Critical manifolds for percolation and Potts models from graph polynomials

Jesper L. Jacobsen 1,2

${ }^{1}$ Laboratoire de Physique Théorique, École Normale Supérieure, Paris

${ }^{2}$ Université Pierre et Marie Curie, Paris

Conformal Invariance, Discrete Holomorphicity and Integrability Helsinki, 14 June 2012

Collaborator: Christian R. Scullard (Lawrence Livermore Nat'l Lab)

Potts model and bond percolation

Partition function

$$
Z=\sum_{\sigma} \prod_{(i j) \in E} \exp \left(K \delta_{\sigma_{i, \sigma_{j}}}\right)
$$

- Spins $\sigma_{i}=1,2, \ldots, q$ with nearest-neighbour coupling K
- Planar lattice $G=(V, E)$ with vertices $i \in V$ and edges $(i j) \in E$

Fortuin-Kasteleyn representation

- Write $\exp \left(K \delta_{\sigma_{i}, \sigma_{j}}\right)=1+v \delta_{\sigma_{i}, \sigma_{j}}$ with $v:=\mathrm{e}^{K}-1$

- $q \rightarrow 1$ produces bond percolation, with $p=\frac{v}{1+v}$

Potts model and bond percolation

Partition function

$$
Z=\sum_{\sigma} \prod_{(i j) \in E} \exp \left(K \delta_{\sigma_{i, \sigma_{j}}}\right)
$$

- Spins $\sigma_{i}=1,2, \ldots, q$ with nearest-neighbour coupling K
- Planar lattice $G=(V, E)$ with vertices $i \in V$ and edges $(i j) \in E$

Fortuin-Kasteleyn representation

- Write $\exp \left(K \delta_{\sigma_{i}, \sigma_{j}}\right)=1+v \delta_{\sigma_{i}, \sigma_{j}}$ with $v:=\mathrm{e}^{K}-1$

$$
Z=\sum_{A \subseteq E} v^{|A|} q^{k(A)}
$$

[^0]
Potts model and bond percolation

Partition function

$$
Z=\sum_{\sigma} \prod_{(i j \in E} \exp \left(K \delta_{\sigma_{i}, \sigma_{j}}\right)
$$

- Spins $\sigma_{i}=1,2, \ldots, q$ with nearest-neighbour coupling K
- Planar lattice $G=(V, E)$ with vertices $i \in V$ and edges $(i j) \in E$

Fortuin-Kasteleyn representation

- Write $\exp \left(K \delta_{\sigma_{i}, \sigma_{j}}\right)=1+v \delta_{\sigma_{i}, \sigma_{j}}$ with $v:=\mathrm{e}^{K}-1$

$$
Z=\sum_{A \subseteq E} v^{|A|} q^{k(A)}
$$

- $q \rightarrow 1$ produces bond percolation, with $p=\frac{v}{1+v}$

Critical manifold and percolation threshold

Solvability only on a few lattices G

$$
\begin{aligned}
\left(v^{2}-q\right)\left(v^{2}+4 v+q\right) & =0, & & \text { (square lattice) } \\
v^{3}+3 v^{2}-q & =0, & & \text { (triangular lattice) } \\
v^{3}-3 q v-q^{2} & =0 . & & \text { (hexagonal lattice) }
\end{aligned}
$$

- Comes from integrability / discrete holomorphicity
- Certain inhomogeneous extensions (spectral parameter)

Critical manifold and percolation threshold

Solvability only on a few lattices G

$$
\begin{aligned}
\left(v^{2}-q\right)\left(v^{2}+4 v+q\right) & =0, & & \text { (square lattice) } \\
v^{3}+3 v^{2}-q & =0, & & \text { (triangular lattice) } \\
v^{3}-3 q v-q^{2} & =0 . & & \text { (hexagonal lattice) }
\end{aligned}
$$

- Comes from integrability / discrete holomorphicity
- Certain inhomogeneous extensions (spectral parameter)

Percolation case

- Given q, all solutions for v are physically interesting!
- For percolation, usually only $p_{c} \in[0,1]$ is considered:

$$
p_{\mathrm{c}}^{\mathrm{sq}}=\frac{1}{2}, \quad p_{\mathrm{c}}^{\mathrm{tri}}=1-p_{\mathrm{c}}^{\mathrm{hex}}=2 \sin \left(\frac{\pi}{18}\right)
$$

What about other lattices?

