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Potts model and bond percolation

Partition function
Z=>" ][ exp (Kbos)

o (if)eE

@ Spins o; =1,2,...,q with nearest-neighbour coupling K
@ Planar lattice G = (V, E) with vertices i € V and edges (jj) € E
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Potts model and bond percolation

Partition function

Z= Z H exp (K50f,01)

o (j)eE

@ Spins o; =1,2,...,q with nearest-neighbour coupling K
@ Planar lattice G = (V, E) with vertices i € V and edges (ij) € E

Fortuin-Kasteleyn representation

® Write exp (Kds,q;) = 1 4 Vs, 0, With v := K — 1

Z=3 VMg
ACE

v
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Potts model and bond percolation

Partition function

Z= Z H exp (K50f,01)

o (j)eE

@ Spins o; =1,2,...,q with nearest-neighbour coupling K
@ Planar lattice G = (V, E) with vertices i € V and edges (ij) € E

Fortuin-Kasteleyn representation

® Write exp (Kds,q;) = 1 4 Vs, 0, With v := K — 1

Z=3 VMg
ACE

@ g — 1 produces bond percolation, with p = 7+,
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Critical manifold and percolation threshold

Solvability only on a few lattices G

(V- q)(v®+4v+q) = 0, (square lattice)
v¥4+3v2P—q = 0, (triangular lattice)
v¥—3gv—q¢®> = 0. (hexagonal lattice)

@ Comes from integrability / discrete holomorphicity
@ Certain inhomogeneous extensions (spectral parameter)
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Critical manifold and percolation threshold

Solvability only on a few lattices G

(V- q)(v®+4v+q) = 0, (square lattice)
v¥4+3v2P—q = 0, (triangular lattice)
v¥—3gv—q¢®> = 0. (hexagonal lattice)

@ Comes from integrability / discrete holomorphicity

@ Certain inhomogeneous extensions (spectral parameter)

Percolation case

@ Given g, all solutions for v are physically interesting!
@ For percolation, usually only p. € [0, 1] is considered:

1

Sq (i __ 4 phex _ i l
= P =1-p 2sm(18)
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What about other lattices?

All solvable cases are of the “3-terminal form”

@,
% o,
(@)

®)

(@) ()
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What about other lattices?

All solvable cases are of the “3-terminal form”

9,
i 7
(@ ®)

All Archimedean lattices can be written in “4-terminal form”

v
I

(@) ()

v
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Homogeneity assumption (F.Y. Wu)

@ Inspired guesswork by analogies with 3-terminal results
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Homogeneity assumption (F.Y. Wu)

@ Inspired guesswork by analogies with 3-terminal results

Kagome lattice (Wu 1979)

v8 +6v2 +9v* —2qv® —12qv2 - 6G°v — g =0 X X X
@ Initially conjectured exact by Wu
X XXX

@ For g = 2 correctly giving v, =
@ For g =1 it predicts p. = 0.524 429717 - - >< >< ><

@ But numerics gives: p. = 0.524404 978 (5 X X X X
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Homogeneity assumption (F.Y. Wu)

@ Inspired guesswork by analogies with 3-terminal results

Kagome lattice (Wu 1979)

v8 +6v2 +9v* —2qv® —12qv2 - 6G°v — g =0 X X X
@ Initially conjectured exact by Wu
X XXX

@ For g = 2 correctly giving v, =
@ For g =1 it predicts p. = 0.524 429717 - - >< >< ><

@ But numerics gives: p. = 0.524404 978 (5 X X X X

@ Not clear why this is so precise
@ Not clear if one can make this even more precise
@ The adaptation to other lattices is somewhat ad hoc
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Solvability of 3-terminal lattices

@ Boltzmann weight of elementary triangle
Wi23 = Cp + C1023 + C2013 + C3012 + C40123

@ FK cluster partition function Z = 3~ - ¢ g TT2_o(cp)e
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Solvability of 3-terminal lattices

