BOUNDARY CONDITIONS IN GEOMETRICAL CRITICAL PHENOMENA

Jesper Lykke Jacobsen, École Normale Supérieure, Paris Work done in collaboration with Jérôme Dubail and Hubert Saleur

BOUNDARY CONDITIONS AND RENORMALISATION

- Renormalisation group: Flow from one critical point to another upon changing the bulk coupling constant(s)
- Right at bulk critical point: Flow from one RG invariant boundary condition to another upon changing the surface coupling constant(s)
- In two dimensions: Conformal field theory (CFT)

How to characterise conformally invariant boundary conditions in two dimensional statistical models?

CLASSIFICATION OF CIBC IN TWO DIMENSIONS

- Many statistical models (Ising, 3-state Potts,...) are described by unitary minimal CFT
 - Finite number of fundamental local operators (primaries)
 - All critical exponents are known (Kac table)
- CIBC means no energy-momentum flow across boundary

1-to-1 correspondence between CIBC and primaries

[Cardy]

OUTLINE OF RESULTS

- Continuous families of CIBC in non-unitary CFT
 - Simple and well-known models: Potts and O(n)
 - The CIBC have a clear geometrical meaning, in terms of loops, clusters, and domain walls
 - Exactly known critical exponents and partition functions
 - Geometrical applications: fractal dimensions, crossing probabilities

Q-STATE POTTS MODEL

$$H = -J \sum_{\langle ij \rangle} \delta_{\sigma_i,\sigma_j} \text{ with } \sigma_i = 1, 2, \dots, Q$$

• Two geometrical interpretations: spins and FK clusters/loops

• Both make sense also for **Q** non-integer (non-unitary case)

FORTUIN-KASTELEYN CLUSTER EXPANSION

• We have $e^{J\delta(\sigma_i,\sigma_j)} = 1 + v\delta(\sigma_i,\sigma_j)$ with $v = e^J - 1$

- To compute Z, expand out: $\prod_{\langle ij \rangle} (1 + v\delta(\sigma_i, \sigma_j))$
- Let the v-terms define an edge subset $\ A \subseteq \langle ij
 angle$
- This gives $Z(Q, v) = \sum_{A \subseteq \langle ij \rangle} Q^{k(A)} v^{|A|}$
- Here k(A) is the number of connected components
- Indeed Q is only a parameter, hence can take $Q \in \mathbb{R}$

O(N) LOOP MODEL

$$Z = \operatorname{tr} \left[\prod_{\langle ij \rangle} (1 + x S_i^{\alpha} S_j^{\alpha}) \right] \text{ with } \alpha = 1, 2, \dots, n$$

• Expands as
$$Z = \sum_{\text{loops}} x^{\text{length}} n^{\# loops}$$

- n = 1 : Ising model
- $n \rightarrow 0$: Self-avoiding walk

• "Dilute" critical point at $x = x_c$

THE NEW CIBC

• Define models on annulus, giving modified weight to loops touching one or the other boundary, or both:

• Weight also depends on whether the loop encircles the hole

• CIBC for any real value of these 7 different boundary weights

LINK WITH LATTICE ALGEBRAS

- Loops obtained from the Temperley-Lieb (TL) algebra
- Distinguishing boundary-touching loops is natural within the one- and two-boundary extensions of the TL algebra [Martin-Saleur, de Gier-Nichols,...]
- The correct parameterisation of the loop weights follow from representation theory for these algebras

PARAMETERISATION OF THE RESULTS (CFT)

- Bulk loops: $n = 2 \cos \gamma$
- Corresponding Coulomb gas coupling: $g = 1 \pm \gamma/\pi$

• Central charge:
$$c = 1 - \frac{1}{6} (\sqrt{g} - 1/\sqrt{g})^2$$

• Critical exponents from Kac formula:

$$h_{r,s} = \begin{cases} \frac{(gr-s)^2 - (g-1)^2}{4g}, & g \ge 1 \text{ (Dilute O}(n)) \\ \frac{(r-gs)^2 - (1-g)^2}{4g}, & g < 1 \text{ (Dense O}(n) \text{ or Potts)} \end{cases}$$

