Logarithmic correlations in critical percolation

Jesper L. Jacobsen 1,2
${ }^{1}$ Laboratoire de Physique Théorique, École Normale Supérieure, Paris
${ }^{2}$ Université Pierre et Marie Curie, Paris
The Beauty of Integrability
Natal, 23 July 2012

Collaborators: R. Vasseur, H. Saleur, A. Gaynutdinov

Introduction

Logarithms in critical phenomeana

- Scale invariance \Rightarrow correlations are power-law or logarithmic
- Two possibilities for logarithms:
(1) Marginally irrelevant operator:

Gives logs upon approach to fixed point theory.
(2) Dilatation operator not diagonalisable:

Logs directly in the fixed point theory. Subject of this talk.

Introduction

Logarithms in critical phenomeana

- Scale invariance \Rightarrow correlations are power-law or logarithmic
- Two possibilities for logarithms:
(1) Marginally irrelevant operator:

Gives logs upon approach to fixed point theory.
(2) Dilatation operator not diagonalisable:

Logs directly in the fixed point theory. Subject of this talk.

Where do such logarithms appear

- CFT with $c=0$ [Gurarie, Gurarie-Ludwig, Cardy, ...]
- Percolation, self-avoiding polymers ($c \rightarrow 0$ catastrophe)
- Quenched random systems (replica limit catastrophe)
- Logarithmic minimal models [Read-Saleur, Pearce-Rasmussen-Zuber]
- For any $d \leq$ upper critical dimension

Logarithms and non-unitarity [

Standard unitary CFT

- Expand local density $\Phi(r)$ on sum of scaling operators $\varphi(r)$

$$
\langle\Phi(r) \Phi(0)\rangle \sim \sum_{i j} \frac{A_{i j}}{r^{\Delta_{i}+\Delta_{j}}}
$$

- $A_{i j} \propto \delta_{i j}$ by conformal symmetry [Poyakov 1970]
- $A_{i j} \geq 0$ by reflection positivity
- Hence only power laws appear

Logarithms and non-unitarity [

Standard unitary CFT

- Expand local density $\Phi(r)$ on sum of scaling operators $\varphi(r)$

$$
\langle\Phi(r) \Phi(0)\rangle \sim \sum_{i j} \frac{A_{i j}}{r^{\Delta_{i}+\Delta_{j}}}
$$

- $A_{i j} \propto \delta_{i j}$ by conformal symmetry [Polyakov 1970]
- $A_{i i} \geq 0$ by reflection positivity
- Hence only power laws appear

The non-unitary case

- Cancellations may occur
- Suppose $A_{i j} \sim-A_{j j} \rightarrow \infty$ with $A_{i j}\left(\Delta_{i}-\Delta_{j}\right)$ finite
- Then leading term is $r^{-2 \Delta_{i}} \log r$

Jordan cells and indecomposability parameters

Logarithmic pair $(\phi(z), \psi(z))$ with conformal weight h

- Dilatation op. $L_{0}=\left(\begin{array}{ll}h & 1 \\ 0 & h\end{array}\right)$ in basis (ϕ, ψ) is indecomposable
- Global conformal invariance fixes [Gurare 1993]

$$
\langle\phi(z) \phi(0)\rangle=0, \quad\langle\phi(z) \psi(0)\rangle=\frac{\beta}{z^{2 h}}, \quad\langle\psi(z) \psi(0)\rangle=\frac{\theta-2 \beta \log z}{z^{2 h}}
$$

Jordan cells and indecomposability parameters

Logarithmic pair $(\phi(z), \psi(z))$ with conformal weight h

- Dilatation op. $L_{0}=\left(\begin{array}{ll}h & 1 \\ 0 & h\end{array}\right)$ in basis (ϕ, ψ) is indecomposable
- Global conformal invariance fixes [Guraie 1993]

$$
\langle\phi(z) \phi(0)\rangle=0, \quad\langle\phi(z) \psi(0)\rangle=\frac{\beta}{z^{2 h}}, \quad\langle\psi(z) \psi(0)\rangle=\frac{\theta-2 \beta \log z}{z^{2 h}}
$$

Indecomposability parameter β

- $\theta=0$ by change of basis, but $\beta=\langle\psi \mid \phi\rangle$ is fundamental quantity
- $\psi(z)$ is the logarithmic partner of the null-field $\phi(z)$
- Indecomposability appears already in Temperley-Lieb algebra [Read-Saleur, Pearce-Rasmussen-Zuber]
- Measure β by numerics on lattice models
[Dubail-JJ-Saleur, Vasseur-JJ-Saleur]

Algebraic structure

Staggered (projective) modules

- Reducible yet indecomposable representation of Virasoro
- Staggered module [Rohsiepe 1996; Nahm, Gaberdiel, Kausch, Mathieu, Ridout, Kytöla,...]