@ Boltzmann weight of elementary triangle
W23 = Cp + C1023 + C2013 + C3012 + C40123

e FK cluster partition function Z = 3~ 4z g TT3_o(cp)™

Solution for the critical manifold  ( 1980)

@ Cluster boundaries live on (another) triangular lattice
@ Imposing invariance under /3 rotations gives: ¢4 = qcy

@ This provides the exact critical manifold for all 3-terminal lattices:
P(q,v) =c¢s—qco =0
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The graph polynomial

Contraction-deletion identity for Potts model partition function

Z6(q,{v}) = veZa/e(Q: {V}) + Za\e(q. {V})
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The graph polynomial

Contraction-deletion identity for Potts model partition function

Z6(q,{v}) = veZa/e(Q: {V}) + Za\e(q. {V})

Method and key hypothesis

@ Let B (the “basis”) be a finite portion of G with N terminals

@ G is obtained by tiling space with B in a certain way (the
“embedding”), gluing copies of B at the terminals
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The graph polynomial

Contraction-deletion identity for Potts model partition function

Za(q:{v}) = VeZa/e(q,{V}) + Za\e(q. {V})

Method and key hypothesis
@ Let B (the “basis”) be a finite portion of G with N terminals

@ G is obtained by tiling space with B in a certain way (the
“embedding”), gluing copies of B at the terminals

@ Suppose the critical polynomial Pg(q, v) satisfies the
contraction-deletion identity, for any edge in B

@ When reduced to 3-terminal case, replace by exact P(q, v)
@ Critical manifold is then supposed to be: Pg(qg,v) =0
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4-terminal examples with checkerboard embedding

Square lattice with B = square of four edges

Ps(q,{v1, V2, v3, Va}) = V4Ppgui(q,{v1, V2, V3}) + Pgex(q, {v1, V2, V3})
@ 1. term: two terminals have been identified
@ 2. term: embedding is used to flip one edge
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4-terminal examples with checkerboard embedding

Square lattice with B = square of four edges

Ps(q,{v1, V2, v3, Va}) = V4Ppgui(q,{v1, V2, V3}) + Pgex(q, {v1, V2, V3})
@ 1. term: two terminals have been identified
@ 2. term: embedding is used to flip one edge

Pe(q,{Vi}) = ViVaVaVs + (VoVaVy + V4VaVg + ViVaVy + ViV Va)
—q(vi + Vo +v3+ vy) — q°
@ Just integrability of 6V model with staggered spectral parameters
@ Homogeneous case: Pg(q, v) = (Vv — q)(v2 + 4v + q)
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4-terminal examples with checkerboard embedding

Square lattice with B = square of four edges

Ps(q.{v1, Vo, V3, Va}) = VaPpgui(q, {1, V2, V3}) + Pguex(q, {v1, V2, V3})
@ 1. term: two terminals have been identified
@ 2. term: embedding is used to flip one edge

Pe(q,{Vi}) = ViVaVaVs + (VoVaVy + V4VaVg + ViVaVy + ViV Va)
—q(vi + Vo +v3+ vy) — q°
@ Just integrability of 6V model with staggered spectral parameters
@ Homogeneous case: Pg(q,v) = (v — q)(V2 + 4V + q)

Kagome lattice with B = bow tie of six edges

@ We recover precisely Wu’s sixth-order polynomial
@ Suggests improving the precision by increasing the size of B
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General structure of the results (1)

Factorisation property for G = solvable case
@ Pg(q, v) factorises, shedding a “small factor”
@ Small factor independent of size of B, and gives exact solution
@ Checked for “all” known solutions of the Potts model
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General structure of the results (1)

Factorisation property for G = solvable case
@ Pg(q, v) factorises, shedding a “small factor”
@ Small factor independent of size of B, and gives exact solution
@ Checked for “all” known solutions of the Potts model