All solvable cases are of the " 3 -terminal form"

(a)

(b)

(a)

(b)

What about other lattices?

All Archimedean lattices can be written in "4-terminal form"

(a)

(b)

Homogeneity assumption (F.Y. Wu)

- Inspired guesswork by analogies with 3-terminal results

Kagome lattice (Wu 1979)

- Initially conjectured exact by Wu
- For $q=2$ correctly giving $v_{c}=\sqrt{3+2 \sqrt{3}}-1$
- For $q=1$ it predicts $p_{\mathrm{c}}=0.524429717$
- But numerics gives: $p_{c}=0.524404978$ (5)

- Not clear why this is so precise
- Not clear if one can make this even more precise
- The adaptation to other lattices is somewhat ad hoc

Homogeneity assumption (F.Y. Wu)

- Inspired guesswork by analogies with 3-terminal results

Kagome lattice (Wu 1979)
$v^{6}+6 v^{5}+9 v^{4}-2 q v^{3}-12 q v^{2}-6 q^{2} v-q^{3}=0$

- Initially conjectured exact by Wu
- For $q=2$ correctly giving $v_{c}=\sqrt{3+2 \sqrt{3}}-1$
- For $q=1$ it predicts $p_{c}=0.524429717 \ldots$
- But numerics gives: $p_{c}=0.524404978$ (5)

- Not clear why this is so precise
- Not clear if one can make this even more precise
- The adaptation to other lattices is somewhat ad hoc

Homogeneity assumption (F.Y. Wu)

- Inspired guesswork by analogies with 3-terminal results

Kagome lattice (Wu 1979)
$v^{6}+6 v^{5}+9 v^{4}-2 q v^{3}-12 q v^{2}-6 q^{2} v-q^{3}=0$

- Initially conjectured exact by Wu
- For $q=2$ correctly giving $v_{c}=\sqrt{3+2 \sqrt{3}}-1$
- For $q=1$ it predicts $p_{c}=0.524429717 \ldots$
- But numerics gives: $p_{c}=0.524404978$ (5)

- Not clear why this is so precise
- Not clear if one can make this even more precise
- The adaptation to other lattices is somewhat ad hoc

Solvability of 3-terminal lattices

- Boltzmann weight of elementary triangle

$$
w_{123}=c_{0}+c_{1} \delta_{23}+c_{2} \delta_{13}+c_{3} \delta_{12}+c_{4} \delta_{123}
$$

- FK cluster partition function $Z=\sum_{A \subseteq E} q^{k(A)} \prod_{p=0}^{4}\left(c_{p}\right)^{N_{p}}$

Solution for the critical manifold

- Cluster boundaries live on (another) triangular lattice
- Imposing invariance under $\pi / 3$ rotations gives: $c_{4}=q c_{0}$
- This provides the exact critical manifold for all 3-terminal lattices: $P(q, v)=c_{4}-q c_{0}=0$

Solvability of 3-terminal lattices

- Boltzmann weight of elementary triangle

$$
w_{123}=c_{0}+c_{1} \delta_{23}+c_{2} \delta_{13}+c_{3} \delta_{12}+c_{4} \delta_{123}
$$

- FK cluster partition function $Z=\sum_{A \subseteq E} q^{k(A)} \prod_{p=0}^{4}\left(c_{p}\right)^{N_{p}}$

Solution for the critical manifold
 1980)