- $\phi(z)$ is a descendent of $\xi(z)$ at level $n \geq 0$

Algebraic structure

Staggered (projective) modules

- Reducible yet indecomposable representation of Virasoro
- Staggered module [Rohsiepe 1996; Nahm, Gaberdiel, Kausch, Mathieu, Ridout, Kytölä,...]

- $\phi(z)$ is a descendent of $\xi(z)$ at level $n \geq 0$

Hidden treasures

- In general, several \mathcal{P} glued to form more complex structures
- In general, a theory is characterised by infinitely many β

Computing β for 2D percolation (boundary case)

Colliding fields

- Boundary 4-leg operator $\Phi_{1,5}(z)$ and $T(z)$ collide when $c \rightarrow 0$
- Let $\Phi_{h}(z)$ be any field containing $/$ in its OPE with itself:

$$
\Phi_{h}(z) \Phi_{h}(0) \sim \frac{a_{\Phi}}{z^{2 h}}\left[1+\frac{2 h}{c} z^{2} T(0)+z^{h_{t}} \Phi_{1,5}(0)+\ldots\right]
$$

Computing β for 2D percolation (boundary case)

Colliding fields

- Boundary 4-leg operator $\Phi_{1,5}(z)$ and $T(z)$ collide when $c \rightarrow 0$
- Let $\Phi_{h}(z)$ be any field containing l in its OPE with itself:

$$
\Phi_{h}(z) \Phi_{h}(0) \sim \frac{a_{\Phi}}{z^{2 h}}\left[1+\frac{2 h}{c} z^{2} T(0)+z^{h_{t}} \Phi_{1,5}(0)+\ldots\right]
$$

Defining the logarithmic partner field $t(z)$

- Unacceptable divergence when $c \rightarrow 0$. Define a new field $t(z)$ by

$$
\Phi_{1,5}(z)=\frac{2 h\langle T \mid T\rangle}{c \beta(c)} t(z)-\frac{2 h}{c} T(z)
$$

where

$$
\beta(c)=-\frac{\langle\phi \mid \phi\rangle}{h_{\psi}-h_{\xi}-n}=-\frac{\langle T \mid T\rangle}{h_{t}-2}=-\frac{c / 2}{h_{1,5}-2}
$$

Avoiding the $c \rightarrow 0$ catastrophe

- Now the OPE is finite:

$$
\Phi_{h}(z) \Phi_{h}(0) \sim \frac{a_{\Phi}}{z^{2 h}}\left[1+\frac{h}{\beta} z^{2}(T(0) \log z+t(0))+\ldots\right]
$$

- The logarithmic pair $\{T, t\}$ have the expected OPEs:

$$
\langle T(z) T(0)\rangle=0, \quad\langle T(z) t(0)\rangle=\frac{\beta}{z^{4}} \quad\langle t(z) t(0)\rangle=\frac{\theta-2 \beta \log z}{z^{4}}
$$

Avoiding the $c \rightarrow 0$ catastrophe

- Now the OPE is finite:

$$
\Phi_{h}(z) \Phi_{h}(0) \sim \frac{a_{\Phi}}{z^{2 h}}\left[1+\frac{h}{\beta} z^{2}(T(0) \log z+t(0))+\ldots\right]
$$

- The logarithmic pair $\{T, t\}$ have the expected OPEs:

$$
\langle T(z) T(0)\rangle=0, \quad\langle T(z) t(0)\rangle=\frac{\beta}{z^{4}} \quad\langle t(z) t(0)\rangle=\frac{\theta-2 \beta \log z}{z^{4}}
$$

