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Potts model and bond percolation

Partition function

Z =
∑
σ

∏
(ij)∈E

exp
(
K δσi ,σj

)
Spins σi = 1,2, . . . ,q with nearest-neighbour coupling K
Planar lattice G = (V ,E) with vertices i ∈ V and edges (ij) ∈ E

Fortuin-Kasteleyn representation

Write exp
(
K δσi ,σj

)
= 1 + vδσi ,σj with v := eK − 1

Z =
∑
A⊆E

v |A|qk(A)

q → 1 produces bond percolation, with p = v
1+v

Jesper L. Jacobsen (LPTENS) Critical manifolds CIDHI 2012 2 / 19



Potts model and bond percolation

Partition function

Z =
∑
σ

∏
(ij)∈E

exp
(
K δσi ,σj

)
Spins σi = 1,2, . . . ,q with nearest-neighbour coupling K
Planar lattice G = (V ,E) with vertices i ∈ V and edges (ij) ∈ E

Fortuin-Kasteleyn representation

Write exp
(
K δσi ,σj

)
= 1 + vδσi ,σj with v := eK − 1

Z =
∑
A⊆E

v |A|qk(A)

q → 1 produces bond percolation, with p = v
1+v

Jesper L. Jacobsen (LPTENS) Critical manifolds CIDHI 2012 2 / 19



Potts model and bond percolation

Partition function

Z =
∑
σ

∏
(ij)∈E

exp
(
K δσi ,σj

)
Spins σi = 1,2, . . . ,q with nearest-neighbour coupling K
Planar lattice G = (V ,E) with vertices i ∈ V and edges (ij) ∈ E

Fortuin-Kasteleyn representation

Write exp
(
K δσi ,σj

)
= 1 + vδσi ,σj with v := eK − 1

Z =
∑
A⊆E

v |A|qk(A)

q → 1 produces bond percolation, with p = v
1+v

Jesper L. Jacobsen (LPTENS) Critical manifolds CIDHI 2012 2 / 19



Critical manifold and percolation threshold

Solvability only on a few lattices G

(v2 − q)(v2 + 4v + q) = 0 , (square lattice)
v3 + 3v2 − q = 0 , (triangular lattice)

v3 − 3qv − q2 = 0 . (hexagonal lattice)

Comes from integrability / discrete holomorphicity
Certain inhomogeneous extensions (spectral parameter)

Percolation case
Given q, all solutions for v are physically interesting!
For percolation, usually only pc ∈ [0,1] is considered:

psq
c =

1
2
, ptri

c = 1− phex
c = 2 sin

( π
18

)
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What about other lattices?

All solvable cases are of the “3-terminal form”

All Archimedean lattices can be written in “4-terminal form”
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Homogeneity assumption (F.Y. Wu)

Inspired guesswork by analogies with 3-terminal results

Kagome lattice (Wu 1979) Benchmark for non 3-terminal case

v6 + 6v5 + 9v4 − 2qv3 − 12qv2 − 6q2v − q3 = 0

Initially conjectured exact by Wu

For q = 2 correctly giving vc =
√

3 + 2
√

3− 1
For q = 1 it predicts pc = 0.524 429 717 · · ·
But numerics gives: pc = 0.524 404 978 (5)

Not clear why this is so precise
Not clear if one can make this even more precise
The adaptation to other lattices is somewhat ad hoc
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Solvability of 3-terminal lattices

Boltzmann weight of elementary triangle
w123 = c0 + c1δ23 + c2δ13 + c3δ12 + c4δ123

c0 c1 c2 c3 c4

FK cluster partition function Z =
∑

A⊆E qk(A)∏4
p=0(cp)

Np

Solution for the critical manifold (Wu-Lin 1980)
Cluster boundaries live on (another) triangular lattice
Imposing invariance under π/3 rotations gives: c4 = qc0

This provides the exact critical manifold for all 3-terminal lattices:
P(q, v) = c4 − qc0 = 0
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Niiskuneiti
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The graph polynomial

Contraction-deletion identity for Potts model partition function

ZG(q, {v}) = veZG/e(q, {v}) + ZG\e(q, {v})

Method and key hypothesis
Let B (the “basis”) be a finite portion of G with N terminals
G is obtained by tiling space with B in a certain way (the
“embedding”), gluing copies of B at the terminals
Suppose the critical polynomial PB(q, v) satisfies the
contraction-deletion identity, for any edge in B
When reduced to 3-terminal case, replace by exact P(q, v)
Critical manifold is then supposed to be: PB(q, v) = 0
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4-terminal examples with checkerboard embedding

Square lattice with B = square of four edges

PB(q, {v1, v2, v3, v4}) = v4PBtri(q, {v1, v2, v3}) + PBhex(q, {v1, v2, v3})
1. term: two terminals have been identified
2. term: embedding is used to flip one edge

PB(q, {vi}) = v1v2v3v4 + (v2v3v4 + v1v3v4 + v1v2v4 + v1v2v3)

−q(v1 + v2 + v3 + v4)− q2

Just integrability of 6V model with staggered spectral parameters
Homogeneous case: PB(q, v) = (v2 − q)(v2 + 4v + q)

