The Large Deviations of the Whitening Process in Random Constraint Satisfaction Problems

and of the bootstrap percolation

Guilhem Semerjian

LPT-ENS

05.05.2016 / Simons Institute

based on Braunstein, Dall'Asta, S, Zdeborová arXiv:1602.01700 and J. Stat. (in press) Hypergraph bicoloring and its phase transitions

- 2 Rigidity and freezing
- 3 Main results
- 4 Minimal contagious sets of random regular graphs
- 5 Conclusions and perspectives

∃ >

A >

An example of CSP

- Hypergraph bicoloring (positive NAE-k-SAT) :
 - *N* variables $\underline{\sigma} = (\sigma_1, \dots, \sigma_N) \in \{-1, 1\}^N$
 - *M* constraints on the hyperedges of a *k*-uniform hypergraph

$$\psi_{a}(\{\sigma_{i}\}_{i\in\partial a}) = \begin{cases} 1 & \text{at least one } +1 \text{ and one } -1 \\ 0 & \text{all } +1 \text{ or all } -1 \end{cases}$$

solutions : $S = \{ \underline{\sigma} : \psi_a(\underline{\sigma}_{\partial a}) = 1 \ \forall a \}$

(日)

Phase transitions for random CSPs (also *k*-SAT, *q*-COL, ...)

 random hypergraph with *M* edges (regular or Erdös-Rényi) density of constraints α = M/N, thermodynamic limit N, M → ∞

- Satisfiability threshold at $\alpha_{sat}(k) \sim 2^{k-1} \ln 2$
- Shattering of solutions in clusters at α_d(k) ~ α_{sat}(k) ln k/k ln 2 reconstruction threshold on the tree

• Condensation, sub-exponential nb. of clusters at $\alpha_{c}(k) \sim \alpha_{sat}(k)$

• . . .

Phase transitions for random CSPs (also *k*-SAT, *q*-COL, ...)

Recent rigorous results on hypergraph bicoloring/random NAESAT :

- satisfiability threshold [Ding, Sly, Sun 13]
 condensation at positive temperature [Bapst, Coja-Oghlan, Rassmann 14]
- typical number of solutions [Sly, Sun, Zhang 16]
- fluctuations of the number of solutions [Rassman 16]
- failure of Survey Propagation for $\alpha > \alpha_d$ [Hetterich 16]

(日)

Coarse-grained description of a cluster : $\underline{\sigma}^* \in \{-1, 1, 0\}^N$

with $\sigma_i^* = \begin{cases} 1 & \text{if } \sigma_i = 1 \text{ in all solutions of the cluster} \\ -1 & \text{if } \sigma_i = -1 \text{ in all solutions of the cluster} \\ 0 & \text{otherwise} \end{cases}$

Frozen variables of a cluster : the ones with $\sigma_i^* = \pm 1$

• Alternative definition of frozen variables :

- start with a solution <u>σ</u>
- a constraint *a* blocks a variable $\sigma_i = \pm 1$ iff $\sigma_j = -\sigma_i$ for all $j \in \partial a \setminus i$
- if *i* is not blocked by any constraint, "whiten" it, $\sigma_i \rightarrow 0$
- repeat until fixed point <u>σ</u>* is reached

Procedure known as whitening, peeling, coarsening...

Largest subcube containing $\underline{\sigma}$ with no solutions at Hamming distance 1

θ : fraction of frozen variables (σ_i^{*} = ±1) in a fixed point
 Either θ = 0 or θ ≥ θ_{min} > 0 [Maneva, Mossel, Wainwright 07]
 unfrozen / frozen solutions

(日)

One more phase transition : rigidity

 $lpha_{\rm d}(k) \le lpha_{
m r}(k)$: stronger form of correlation (naive reconstruction) At large *k*, $\alpha_{
m r}(k) \sim \alpha_{
m d}(k)$

- Frozen solutions should be hard to find : need to set collectively order *N* variables
- Indeed heuristic algorithms output unfrozen solutions
- Algorithmic barrier : no known algorithm finds solutions in polynomial time for

 $\alpha > \alpha_{d}(k) \sim \alpha_{r}(k)$ (at large k)

Up to which densities do (atypical) unfrozen solutions exist ?
 Called freezing transition, α_f(k)

< 同 ト < 三 ト < 三

Main results (I)

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Main results (I)

• Unfrozen solutions exist up to $\alpha_{
m f}(k) \sim$

 $\alpha_{\rm f}(k) \sim \frac{1}{2} \alpha_{\rm sat}(k)$

previously, $\alpha_{\rm f}(k) \leq \frac{4}{5} \alpha_{\rm sat}(k)$

[Achlioptas, Ricci-Tersenghi 06]

Recall
$$\alpha_{
m r}(k) \sim lpha_{
m d}(k) \sim rac{\ln k}{k \ln 2} lpha_{
m sat}(k)$$

Main results (I)

• Locked solutions ($\theta = 1$, all variables frozen, sol. = whitening f.p.)