Computing the indecomposability parameter

- Recall that $\beta=\langle t \mid T\rangle$ so that

$$
\beta=\lim _{c \rightarrow 0} \beta(c)=-\frac{5}{8}
$$

Correlators in bulk percolation in

Reminders

- Two and three-point functions fixed in any d by global conformal invariance
- This is supposing only conformal invariance!
- Extra discrete symmetries must be taken into account as well
- Physical operators are irreducible under such symmetries [Cardy 1999]
- O(n) symmetry for polymers $(n \rightarrow 0)$
- S_{n} replica symmetry for systems with quenched disorder $(n \rightarrow 0)$

Correlators in bulk percolation in

Reminders

- Two and three-point functions fixed in any d by global conformal invariance
- This is supposing only conformal invariance!
- Extra discrete symmetries must be taken into account as well
- Physical operators are irreducible under such symmetries [Cardy 1999]
- O(n) symmetry for polymers $(n \rightarrow 0)$
- S_{n} replica symmetry for systems with quenched disorder $(n \rightarrow 0)$
- Two and three-point functions in bulk percolation
- Limit $Q \rightarrow 1$ of Potts model with S_{Q} symmetry
- Structure for any d; but universal prefactors only for $d=2$

Potts model

- Hamiltonian $H=J \sum_{\langle i j\rangle} \delta\left(\sigma_{i}, \sigma_{j}\right)$ with $\sigma_{i}=1,2, \ldots, Q$ - Operators must be irreducible under the S_{Q} symmetry

Potts model

- Hamiltonian $H=J \sum_{\langle i j\rangle} \delta\left(\sigma_{i}, \sigma_{j}\right)$ with $\sigma_{i}=1,2, \ldots, Q$
- Operators must be irreducible under the S_{Q} symmetry

Operators acting on one spin

- Most general one-spin operator: $\mathcal{O}\left(r_{i}\right) \equiv \mathcal{O}\left(\sigma_{i}\right)=\sum_{a=1}^{Q} \mathcal{O}_{a} \delta_{a, \sigma_{i}}$

$$
\underbrace{\delta_{a, \sigma_{i}}}_{\text {reducible }}=\underbrace{\frac{1}{Q}}_{\text {invariant }}+\underbrace{\left(\delta_{a, \sigma_{i}}-\frac{1}{Q}\right)}_{\varphi_{a}\left(\sigma_{i}\right)}
$$

- Dimensions of representations: $(Q)=(1) \oplus(Q-1)$
- Identity operator $1=\sum_{a} \delta_{a, \sigma_{i}}$
- Order parameter $\varphi_{a}\left(\sigma_{i}\right)$ satisfies the constraint $\sum_{a} \varphi_{a}\left(\sigma_{i}\right)=0$

Operators acting on two spins

- $Q \times Q$ matrices $\mathcal{O}\left(r_{i}\right) \equiv \mathcal{O}\left(\sigma_{i}, \sigma_{j}\right)=\sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{a b} \delta_{a, \sigma_{i}} \delta_{b, \sigma_{j}}$
- The Q operators with $\sigma_{i}=\sigma_{j}$ decompose as before: $(1) \oplus(Q-1)$
- Other $\frac{Q(Q-1)}{2}$ operators with $\sigma_{i} \neq \sigma_{j}:(1)+(Q-1)+\left(\frac{Q(Q-3)}{2}\right)$

Operators acting on two spins

- $Q \times Q$ matrices $\mathcal{O}\left(r_{i}\right) \equiv \mathcal{O}\left(\sigma_{i}, \sigma_{j}\right)=\sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{a b} \delta_{a, \sigma_{i}} \delta_{b, \sigma_{j}}$
- The Q operators with $\sigma_{i}=\sigma_{j}$ decompose as before: $(1) \oplus(Q-1)$
- Other $\frac{Q(Q-1)}{2}$ operators with $\sigma_{i} \neq \sigma_{j}:(1)+(Q-1)+\left(\frac{Q(Q-3)}{2}\right)$