@ Even when the Potts model on G is not solvable in general, we
find factorisation (i.e., exact result) for the Ising model g = 2
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General structure of the results (1)

Factorisation property for G = solvable case
@ Pg(q, v) factorises, shedding a “small factor”
@ Small factor independent of size of B, and gives exact solution
@ Checked for “all” known solutions of the Potts model

@ Even when the Potts model on G is not solvable in general, we
find factorisation (i.e., exact result) for the Ising model g = 2

Computing Pg(q, v) serves to
@ Any connection to discrete holomorphicity and/or integrability?
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General structure of the results (2)

High accuracy approximation for G = not solvable case

@ E.g. bond percolation threshold on the (3, 122) lattice with
B = 9r? edges

1 0.740423317919896 - - -
0.740420992429996 - - -
0.740420818821979 - -
0.740420802130112---
0.740420799639763 - - -
0.740420 799096903 - - -
0.740420798942744 - -

NOoO Oorh W

v
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General structure of the results (2)

High accuracy approximation for G = not solvable case

@ E.g. bond percolation threshold on the (3, 122) lattice with
B = 9r? edges

1 0.740423317919896 - - -
0.740420992429996 - - -
0.740420818821979 - -
0.740420802130112---
0.740420799639763 - - -
0.740420 799096903 - - -
0.740420798942744 - -

0.740420798847 4(7) [Thanks to Tony Guttmann]

8 NOoO Ok~ W

v
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General structure of the results (2)

High accuracy approximation for G = not solvable case

@ E.g. bond percolation threshold on the (3, 122) lattice with
B = 9r? edges

1 0.740423317919896 - - -
0.740420992429996 - - -
0.740420818821979 - -
0.740420802130112---
0.740420799639763 - - -
0.740420 799096903 - - -
0.740420798942744 - -

oo 0.740420798847 4(7) [Thanks to Tony Guttmann]
Numerics 0.74042077 (2) [Ding et al. 2010]

NOoO Oorh W

v
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General structure of the results (2)

High accuracy approximation for G = not solvable case

@ E.g. bond percolation threshold on the (3, 122) lattice with
B = 9r? edges

1

NOoO Oorh W

(0. @)
Numerics

0.740423317919896 - - -
0.740420992429996 - - -
0.740420818821979 - -
0.740420802130112---
0.740420799639763 - - -
0.740420 799096903 - - -
0.740420798942744 - -

0.740 420 798 847 4(7)
0.74042077 (2)

[Thanks to Tony Guttmann]

[Ding et al. 2010]

@ With extrapolation, we can attain 12 or 13-digit precision
@ Same precision for other g, at least when v > 0

v

Jesper L. Jacobsen (LPTENS)

Critical manifolds

CIDHI 2012

11/19



Computing Pg(q, v) in practice

Getting started
@ By hand, up to ~ 10 edges
@ By deletion-contraction, up to ~ 40 edges
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Computing Pg(q, v) in practice

Getting started
@ By hand, up to ~ 10 edges
@ By deletion-contraction, up to ~ 40 edges

Transfer matrix method
Made possible by an equivalent definition of Pg(q, v)

@ Naive method, up to ~ 100 edges
@ Improved method (using periodic TL algebra), up to ~ 400 edges
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Computing Pg(q, v) in practice

Getting started
@ By hand, up to ~ 10 edges
@ By deletion-contraction, up to ~ 40 edges

Transfer matrix method
Made possible by an equivalent definition of Pg(q, v)

@ Naive method, up to ~ 100 edges
@ Improved method (using periodic TL algebra), up to ~ 400 edges

The equivalent definition permits us to address also site percolation
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Equivalent definition of Pg(q, v)

Experimental approach
@ Compute Pg by deletion-contraction with inhomogeneous {v;}
@ Various G and B, different embeddings, up to ~ 30 edges
@ Terms in Pg(q, v) interpreted as connectivities among B-terminals
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Equivalent definition of Pg(q, v)