Kagome lattice with B = bow tie of six edges
We recover precisely Wu’s sixth-order polynomial
Suggests improving the precision by increasing the size of B
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General structure of the results (1)

Factorisation property for G = solvable case
PB(q, v) factorises, shedding a “small factor”
Small factor independent of size of B, and gives exact solution
Checked for “all” known solutions of the Potts model

Even when the Potts model on G is not solvable in general, we
find factorisation (i.e., exact result) for the Ising model q = 2

Computing PB(q, v) serves to detect exact solvability
Any connection to discrete holomorphicity and/or integrability?
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General structure of the results (2)

High accuracy approximation for G = not solvable case

E.g. bond percolation threshold on the (3,122) lattice with
B = 9n2 edges

1 0.740 423 317 919 896 · · ·
2 0.740 420 992 429 996 · · ·
3 0.740 420 818 821 979 · · ·
4 0.740 420 802 130 112 · · ·
5 0.740 420 799 639 763 · · ·
6 0.740 420 799 096 903 · · ·
7 0.740 420 798 942 744 · · ·

∞ 0.740 420 798 847 4(7) [Thanks to Tony Guttmann]
Numerics 0.740 420 77 (2) [Ding et al. 2010]

With extrapolation, we can attain 12 or 13-digit precision
Same precision for other q, at least when v > 0
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Computing PB(q, v) in practice

Getting started
By hand, up to ∼ 10 edges
By deletion-contraction, up to ∼ 40 edges

Transfer matrix method
Made possible by an equivalent definition of PB(q, v)

Naive method, up to ∼ 100 edges
Improved method (using periodic TL algebra), up to ∼ 400 edges

The equivalent definition permits us to address also site percolation
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Equivalent definition of PB(q, v)

Experimental approach
Compute PB by deletion-contraction with inhomogeneous {vi}
Various G and B, different embeddings, up to ∼ 30 edges
Terms in PB(q, v) interpreted as connectivities among B-terminals

Same result found in all cases

PB(q, v) = Z2D − qZ0D

2D (resp. 0D) means that diagram spans both (resp. none) space
directions, modulo the embedding
Factors of q are computed by identifying the terminals of B, as
defined by the embedding
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Example: Square lattice with B = square of four edges

qv4

Z2D = qv4

4qv3

Z2D = qv4Z2D = qv4 + 4qv3

4qv2

Z2D = qv4 + 4qv3Z2D = qv4 + 4qv3

Z1D = 4qv2

2qv2

Z2D = qv4 + 4qv3

Z1D = 4qv2

Z2D = qv4 + 4qv3

Z1D = 4qv2 + 2qv2

4qv

Z2D = qv4 + 4qv3

Z1D = 4qv2 + 2qv2

Z2D = qv4 + 4qv3

Z1D = 4qv2 + 2qv2

Z0D = 4qv

q2

Z2D = qv4 + 4qv3

Z1D = 4qv2 + 2qv2

Z0D = 4qv

Z2D = qv4 + 4qv3

Z1D = 4qv2 + 2qv2

Z0D = 4qv + q2

Z2D = qv4 + 4qv3

Z1D = 4qv2 + 2qv2

Z0D = 4qv + q2

PB(q, v) = Z2D − qZ0D = q(v2 − q)(v2 + 4v + q)
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Naive transfer matrix method

Let CN = 1
N+1

(2N
N

)
be the Catalan numbers

CN partitions of the N terminals of a basis B (respecting planarity)
Transfer matrix computes weight [polynomial in (q, v)] of each
partition
From this construct Z2D, Z1D and Z0D

No need to consider all of G to distinguish between 2D, 1D and 0D
Follows from B and the embedding by using the Euler relation
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Improved transfer matrix method

We are mainly interested 4-terminal lattices with embeddings that
correspond to imposing toroidal boundary conditions on B

= terminal of B

= periodic boundary condition

= auxiliary spaces

= quantum spaces

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R-matrix (in terms of TL algebra)

Divides by 2 the number of terminals, but requires some thoughts
about the correct elimination of Z1D diagrams (periodic TL algebra)
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Archimedean lattices (examples)

Square lattice(4,82) latticeKagome lattice(3,122) lattice

In this way we can construct all 11 Archimedean lattices

“Small factor” gives exact result for all solvable cases
In other cases, precision on vc exceeds that of any other method
(Monte Carlo, transfer matrix, series expansion,. . . )
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Example of complete phase diagram: Kagome lattice

0 1 2 3 4
q

-3

-2

-1

0

1

2

v

6 edge basis

12 edge basis

24 edge basis

36 edge basis

G

O

A

B C

D

E

F
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Conclusion

Summary
PB(q, v) provides new method of determining critical manifolds
Easy to compute by hand for small bases

Provides exact results if model is solvable
Efficient computer algorithm for larger bases

Factorisation of small factor confirms exact solvability
High accuracy (12–13 decimal digits) for non-solvable cases (v > 0)
Intricate phase diagrams in antiferromagnetic regime (v < 0)

Outlook
Relation to integrability / discrete holomorphicity must be clarified
Applications to other types of models (including quantum)?
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