Easy representation theory exercise

$$
\begin{aligned}
E & =\delta_{\sigma_{i} \neq \sigma_{j}}=1-\delta_{\sigma_{i}, \sigma_{j}} \\
\phi_{a} & =\delta_{\sigma_{i} \neq \sigma_{j}}\left(\varphi_{a}\left(\sigma_{i}\right)+\varphi_{a}\left(\sigma_{j}\right)\right) \\
\hat{\psi}_{a b} & =\delta_{\sigma_{i}, a} \delta_{\sigma_{j}, b}+\delta_{\sigma_{i}, b} \delta_{\sigma_{j}, a}-\frac{1}{Q-2}\left(\phi_{a}+\phi_{b}\right)-\frac{2}{Q(Q-1)} E
\end{aligned}
$$

Operators acting on two spins

- $Q \times Q$ matrices $\mathcal{O}\left(r_{i}\right) \equiv \mathcal{O}\left(\sigma_{i}, \sigma_{j}\right)=\sum_{a=1}^{Q} \sum_{b=1}^{Q} \mathcal{O}_{a b} \delta_{a, \sigma_{i}} \delta_{b, \sigma_{j}}$
- The Q operators with $\sigma_{i}=\sigma_{j}$ decompose as before: $(1) \oplus(Q-1)$
- Other $\frac{Q(Q-1)}{2}$ operators with $\sigma_{i} \neq \sigma_{j}:(1)+(Q-1)+\left(\frac{Q(Q-3)}{2}\right)$

Easy representation theory exercise

$$
\begin{aligned}
E & =\delta_{\sigma_{i} \neq \sigma_{j}}=1-\delta_{\sigma_{i}, \sigma_{j}} \\
\phi_{a} & =\delta_{\sigma_{i} \neq \sigma_{j}}\left(\varphi_{a}\left(\sigma_{i}\right)+\varphi_{a}\left(\sigma_{j}\right)\right) \\
\hat{\psi}_{a b} & =\delta_{\sigma_{i}, a} \delta_{\sigma_{j}, b}+\delta_{\sigma_{i}, b} \delta_{\sigma_{j}, a}-\frac{1}{Q-2}\left(\phi_{a}+\phi_{b}\right)-\frac{2}{Q(Q-1)} E
\end{aligned}
$$

- Scalar E (energy), vector φ_{a} (order parameter) and tensor $\hat{\psi}_{a b}$ (two propagating clusters)
- Constraint $\sum_{a=1}^{Q} \phi_{a}=0$ and $\sum_{a(\neq b)} \hat{\psi}_{a b}=0$

Extension to rank- k tensors for all $k \geq 0$

$$
\begin{aligned}
& t_{1}=(3 \delta)-\frac{3}{Q}\left(1 t_{0}\right), \\
& t_{2}=(6 \delta)-\frac{2}{Q-2}\left(2 t_{1}\right)-\frac{6}{Q(Q-1)}\left(1 t_{0}\right), \\
& t_{3}=(6 \delta)-\frac{1}{Q-4}\left(3 t_{2}\right)-\frac{2}{(Q-2)(Q-3)}\left(3 t_{1}\right)-\frac{6}{Q(Q-1)(Q-2)}\left(1 t_{0}\right)
\end{aligned}
$$

Extension to rank- k tensors for all $k \geq 0$

$t_{1}=(3 \delta)-\frac{3}{Q}\left(1 t_{0}\right)$,
$t_{2}=(6 \delta)-\frac{2}{Q-2}\left(2 t_{1}\right)-\frac{6}{Q(Q-1)}\left(1 t_{0}\right)$,
$t_{3}=(6 \delta)-\frac{1}{Q-4}\left(3 t_{2}\right)-\frac{2}{(Q-2)(Q-3)}\left(3 t_{1}\right)-\frac{6}{Q(Q-1)(Q-2)}\left(1 t_{0}\right.$

Physical interpretation

- For $k \geq 2$, operator that makes k clusters propagate
- In 2D equivalent to $2 k$-leg watermelon operator ($2 k$ through lines in TL algebra)

Continuum limit

Energy operator $\varepsilon_{i}=E-\langle E\rangle$, with $E=\delta_{\sigma_{i} \neq \sigma_{i+1}}$ invariant

$$
\langle\varepsilon(r) \varepsilon(0)\rangle=(Q-1) \tilde{A}(Q) r^{-2 \Delta_{\varepsilon}(Q)},
$$