Experimental approach
@ Compute Pg by deletion-contraction with inhomogeneous {v;}
@ Various G and B, different embeddings, up to ~ 30 edges
@ Terms in Pg(q, v) interpreted as connectivities among B-terminals

Same result found in all cases

Ps(q,Vv) = Zp — 9Zip
@ 2D (resp. 0D) means that diagram spans both (resp. none) space
directions, modulo the embedding

@ Factors of g are computed by identifying the terminals of B, as
defined by the embedding
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Example: Square lattice with B = square of four edges
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Example: Square lattice with B = square of four edges
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Example: Square lattice with B = square of four edges
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Example: Square lattice with B = square of four edges

op = qv4
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Example: Square lattice with B = square of four edges

& w

op = qv4
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Example: Square lattice with B = square of four edges

& w

op = qv4
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Example: Square lattice with B = square of four edges

& w

ZQD = qv4 + 4(.7V3
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Example: Square lattice with B = square of four edges

O w

Zop = qv* + 4qv°
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Example: Square lattice with B = square of four edges

O w

Zop = qv* + 4qv°
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Example: Square lattice with B = square of four edges

O w

Zop = qv* + 4qv°
ZID = 4-(,7V2
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Example: Square lattice with B = square of four edges

Q 2qv?

Zop = qv* + 4qv°
ZID = 4qv2
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Example: Square lattice with B = square of four edges

Q 2qv?

Zop = qv* + 4qv°
ZID = 4qv2
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Example: Square lattice with B = square of four edges

Q 2qv?

Zp = qv* + 4qv3
Zip = 4qv® +2qv?
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Example: Square lattice with B = square of four edges

Q 4qv

Zp = qv* + 4qv3
Zip = 4qv® 4+ 2qv?

Jesper L. Jacobsen (LPTENS) Critical manifolds CIDHI 2012 14/19



Example: Square lattice with B = square of four edges

Q 4qv

Zp = qv* + 4qv3
Zip = 4qv® 4+ 2qv?
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Example: Square lattice with B = square of four edges

Q 4qv

Zp = qvt + 4qv3
Zip = 4qv® 4+ 2qv?
Zop = 4qv
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Example: Square lattice with B = square of four edges

<>q2

Zp = qv* + 4qv3
Zip = 4qv® 4+ 2qv?
ZOD = 4qv
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Example: Square lattice with B = square of four edges

<>q2

Zp = qvt + 4qv3
Zip = 4qv® 4+ 2qv?
Zop = 4qv + ¢
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Example: Square lattice with B = square of four edges

Zp = qvt + 4qv3
Zip = 4qv® 4+ 2qv?
Zop = 4qv + @2

Ps(q.v) = Zp — qZop = q(v2 — q)(V? + 4V + q)
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Naive transfer matrix method

@ Let Cy = 5 (%) be the Catalan numbers
@ Cy partitions of the N terminals of a basis B (respecting planarity)

@ Transfer matrix computes weight [polynomial in (q, v)] of each
partition

@ From this construct Zp, Zip and Zyp

Jesper L. Jacobsen (LPTENS) Critical manifolds CIDHI 2012 15/19



Naive transfer matrix method

@ Let Cy = 5 (%) be the Catalan numbers
@ Cy partitions of the N terminals of a basis B (respecting planarity)

@ Transfer matrix computes weight [polynomial in (q, v)] of each
partition

@ From this construct Zp, Zip and Zyp

@ No need to consider all of G to distinguish between 2D, 1D and 0D
@ Follows from B and the embedding by using the Euler relation
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Improved transfer matrix method

@ We are mainly interested 4-terminal lattices with embeddings that
correspond to imposing toroidal boundary conditions on B
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Improved transfer matrix method

@ We are mainly interested 4-terminal lattices with embeddings that
correspond to imposing toroidal boundary conditions on B