- Cluster boundaries live on (another) triangular lattice
- Imposing invariance under $\pi / 3$ rotations gives: $c_{4}=q c_{0}$
- This provides the exact critical manifold for all 3-terminal lattices:
$P(q, v)=c_{4}-q c_{0}=0$

Niiskuneiti

The graph polynomial

Contraction-deletion identity for Potts model partition function

$$
Z_{G}(q,\{v\})=v_{e} Z_{G / e}(q,\{v\})+Z_{G \backslash e}(q,\{v\})
$$

Method and key hypothesis

- Let B (the "basis") be a finite portion of G with N terminals
- G is obtained by tiling space with B in a certain way (the "embedding"), gluing copies of B at the terminals
- Suppose the critical polynomial $P_{B}(q, v)$ satisfies the contraction-deletion identity, for any edge in B
- When reduced to 3-terminal case, replace by exact $P(q, v)$
- Critical manifold is then supposed to be: $P_{B}(q, v)=0$

The graph polynomial

Contraction-deletion identity for Potts model partition function

$$
Z_{G}(q,\{v\})=v_{e} Z_{G / e}(q,\{v\})+Z_{G \backslash e}(q,\{v\})
$$

Method and key hypothesis

- Let B (the "basis") be a finite portion of G with N terminals
- G is obtained by tiling space with B in a certain way (the "embedding"), gluing copies of B at the terminals
- Suppose the critical polynomial $P_{B}(q, v)$ satisfies the contraction-deletion identity, for any edge in B
- When reduced to 3 -terminal case, replace by exact $P(q, v)$
- Critical manifold is then supposed to be:

The graph polynomial

Contraction-deletion identity for Potts model partition function

$$
Z_{G}(q,\{v\})=v_{e} Z_{G / e}(q,\{v\})+Z_{G \backslash e}(q,\{v\})
$$

Method and key hypothesis

- Let B (the "basis") be a finite portion of G with N terminals
- G is obtained by tiling space with B in a certain way (the "embedding"), gluing copies of B at the terminals
- Suppose the critical polynomial $P_{B}(q, v)$ satisfies the contraction-deletion identity, for any edge in B
- When reduced to 3-terminal case, replace by exact $P(q, v)$
- Critical manifold is then supposed to be: $P_{B}(q, v)=0$

4-terminal examples with checkerboard embedding

Square lattice with $B=$ square of four edges

$P_{B}\left(q,\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)=v_{4} P_{B_{\text {tri }}}\left(q,\left\{v_{1}, v_{2}, v_{3}\right\}\right)+P_{B^{\operatorname{tex}}}\left(q,\left\{v_{1}, v_{2}, v_{3}\right\}\right)$

- 1. term: two terminals have been identified
- 2. term: embedding is used to flip one edge
- Just integrability of 6V model with staggered spectral parameters
- Homogeneous case: $P_{B}(q, v)=\left(v^{2}-q\right)\left(v^{2}+4 v+q\right)$

Kagome lattice with $B=$ bow tie of six edges

- We recover precisely Wu's sixth-order polynomial
- Suggests improving the precision by increasing the size of B

4-terminal examples with checkerboard embedding

Square lattice with $B=$ square of four edges

$P_{B}\left(q,\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)=v_{4} P_{B_{\text {tri }}}\left(q,\left\{v_{1}, v_{2}, v_{3}\right\}\right)+P_{B^{\operatorname{tex}}}\left(q,\left\{v_{1}, v_{2}, v_{3}\right\}\right)$

- 1. term: two terminals have been identified
- 2. term: embedding is used to flip one edge

$$
\begin{aligned}
P_{B}\left(q,\left\{v_{i}\right\}\right)= & v_{1} v_{2} v_{3} v_{4}+\left(v_{2} v_{3} v_{4}+v_{1} v_{3} v_{4}+v_{1} v_{2} v_{4}+v_{1} v_{2} v_{3}\right) \\
& -q\left(v_{1}+v_{2}+v_{3}+v_{4}\right)-q^{2}
\end{aligned}
$$