- All correlators of ε_{i} vanish at $Q=1$ (true already on the lattice)
- In 2D: exponent $\Delta_{\varepsilon}(Q)=d-\nu^{-1}$ known exactly

Continuum limit

Energy operator $\varepsilon_{i}=E-\langle E\rangle$, with $E=\delta_{\sigma_{i} \neq \sigma_{i+1}}$ invariant

$$
\langle\varepsilon(r) \varepsilon(0)\rangle=(Q-1) \tilde{A}(Q) r^{-2 \Delta_{\varepsilon}(Q)},
$$

- All correlators of ε_{i} vanish at $Q=1$ (true already on the lattice)
- In 2D: exponent $\Delta_{\varepsilon}(Q)=d-\nu^{-1}$ known exactly

Two-cluster operator $\hat{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)$

$$
\begin{aligned}
&\left\langle\hat{\psi}_{a b}(r) \hat{\psi}_{c d}(0)\right\rangle=\frac{2 A(Q)}{Q^{2}}\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}-\frac{1}{Q-2}\left(\delta_{a c}+\delta_{a d}\right.\right. \\
&\left.\left.+\delta_{b c}+\delta_{b d}\right)+\frac{2}{(Q-1)(Q-2)}\right) \times \underbrace{r^{-2 \Delta_{2}(Q)}}_{\text {CFT part }},
\end{aligned}
$$

- In 2D: exponent $\Delta_{2}=\frac{(4+g)(3 g-4)}{8 g}$ known from Coulomb gas

Percolation limit $Q \rightarrow 1$

Avoiding the $Q \rightarrow 1$ catastrophe

- The "scalar" part of $\left\langle\hat{\psi}_{a b}(r) \hat{\psi}_{c d}(0)\right\rangle$ diverges
- But $\Delta_{2}=\Delta_{\varepsilon}=\frac{5}{4}$ at $Q=1$ in 2D
- And actually $\Leftrightarrow d_{\text {red bonds }}^{F}=\nu^{-1}$ for all $2 \leq d \leq d_{\text {u.c. }}$ [Conigio 1982]
- So we can cure the divergence by mixing the two operators:

$$
\tilde{\psi}_{a b}(r)=\hat{\psi}_{a b}(r)+\frac{2}{Q(Q-1)} \varepsilon(r)
$$

Percolation limit $Q \rightarrow 1$

Avoiding the $Q \rightarrow 1$ catastrophe

- The "scalar" part of $\left\langle\hat{\psi}_{a b}(r) \hat{\psi}_{c d}(0)\right\rangle$ diverges
- But $\Delta_{2}=\Delta_{\varepsilon}=\frac{5}{4}$ at $Q=1$ in 2D
- And actually $\Leftrightarrow d_{\text {red bonds }}^{F}=\nu^{-1}$ for all $2 \leq d \leq d_{\text {u.c. }}$ [Conigio 1982]
- So we can cure the divergence by mixing the two operators:

$$
\tilde{\psi}_{a b}(r)=\hat{\psi}_{a b}(r)+\frac{2}{Q(Q-1)} \varepsilon(r)
$$

Using $\left\langle\hat{\psi}_{a b} \varepsilon\right\rangle=0$, we find a finite limit at $Q=1$

$$
\begin{aligned}
\left\langle\tilde{\psi}_{a b}(r) \tilde{\psi}_{c d}(0)\right\rangle=2 A(1) r^{-5 / 2}\left(\delta_{a c}+\delta_{a d}\right. & \left.+\delta_{b c}+\delta_{b d}+\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right) \\
& +4 A(1) \frac{2 \sqrt{3}}{\pi} r^{-5 / 2} \times \log r
\end{aligned}
$$

where we assumed that $A(1)=\tilde{A}(1)$.