® = terminal of B

Jesper L. Jacobsen (LPTENS) Critical manifolds CIDHI 2012 16/19



Improved transfer matrix method

@ We are mainly interested 4-terminal lattices with embeddings that
correspond to imposing toroidal boundary conditions on B

® — terminal of B
O = periodic boundary condition
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Improved transfer matrix method

@ We are mainly interested 4-terminal lattices with embeddings that
correspond to imposing toroidal boundary conditions on B

® — terminal of B
O = periodic boundary condition

— = auxiliary spaces
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Improved transfer matrix method

@ We are mainly interested 4-terminal lattices with embeddings that
correspond to imposing toroidal boundary conditions on B

® — terminal of B
O = periodic boundary condition
— = auxiliary spaces

— = quantum spaces
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Improved transfer matrix method

@ We are mainly interested 4-terminal lattices with embeddings that
correspond to imposing toroidal boundary conditions on B

® = terminal of B

O = periodic boundary condition
— = auxiliary spaces

— = quantum spaces

R-matrix (in terms of TL algebra)
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Improved transfer matrix method

@ We are mainly interested 4-terminal lattices with embeddings that
correspond to imposing toroidal boundary conditions on B

® = terminal of B

O = periodic boundary condition
— = auxiliary spaces

— = quantum spaces

R-matrix (in terms of TL algebra)

@ Divides by 2 the number of terminals, but requires some thoughts
about the correct elimination of Z;p diagrams (periodic TL algebra)

Jesper L. Jacobsen (LPTENS) Critical manifolds CIDHI 2012 16/19



Archimedean lattices (examples)
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Archimedean lattices (examples)

Square lattice

Jesper L. Jacobsen (LPTENS) Critical manifolds CIDHI 2012 17/19



Archimedean lattices (examples)

(4,8?) lattice

V2929,
9.

NN
A\

XXXS
A\
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Archimedean lattices (examples)

N AN\

N

N

Q.44 .4

N
\\
\\
N

N

/N

N
\\
\\
N

N

Kagome lattice
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Archimedean lattices (examples)

NN N

)QQt a\
N\ 2 % %
PR
TV

(3,122) lattice
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Archimedean lattices (examples)

INCONCNN
N\ 2 % % (3,12?) lattice
INCONCNN ’

N\ 2 %2 %

@ In this way we can construct all 11 Archimedean lattices

@ “Small factor” gives exact result for all solvable cases

@ In other cases, precision on v, exceeds that of any other method
(Monte Carlo, transfer matrix, series expansion,...)
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Example of complete phase diagram: Kagome lattice

I ' I ' I ' I

2 - —
i 6 edge basis | 1

1 — 12 edge basis|
— 24 edge basis| |

36 edge basis| |

Jesper L. Jacobsen (LPTENS) Critical manifolds CIDHI 2012 18/19



Conclusion

@ Pg(q, v) provides new method of determining critical manifolds
@ Easy to compute by hand for small bases
o Provides exact results if model is solvable
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Conclusion

@ Pg(q, v) provides new method of determining critical manifolds
@ Easy to compute by hand for small bases

o Provides exact results if model is solvable
@ Efficient computer algorithm for larger bases

e Factorisation of small factor confirms exact solvability
e High accuracy (12—13 decimal digits) for non-solvable cases (v > 0)
o Intricate phase diagrams in antiferromagnetic regime (v < 0)

v
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Conclusion

@ Pg(q, v) provides new method of determining critical manifolds
@ Easy to compute by hand for small bases

o Provides exact results if model is solvable
@ Efficient computer algorithm for larger bases

e Factorisation of small factor confirms exact solvability
e High accuracy (12—13 decimal digits) for non-solvable cases (v > 0)
o Intricate phase diagrams in antiferromagnetic regime (v < 0)

v

@ Relation to integrability / discrete holomorphicity must be clarified

@ Applications to other types of models (including quantum)?

Jesper L. Jacobsen (LPTENS) Critical manifolds CIDHI 2012 19/19