- Just integrability of 6 V model with staggered spectral parameters
- Homogeneous case: $P_{B}(q, v)=\left(v^{2}-q\right)\left(v^{2}+4 v+q\right)$
\square
- We recover precisely Wu's sixth-order polynomial
- Suggests improving the precision by increasing the size of B

4-terminal examples with checkerboard embedding

Square lattice with $B=$ square of four edges
$P_{B}\left(q,\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}\right)=v_{4} P_{B_{\text {tii }}}\left(q,\left\{v_{1}, v_{2}, v_{3}\right\}\right)+P_{B^{\operatorname{tex}}}\left(q,\left\{v_{1}, v_{2}, v_{3}\right\}\right)$

- 1. term: two terminals have been identified
- 2. term: embedding is used to flip one edge

$$
\begin{aligned}
P_{B}\left(q,\left\{v_{i}\right\}\right)= & v_{1} v_{2} v_{3} v_{4}+\left(v_{2} v_{3} v_{4}+v_{1} v_{3} v_{4}+v_{1} v_{2} v_{4}+v_{1} v_{2} v_{3}\right) \\
& -q\left(v_{1}+v_{2}+v_{3}+v_{4}\right)-q^{2}
\end{aligned}
$$

- Just integrability of 6 V model with staggered spectral parameters
- Homogeneous case: $P_{B}(q, v)=\left(v^{2}-q\right)\left(v^{2}+4 v+q\right)$

Kagome lattice with $B=$ bow tie of six edges

- We recover precisely Wu's sixth-order polynomial
- Suggests improving the precision by increasing the size of B

General structure of the results (1)

Factorisation property for $G=$ solvable case

- $P_{B}(q, v)$ factorises, shedding a "small factor"
- Small factor independent of size of B, and gives exact solution
- Checked for "all" known solutions of the Potts model
> - Even when the Potts model on G is not solvable in general, we find factorisation (i.e., exact result) for the Ising model $q=2$

Computing $P_{B}(q, v)$ serves to
 - Any connection to discrete holomorphicity and/or integrability?

General structure of the results (1)

Factorisation property for $G=$ solvable case

- $P_{B}(q, v)$ factorises, shedding a "small factor"
- Small factor independent of size of B, and gives exact solution
- Checked for "all" known solutions of the Potts model
- Even when the Potts model on G is not solvable in general, we find factorisation (i.e., exact result) for the Ising model $q=2$

General structure of the results (1)

Factorisation property for $G=$ solvable case

- $P_{B}(q, v)$ factorises, shedding a "small factor"
- Small factor independent of size of B, and gives exact solution
- Checked for "all" known solutions of the Potts model
- Even when the Potts model on G is not solvable in general, we find factorisation (i.e., exact result) for the Ising model $q=2$

Computing $P_{B}(q, v)$ serves to

- Any connection to discrete holomorphicity and/or integrability?

General structure of the results (2)

High accuracy approximation for $G=$ not solvable case

- E.g. bond percolation threshold on the $\left(3,12^{2}\right)$ lattice with $B=9 n^{2}$ edges
$10.740423317919896 \ldots$
$20.740420992429996 \ldots$
$30.740420818821979 \ldots$
$40.740420802130112 \ldots$
$50.740420799639763 \ldots$
$60.740420799096903 \ldots$
$70.740420798942744 \ldots$

General structure of the results (2)

High accuracy approximation for $G=$ not solvable case

- E.g. bond percolation threshold on the $\left(3,12^{2}\right)$ lattice with $B=9 n^{2}$ edges

$$
\begin{array}{ll}
1 & 0.740423317919896 \cdots \\
2 & 0.740420992429996 \cdots \\
3 & 0.740420818821979 \cdots \\
4 & 0.740420802130112 \cdots \\
5 & 0.740420799639763 \cdots \\
6 & 0.740420799096903 \cdots \\
7 & 0.740420798942744 \cdots
\end{array}
$$

