matter, have long been predicted [13,14].
Our work is a report and systematic study of these states,
and we hope it will trigger further investigations into different
materials such as the Bi-based TI [40] or different topological
phases such as massive Majorana states, helical edge states, or
Fermi arcs. As pointed out in Ref. [13] and demonstrated in
this experiment, massive surface states play an important role
in restricting the phase diagram where topological protection
is robust, such as the Dirac screening [13] which is explained
here as a relativistic field effect. This phase diagram can be
enriched by applying an external magnetic field or simply by
increasing the temperature, highlighting the possible role of
electron-electron interactions.
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APPENDIX: LORENTZ BOOST OF SURFACE STATES
IN AN ELECTRIC FIELD

In Sec. IV A, we have introduced the Hamiltonian Ĥs =
Ĥ ′

s0 + (V0 − eEz)1. In order to deal with this z dependence, we
perform a Lorentz boost on the time-independent Schrödinger
equation e

η

2 Ĵ (Ĥ ′
s − ε1)e

η

2 Ĵ |̄〉 = 0, where the Lorentz boost
[41] is realized by the hyperbolic transformation | ′〉 =
N e− η

2 Ĵ |〉 generated by Ĵ = σy ⊗ σx , in terms of the Pauli
matrices σx and σy .
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In the case tanh(η) ≡ β = E/ET ∈ [−1,1] and V0 = −β�1, one can thus make the (V0 − eEz)1 term vanish in the
comoving frame of reference. If we define the pseudomagnetic field B = ET /vF , this transformation can be understood
from the viewpoint of special relativity as a boost to a frame of reference where the drift velocity vD = E/B vanishes [41].
The condition E/ET = vD/vF ∈ [−1,1] is similar to the existence of a limiting velocity; the Fermi velocity vF plays the
role of the speed of light in special relativity. The Schrödinger equation becomes Ĥ ′

s |̄〉 = ε|̄〉 with

Ĥ ′
s =

⎡
⎢⎢⎣

h̄v′
F kx h̄v′

F ky 0
√

2h̄v′
F eE ′

T b̂

h̄v′
F ky −h̄v′

F kx

√
2h̄v′

F eE ′
T b̂ 0

0
√

2h̄v′
F eE ′

T b̂† h̄v′
F kx −h̄v′

F ky√
2h̄v′

F eE ′
T b̂† 0 −h̄v′

F ky −h̄v′
F kx

⎤
⎥⎥⎦, (A1)

with v′
F =

√
1 − β2vF , E ′

T = (1 − β2)ET , and the ladder operators b̂,b̂†, where

b̂ = 1

(1 − β2)1/4
√

2h̄v′
F eE ′

T

{
h̄vF kx − i

√
1 − β2

[
eET z −

(
�1 + β

β2 − 1
ε

)]}
, (A2)

b̂† = 1

(1 − β2)1/4
√

2h̄v′
F eE ′

T

{
h̄vF kx + i

√
1 − β2

[
eET z −

(
�1 + β

β2 − 1
ε

)]}
. (A3)

As a consequence of the Lorentz boost, the ladder operators are now explicitly energy dependent as well as the mean position of
the number states 〈z〉 = (�1 + β

β2−1ε)/eET . For our theory to describe a surface state, this position must be within 〈z〉 ∈ [0,ξ ],
and one notices that for β → 1, this condition is not fulfilled for ε 
= 0.

The spectrum is found using states of the form |m,k〉 = (α1|m〉,α2|l〉,α3|m − 1〉,α4|m − 1〉) for m � 1 and |0,k〉 =
(α1|0〉,α2|0〉,0,0) for m = 0, in the comoving frame of reference. The |m〉 states are the eigenstates of the number operator
m̂ = b̂†b̂.
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