Where does the log come from?

$$
\left.\frac{1}{Q-1}\left(r^{-2 \Delta_{\varepsilon}(Q)}-r^{-2 \Delta_{2}(Q)}\right) \sim 2 \frac{\mathrm{~d}\left(\Delta_{2}-\Delta_{\varepsilon}\right)}{\mathrm{d} Q}\right|_{Q=1} r^{-5 / 2} \log r
$$

- We need 2D only to compute this derivative (universal prefactor)

Where does the log come from?

$$
\left.\frac{1}{Q-1}\left(r^{-2 \Delta_{\varepsilon}(Q)}-r^{-2 \Delta_{2}(Q)}\right) \sim 2 \frac{\mathrm{~d}\left(\Delta_{2}-\Delta_{\varepsilon}\right)}{\mathrm{d} Q}\right|_{Q=1} r^{-5 / 2} \log r
$$

- We need 2D only to compute this derivative (universal prefactor)

Geometrical interpretation of this logarithmic correlator?

- Idea: Translate the spin expressions into FK cluster formulation
- One can show exactly on the lattice that
$\left\langle\varepsilon \hat{\psi}_{a b}\right\rangle=\left\langle\varepsilon \phi_{a}\right\rangle=\left\langle\hat{\psi}_{a b} \phi_{c}\right\rangle=0$, and also $\left\langle\hat{\psi}_{a b}\right\rangle=\left\langle\phi_{a}\right\rangle=\langle\varepsilon\rangle=0$.
- All correlators take a simple form in terms of FK clusters

For example we find:

$$
\left\langle\hat{\psi}_{a b}\left(\sigma_{i_{1}}, \sigma_{i_{1}+1}\right) \hat{\psi}_{c d}\left(\sigma_{i_{2}}, \sigma_{i_{2}+1}\right)\right\rangle \propto \mathbb{P}_{2}\left(r=r_{1}-r_{2}\right)
$$

This probability should thus behave as $r^{-2 \Delta_{2}}$
$\mathrm{i}_{2} \quad \mathrm{i}_{2}+1$

- Just like in the CFT limit, we introduce

$$
\tilde{\psi}_{a b}\left(r_{i}\right) \equiv \tilde{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)=\hat{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)+\frac{2}{Q(Q-1)} \varepsilon\left(\sigma_{i}, \sigma_{i+1}\right)
$$

- Just like in the CFT limit, we introduce

$$
\tilde{\psi}_{a b}\left(r_{i}\right) \equiv \tilde{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)=\hat{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)+\frac{2}{Q(Q-1)} \varepsilon\left(\sigma_{i}, \sigma_{i+1}\right)
$$

- Exact lattice expression for $\left\langle\tilde{\psi}_{a b}\left(r_{1}\right) \tilde{\psi}_{c d}\left(r_{2}\right)\right\rangle$ at $Q=1$
- Expression in terms of simple percolation probabilities.
- Just like in the CFT limit, we introduce

$$
\tilde{\psi}_{a b}\left(r_{i}\right) \equiv \tilde{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)=\hat{\psi}_{a b}\left(\sigma_{i}, \sigma_{i+1}\right)+\frac{2}{Q(Q-1)} \varepsilon\left(\sigma_{i}, \sigma_{i+1}\right)
$$

- Exact lattice expression for $\left\langle\tilde{\psi}_{a b}\left(r_{1}\right) \tilde{\psi}_{c d}\left(r_{2}\right)\right\rangle$ at $Q=1$
- Expression in terms of simple percolation probabilities.

Exact two-point function of $\tilde{\psi}_{a b}$ at $Q=1$

$$
\begin{aligned}
\left\langle\tilde{\psi}_{a b}\left(r_{1}\right) \tilde{\psi}_{c d}\left(r_{2}\right)\right\rangle=2\left(\delta_{a c}+\delta_{a d}\right. & \left.+\delta_{b c}+\delta_{b d}+\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right) \times \mathbb{P}_{2}(r) \\
& +4\left[\mathbb{P}_{0}(r)+\mathbb{P}_{1}(r)-2 \mathbb{P}_{2}(r)-\mathbb{P}_{\neq}^{2}\right]
\end{aligned}
$$

Putting it all together

Exact Two-point function of $\tilde{\psi}_{a b}$ at $Q=1$

$$
\begin{aligned}
\left\langle\tilde{\psi}_{a b}\left(r_{1}\right) \tilde{\psi}_{c d}\left(r_{2}\right)\right\rangle=2\left(\delta_{a c}+\delta_{a d}\right. & \left.+\delta_{b c}+\delta_{b d}+\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right) \times \mathbb{P}_{2}(r) \\
& +4\left[\mathbb{P}_{0}(r)+\mathbb{P}_{1}(r)-2 \mathbb{P}_{2}(r)-\mathbb{P}_{\neq}^{2}\right] .
\end{aligned}
$$