$\infty \quad 0.7404207988474(7) \quad$ [Thanks to Tony Guttmann]

General structure of the results (2)

High accuracy approximation for $G=$ not solvable case

- E.g. bond percolation threshold on the $\left(3,12^{2}\right)$ lattice with $B=9 n^{2}$ edges
$10.740423317919896 \ldots$
$20.740420992429996 \ldots$
$30.740420818821979 \ldots$
$40.740420802130112 \ldots$
$50.740420799639763 \ldots$
$60.740420799096903 \ldots$
$70.740420798942744 \ldots$
$\infty \quad 0.7404207988474(7) \quad$ [Thanks to Tony Guttmann]
Numerics 0.74042077 (2) [Ding et al. 2010]

General structure of the results (2)

High accuracy approximation for $G=$ not solvable case

- E.g. bond percolation threshold on the $\left(3,12^{2}\right)$ lattice with $B=9 n^{2}$ edges
$10.740423317919896 \ldots$
$20.740420992429996 \ldots$
$30.740420818821979 \ldots$
4 0.740420802130112...
$50.740420799639763 \ldots$
$60.740420799096903 \ldots$
$70.740420798942744 \ldots$
$\infty \quad 0.7404207988474(7) \quad$ [Thanks to Tony Guttmann]
Numerics 0.74042077 (2) [Ding et al. 2010]
- With extrapolation, we can attain 12 or 13-digit precision
- Same precision for other q, at least when $v>0$

Computing $P_{B}(q, v)$ in practice

Getting started

- By hand, up to ~ 10 edges
- By deletion-contraction, up to ~ 40 edges

Transfer matrix method

Made possible by an equivalent definition of $P_{B}(q, v)$

- Naive method, up to ~ 100 edges
- Improved method (using periodic TL algebra), up to ~ 400 edges

The equivalent definition permits us to address also site percolation

Computing $P_{B}(q, v)$ in practice

Getting started

- By hand, up to ~ 10 edges
- By deletion-contraction, up to ~ 40 edges

Transfer matrix method

Made possible by an equivalent definition of $P_{B}(q, v)$

- Naive method, up to ~ 100 edges
- Improved method (using periodic TL algebra), up to ~ 400 edges

The equivalent definition permits us to address also site percolation

Computing $P_{B}(q, v)$ in practice

Getting started

- By hand, up to ~ 10 edges
- By deletion-contraction, up to ~ 40 edges

Transfer matrix method

Made possible by an equivalent definition of $P_{B}(q, v)$

- Naive method, up to ~ 100 edges
- Improved method (using periodic TL algebra), up to ~ 400 edges

The equivalent definition permits us to address also site percolation

Equivalent definition of $P_{B}(q, v)$

Experimental approach

- Compute P_{B} by deletion-contraction with inhomogeneous $\left\{v_{i}\right\}$
- Various G and B, different embeddings, up to ~ 30 edges
- Terms in $P_{B}(q, v)$ interpreted as connectivities among B-terminals

Same result found in all cases

- 2D (resp. 0D) means that diagram spans both (resp. none) space directions, modulo the embedding
- Factors of q are computed by identifying the terminals of B, as defined by the embedding

Equivalent definition of $P_{B}(q, v)$

Experimental approach

- Compute P_{B} by deletion-contraction with inhomogeneous $\left\{v_{i}\right\}$
- Various G and B, different embeddings, up to ~ 30 edges
- Terms in $P_{B}(q, v)$ interpreted as connectivities among B-terminals

Same result found in all cases

$$
P_{B}(q, v)=Z_{2 \mathrm{D}}-q Z_{0 \mathrm{D}}
$$

- 2D (resp. 0D) means that diagram spans both (resp. none) space directions, modulo the embedding
- Factors of q are computed by identifying the terminals of B, as defined by the embedding