TWO-BOUNDARY PARTITION FUNCTION

- On $T \times L$ annulus, setting $q = \exp(-\pi T/L)$ • Loops touching one boundary: $n_1 = \frac{\sin((r_1 + 1)\gamma)}{\sin(r_1\gamma)}$ • ...and both: $n_{12} = \frac{\sin((r_1 + r_2 + 1 - r_{12})\frac{\gamma}{2})\sin((r_1 + r_2 + 1 + r_{12})\frac{\gamma}{2})}{\sin(r_1\gamma)\sin(r_2\gamma)}$
- Continuum-limit partition function in dense/Potts case:

$$Z = \frac{q^{-c/24}}{\prod_{p=1}^{\infty} (1-q^p)} \left(\sum_{n=-\infty}^{\infty} q^{h_{r_{12}-2n,r_{12}}} + \sum_{\epsilon_1,\epsilon_2=\pm 1} \sum_{k=1}^{\infty} D_k^{(\epsilon_1,\epsilon_2)} \sum_{n=0}^{\infty} q^{h_{\epsilon_1r_1+\epsilon_2r_2-1-2n,\epsilon_1r_1+\epsilon_2r_2-1+k}} \right)$$

DILUTE MODEL WITH SURFACE ANISOTROPY

- Two types of boundary loops, with weights n_1 and $n n_1$
- Surface interaction with anisotropy parameter Δ:
 H_s = −J_s ∑_{⟨ij⟩s} ((1+Δ) ∑_{α=1}^{n₁} S_i^α S_j^α + (1 − Δ) ∑_{β=n₁+1}ⁿ S_i^β S_j^β)
 Surface monomers must have type-dependent weight
 - Integrable choice leading to anisotropic special transition

SURFACE ANISOTROPY: THE PHASE DIAGRAM

• First found in epsilon expansion [Diehl-Eisenriegler]

APPLICATION TO ISING CROSSING EVENTS

 $J > J_{\rm c}$:

 $J=J_{\mathrm{c}}$:

 $J < J_{\rm c}$:

• Probability (≥ 1 clusters crossing the $T \times L$ annulus)

 $P_{\rm c}(\tau) = \frac{\eta(i\tau)\eta(i\tau/12)^2}{\eta(i\tau/2)^2\eta(i\tau/6)} \text{ with } \tau = T/L$

CROSSING EVENTS IN PERCOLATION

• Probabilities for *j* clusters wrapping the annulus, refined according to whether they touch no/one/both rims

• For instance, in a square geometry:

j	$\sum_{lpha,eta} P_j^{lphaeta}$	P_j^{++}	$P_j^{-+} = P_j^{+-}$	$P_j^{}$
0	0.636454001888			
1	0.361591025956	0.277067148156	0.041313949815	0.0018959781702
2	0.001954814340	0.001895978170	0.000029339472	0.0000001572261
3	0.00000157814	0.000000157226	0.00000000294	0.000000000002

• Result without refinement: [Cardy]

POTTS DOMAIN WALLS

- Expand Z_{Potts} in powers of e^J. Makes sense even for $Q \notin \mathbb{N}$
- Let ℓ clusters propagate in \mathbb{H} , starting at O. Write $\ell = \ell_1 + \ell_2$. The first cluster contributes to ℓ_1 . Each remaining cluster is in ℓ_1 (resp. in ℓ_2) if the cluster on its left has a different (resp. the same) colour.

(a)

 $(a) \qquad (b)$ $(\ell_1, \ell_2) = (1, 2) \quad (\ell_1, \ell_2) = (3, 0)$

Critical exponent:

 $h_{1+2(\ell_1-\ell_2),1+4\ell_1}$