- appear at $\alpha_{l,-}(k) \sim \frac{1}{k} \alpha_{sat}(k)$
- disappear at $\alpha_{l,+}(k) \sim \alpha_{\rm sat}(k)$
- are the only frozen solutions up to $\alpha_{l,u}(k) \sim \alpha_{d}(k)$

Recall
$$\alpha_{\rm r}(k) \sim \alpha_{\rm d}(k) \sim \alpha_{\rm sat}(k) \frac{\ln k}{k \ln 2}$$

(4) The (b)

- Parallel version of the whitening process :
 - initial condition $\underline{\sigma}^0 = \underline{\sigma}$ a solution
 - discrete time parallel evolution :

$$\sigma_i^{t+1} = \begin{cases} \sigma_i & \text{iff } \exists a \in \partial i , \ \forall j \in \partial a \setminus i , \ \sigma_j^t = -\sigma_i \\ 0 & \text{otherwise} \end{cases}$$

- Monotonous evolution, fixed-points obtained as $\underline{\sigma}^* = \lim_{t \to \infty} \underline{\sigma}^t$
- For a finite time horizon T, biased measure over solutions :

$$\mu(\underline{\sigma}, T, \epsilon) = \frac{1}{Z(T, \epsilon)} \mathbb{I}(\underline{\sigma} \in \mathcal{S}) \boldsymbol{e}^{\epsilon \sum_{i} |\sigma_{i}^{T}|}$$

 Z(T, ε) : generating function of the number of solutions classified by the number of white variables after T steps

- σ_i^T depends on $\underline{\sigma}$ through variables at distance $\leq T$ from *i*
- $\mu(\underline{\sigma}, T, \epsilon)$ has interactions at distance T
- they can be made local with additional variables (whitening times)
- then graphical model on a sparse random factor graph
 ⇒ "routine" cavity method computation
- Large *T* limit can be taken analytically to get the fixed points

Very similar to previous works on minimal contagious sets for bootstrap percolation [Altarelli, Braunstein, Dall'Asta, Zecchina 13] [Guggiola, S. 15]

For each *T*, threshold $\alpha_T(k)$ such that for $\alpha < \alpha_T(k)$, typical configurations of $\mu(\underline{\sigma}, T, \epsilon)$ are unfrozen (for a well-chosen ϵ)

- $\alpha_T(k)$ grows with *T*, $\alpha_f(k)$ obtained as $\lim_{T \to \infty} \alpha_T(k)$
- For fixed T, at large k:

•
$$\alpha_1(k) \sim \frac{\alpha_{\text{sat}}(k)}{\ln k}$$
 recall $\alpha_d(k) \sim \alpha_{\text{sat}}(k) \frac{\ln k}{k \ln 2}$
• $\alpha_2(k) \sim \frac{\alpha_{\text{sat}}(k)}{\ln \ln k}$
• in general $\alpha_T(k) \sim \frac{\alpha_{\text{sat}}(k)}{\ln^3 k}$ *T*-times iterated logarithm

/□ ▶ ◀ 글 ▶ ◀ 글

Minimal contagious sets

- bootstrap percolation dynamics : inactive vertices become active if they have ≥ *I* active neighbors
- θ_{min}(k, l) : minimal fraction of active vertices in order to activate completely a k + 1 regular random graph
- for *I* = *k*, corresponds to the decycling number (Feedback Vertex Set)
- for l = k 1, corresponds to the de-3-coring number

Analytic results for (lowerbounds on) $\theta_{\min}(k, l)$ (RS and 1RSB) [Guggiola, S. 15]

Minimal contagious sets

Special cases :

• decycling of 3- and 4-regular graphs :

$$\theta_{\min}(2,2) = \frac{1}{4}, \qquad \theta_{\min}(3,3) = \frac{1}{3}$$

First (second) one proven (conjectured) [Bau, Wormald, Zhou 02]

• de-3-coring of 5- and 6-regular graphs :

$$\theta_{\min}(4,3) = \frac{1}{6}, \qquad \theta_{\min}(5,4) = \frac{1}{4}$$

Conjecture : these 4 cases are the only ones that saturate the lowerbound :

for all $k, l, \quad \theta_{\min}(k, l) \ge \frac{2l-k-1}{2l}$ [Dreyer, Roberts 09]

Conjecture for the decycling number at large degree : $\theta_{\min}(k,k) = 1 - \frac{2 \ln k}{k} - \frac{2}{k} + O\left(\frac{1}{k \ln k}\right)$ ok with rigorous bound [Haxell, Pikhurko, Thomason 08] Definition as a problem about processes on infinite trees :

- C_θ = probability measures μ on {0, 1}^{T_{k+1}} that are translationally invariant (ergodic), with μ[σ₀ = 1] = θ
- $\max\{\theta : \exists \mu \in C_{\theta} \text{ with } \mu[\mathbf{0} \leftrightarrow \infty] = \mathbf{0}\}$?

A > + > + > + >

- Freezing transition rather close to the satisfiability
- Done on the regular hypergraph bicoloring, should generalize to other CSPs
- RS computation, RSB effects should not spoil large *k* asymptotics
- Biasing the measure, with interactions between variables at finite distance, can turn atypical properties into typical ones, in a large density range

Could it help to break the algorithmic barrier ?