Example: Square lattice with $B=$ square of four edges

Example: Square lattice with $B=$ square of four edges

$q v^{4}$

Example: Square lattice with $B=$ square of four edges

$q v^{4}$

Example: Square lattice with $B=$ square of four edges

$$
Z_{2 \mathrm{D}}=q v^{4}
$$

Example: Square lattice with $B=$ square of four edges

$$
Z_{2 \mathrm{D}}=q v^{4}
$$

$4 q v^{3}$

Example: Square lattice with $B=$ square of four edges

$$
Z_{2 \mathrm{D}}=q v^{4}
$$

$4 q v^{3}$

Example: Square lattice with $B=$ square of four edges

$$
Z_{2 \mathrm{D}}=q v^{4}+4 q v^{3}
$$

$4 q v^{3}$

Example: Square lattice with $B=$ square of four edges

$4 q v^{2}$

Example: Square lattice with $B=$ square of four edges

$$
Z_{2 \mathrm{D}}=q v^{4}+4 q v^{3}
$$

$4 q v^{2}$

Example: Square lattice with $B=$ square of four edges

Example: Square lattice with $B=$ square of four edges

$2 q v^{2}$

Example: Square lattice with $B=$ square of four edges

$2 q v^{2}$

$$
\begin{aligned}
& Z_{2 \mathrm{D}}=q v^{4}+4 q v^{3} \\
& Z_{1 \mathrm{D}}=4 q v^{2}
\end{aligned}
$$

Example: Square lattice with $B=$ square of four edges

$2 q v^{2}$

$$
\begin{aligned}
& Z_{2 \mathrm{D}}=q v^{4}+4 q v^{3} \\
& Z_{1 \mathrm{D}}=4 q v^{2}+2 q v^{2}
\end{aligned}
$$

Example: Square lattice with $B=$ square of four edges

Example: Square lattice with $B=$ square of four edges

Example: Square lattice with $B=$ square of four edges

Example: Square lattice with $B=$ square of four edges

Example: Square lattice with $B=$ square of four edges

Example: Square lattice with $B=$ square of four edges

$$
\begin{aligned}
& Z_{2 \mathrm{D}}=q v^{4}+4 q v^{3} \\
& Z_{1 \mathrm{D}}=4 q v^{2}+2 q v^{2} \\
& Z_{0 \mathrm{D}}=4 q v+q^{2}
\end{aligned}
$$

$$
P_{B}(q, v)=Z_{2 \mathrm{D}}-q Z_{0 \mathrm{D}}=q\left(v^{2}-q\right)\left(v^{2}+4 v+q\right)
$$

Naive transfer matrix method

- Let $C_{N}=\frac{1}{N+1}\binom{2 N}{N}$ be the Catalan numbers
- C_{N} partitions of the N terminals of a basis B (respecting planarity)
- Transfer matrix computes weight [polynomial in (q, v)] of each partition
- From this construct $Z_{2 \mathrm{D}}, Z_{1 \mathrm{D}}$ and $Z_{0 \mathrm{D}}$
- No need to consider all of G to distinguish between 2D, 1D and OD
- Follows from B and the embedding by using the Euler relation

Naive transfer matrix method

- Let $C_{N}=\frac{1}{N+1}\binom{2 N}{N}$ be the Catalan numbers
- C_{N} partitions of the N terminals of a basis B (respecting planarity)
- Transfer matrix computes weight [polynomial in (q, v)] of each partition
- From this construct $Z_{2 \mathrm{D}}, Z_{1 \mathrm{D}}$ and $Z_{0 \mathrm{D}}$
- No need to consider all of G to distinguish between 2D, 1D and 0D
- Follows from B and the embedding by using the Euler relation

Improved transfer matrix method

- We are mainly interested 4-terminal lattices with embeddings that correspond to imposing toroidal boundary conditions on B

Improved transfer matrix method

- We are mainly interested 4-terminal lattices with embeddings that correspond to imposing toroidal boundary conditions on B