Putting it all together

Exact Two-point function of $\tilde{\psi}_{a b}$ at $Q=1$

$$
\begin{aligned}
\left\langle\tilde{\psi}_{a b}\left(r_{1}\right) \tilde{\psi}_{c d}\left(r_{2}\right)\right\rangle=2\left(\delta_{a c}+\delta_{a d}\right. & \left.+\delta_{b c}+\delta_{b d}+\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right) \times \mathbb{P}_{2}(r) \\
& +4\left[\mathbb{P}_{0}(r)+\mathbb{P}_{1}(r)-2 \mathbb{P}_{2}(r)-\mathbb{P}_{\neq}^{2}\right] .
\end{aligned}
$$

Reminder: CFT Expression

$$
\begin{aligned}
\left\langle\tilde{\psi}_{a b}(r) \tilde{\psi}_{c d}(0)\right\rangle=2 A(1) r^{-5 / 2}\left(\delta_{a c}+\delta_{a d}\right. & \left.+\delta_{b c}+\delta_{b d}+\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right) \\
& +4 A(1) \frac{2 \sqrt{3}}{\pi} r^{-5 / 2} \times \log r,
\end{aligned}
$$

Numerical check

Comparison with the CFT expression yields geometrical interpretation

$$
F(r) \equiv \frac{\mathbb{P}_{0}(r)+\mathbb{P}_{1}(r)-\mathbb{P}_{\neq}^{2}}{\mathbb{P}_{2}(r)} \sim \underbrace{\frac{2 \sqrt{3}}{\pi}}_{\text {universal }} \log r,
$$

Generalisation

- Log is in the disconnected part $\mathbb{P}_{0}(r)$
- Also true for polymers and disordered systems [Cardy 1999]
- Should hold for $2 \leq d \leq d_{\text {u.c. }}$, but prefactor depends on d
- Compute universal prefactor in $\epsilon=6-d$ expansion?

Generalisation

- Log is in the disconnected part $\mathbb{P}_{0}(r)$
- Also true for polymers and disordered systems [Cardy 1999]
- Should hold for $2 \leq d \leq d_{\text {u.c. }}$, but prefactor depends on d
- Compute universal prefactor in $\epsilon=6-d$ expansion?

Other interesting logarithmic limits

- $Q \rightarrow 0$ (spanning trees, dense polymers, resistor networks ...)
- $Q \rightarrow 2$ (Ising model)
- Logarithms for any integer Q ?

Three-point functions on two spins (for $Q=1$)

Just example, but we have complete results..$\left(\delta=\lim _{Q \rightarrow 1} \frac{\Delta_{\hat{\psi}}-\Delta_{\varepsilon}}{Q-1}\right)$

Three-point functions on two spins (for $Q=1$)

Just example, but we have complete results. . $\left(\delta=\lim _{Q \rightarrow 1} \frac{\Delta_{\hat{\psi}}-\Delta_{\varepsilon}}{Q-1}\right)$
$\mathbb{P}(\underset{\sim}{\sim}) \frac{F_{1}(1)}{\left(r_{12} r_{23} r_{31}\right)^{\Delta} \hat{\psi}^{(1)}}$

$$
\sim \frac{F_{1}(1)-F_{2}(1)}{\left(r_{12} r_{23} r_{31}\right)^{\Delta_{\hat{\psi}}(1)}}\left[\operatorname{cst}-\delta^{2} \log \left(\frac{r_{12} r_{23} r_{31}}{a^{3}}\right)^{2}\right]
$$

Conclusion

- We found a logarithmic observable specific to percolation $(Q=1)$ \Rightarrow Log CFTs as limits of ordinary CFTs
- We somehow completed [Polyakov 1970] for percolation
- Logarithms tend to appear in disconnected observables
- The logarithmic dependency can be checked numerically
- Many possible generalisations (in particular in higher dimensions).

Try to connect this to more formal work?

- The universal prefactor in front of the log is closely related to indecomposability parameters β that are crucial in Log CFT