- = terminal of B

Improved transfer matrix method

- We are mainly interested 4 -terminal lattices with embeddings that correspond to imposing toroidal boundary conditions on B

- = terminal of B
$\mathbf{O}=$ periodic boundary condition

Improved transfer matrix method

- We are mainly interested 4-terminal lattices with embeddings that correspond to imposing toroidal boundary conditions on B

- = terminal of B
$\mathbf{O}=$ periodic boundary condition
_ = auxiliary spaces

Improved transfer matrix method

- We are mainly interested 4-terminal lattices with embeddings that correspond to imposing toroidal boundary conditions on B

- = terminal of B
$\mathbf{O}=$ periodic boundary condition
_ = auxiliary spaces
- = quantum spaces

Improved transfer matrix method

- We are mainly interested 4-terminal lattices with embeddings that correspond to imposing toroidal boundary conditions on B

- = terminal of B
$\mathbf{O}=$ periodic boundary condition
— = auxiliary spaces
- = quantum spaces

R-matrix (in terms of TL algebra)

Improved transfer matrix method

- We are mainly interested 4-terminal lattices with embeddings that correspond to imposing toroidal boundary conditions on B

- = terminal of B
$\mathbf{O}=$ periodic boundary condition
— = auxiliary spaces
- = quantum spaces

R-matrix (in terms of TL algebra)

- Divides by 2 the number of terminals, but requires some thoughts about the correct elimination of $Z_{1 D}$ diagrams (periodic TL algebra)

Archimedean lattices (examples)

Archimedean lattices (examples)

Square lattice

Archimedean lattices (examples)

$\left(4,8^{2}\right)$ lattice

Archimedean lattices (examples)

Kagome lattice

Archimedean lattices (examples)

$\left(3,12^{2}\right)$ lattice

Archimedean lattices (examples)

$\left(3,12^{2}\right)$ lattice

- In this way we can construct all 11 Archimedean lattices
- "Small factor" gives exact result for all solvable cases
- In other cases, precision on v_{c} exceeds that of any other method (Monte Carlo, transfer matrix, series expansion,...)

Example of complete phase diagram: Kagome lattice

Conclusion

Summary

- $P_{B}(q, v)$ provides new method of determining critical manifolds
- Easy to compute by hand for small bases
- Provides exact results if model is solvable
- Efficient computer algorithm for larger bases
- Factorisation of small factor confirms exact solvability
- High accuracy (12-13 decimal digits) for non-solvable cases ($v>0$)
- Intricate phase diagrams in antiferromagnetic regime ($\mathrm{V}<0$)

Outlook

- Relation to integrability / discrete holomorphicity must be clarified
- Applications to other types of models (including quantum)?

Conclusion

Summary

- $P_{B}(q, v)$ provides new method of determining critical manifolds
- Easy to compute by hand for small bases
- Provides exact results if model is solvable
- Efficient computer algorithm for larger bases
- Factorisation of small factor confirms exact solvability
- High accuracy (12-13 decimal digits) for non-solvable cases ($v>0$)
- Intricate phase diagrams in antiferromagnetic regime ($v<0$)
> - Relation to integrability / discrete holomorphicity must be clarified - Applications to other types of models (including quantum)?

Conclusion

Summary

- $P_{B}(q, v)$ provides new method of determining critical manifolds
- Easy to compute by hand for small bases
- Provides exact results if model is solvable
- Efficient computer algorithm for larger bases
- Factorisation of small factor confirms exact solvability
- High accuracy (12-13 decimal digits) for non-solvable cases ($v>0$)
- Intricate phase diagrams in antiferromagnetic regime ($v<0$)

Outlook

- Relation to integrability / discrete holomorphicity must be clarified
- Applications to other types of models (including quantum)?

[^0]: - $q \rightarrow 1$ produces bond percolation, with $p=\frac{v}{1+v}$

