Engineering and Probing Topological Bloch Bands in Optical Lattices

Monika Aidelsburger, Marcos Atala, Michael Lohse, Christian Schweizer, Julio Barreiro
Christian Gross, Stefan Kuhr, Manuel Endres, Marc Cheneau,
Takeshi Fukuhara, Peter Schauss, Sebastian Hild, Johannes Zeiher
Ulrich Schneider, Simon Braun, Philipp Ronzheimer,
Michael Schreiber, Tim Rom, Sean Hodgman
Ulrich Schneider, Monika Schleier-Smith, Lucia Duca, Tracy Li, Martin Reitter, Josselin Bernadoff, Henrik Lüschen
Ahmed Omran, Martin Boll, Timon Hilker, Michael Lohse, Thomas Reimann, Alexander Keesling, Christian Gross
Simon Fölling, Francesco Scazza, Christian Hofrichres:
Pieter de Groot, Moritz Höfer
Christoph Gohle, Tobias Schneider, Nikolaus buchheim, Zhenkai Lu
Humboldt Research Awardees:
I. Cooper, C. Salomon, W. Ketterle

Max-Planck-Institut für Quantenoptik
Ludwig-Maximilians Universität

Outline

Realizing Artificial Gauge Fields

(1) Realizing the Hoftstadter \& Quantum Spin Hall Hamiltonian
(2) 'Meissner'-currents in bosonic flux ladders

Outline

Realizing Artificial Gauge Fields

(1) Realizing the Hoftstadter \& Quantum Spin Hall Hamiltonian
(2) 'Meissner'-currents in bosonic flux ladders

Probing Topological Features of Bloch Bands

(3) Probing Zak Phases in Topological Bands
(4) An 'Aharonov Bohm' Interferometer for measuring Berry curvature

Realizing Artificial Gauge Fields in Optical Lattices

Gauge Fields Quantum Hall Effect in 2D Electron Gases

Integer Quantum Hall Effect

Fractional Quantum Hall Effect

I) Rotation

In rapidly rotating gases, Coriolis force is equivalent to Lorentz force.

$$
\mathbf{F}_{\mathrm{L}}=q \mathbf{v} \times \mathbf{B} \underset{\substack{\text { K. Madison et al., PRL (2000) } \\ \text { J.R.Abo-Shaeer et al. Science (200) }}}{ } \mathbf{F}_{\mathrm{C}}=2 m \mathbf{v} \times \Omega_{\mathrm{rot}}
$$

2) Raman Induced Gauge Fields

Spatially dependent optical couplings lead to a Berry phase analoguous to the Aharonov-Bohm phase
Y. Lin et al., Nature (2009)
I) Rotation

Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase $\varphi(\mathbf{R})$

$$
\hat{H}=-\sum_{\mathbf{R}}\left(K \mathrm{e}^{i \varphi(\mathbf{R})} \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}+\mathbf{d}_{x}}+J \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}+\mathbf{d}_{y}}\right)+\text { h.c. }
$$

Magnetic flux through a plaquette:

$$
\phi=\int_{\beth} B \mathrm{~d} S=\varphi_{1}-\varphi_{2}
$$

D. Jaksch \& P. Zoller, New J. Phys. (2003)
F. Gerbier \& J. Dalibard, New J. Phys. (2010) N. Cooper, PRL (201I)
E. Mueller, Phys. Rev. A (2004)
L.-K. Lim et al. Phys. Rev.A (2010)
A. Kolovsky, Europhys. Lett. (201I)
see also: lattice shaking E.Arimondo, PRL(2007) , K. Sengstock, Science (20II), M. Rechtsman \& M. Segev, Nature (2013)

Sunday 22 June 14

Gauge Fields

Artificial B-Fields with Ultracold Atoms

Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase $\varphi(\mathbf{R})$

$$
\hat{H}=-\sum_{\mathbf{R}}\left(K \mathrm{e}^{i \varphi(\mathbf{R})} \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}+\mathbf{d}_{x}}+J \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}+\mathbf{d}_{y}}\right)+\text { h.c. }
$$

Magnetic flux through a plaquette:

$$
\phi=\int_{\square} B \mathrm{~d} S=\varphi_{1}-\varphi_{2}
$$

D. Jaksch \& P. Zoller, New J. Phys. (2003)
F. Gerbier \& J. Dalibard, New J. Phys. (2010)
N. Cooper, PRL (201I)
E. Mueller, Phys. Rev. A (2004)
L.-K. Lim et al. Phys. Rev.A (2010)
A. Kolovsky, Europhys. Lett. (2011)
see also: lattice shaking
E.Arimondo, PRL(2007) , K. Sengstock, Science (20II), M. Rechtsman \& M. Segev, Nature (2013)

Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase $\varphi(\mathbf{R})$

$$
\hat{H}=-\sum_{\mathbf{R}}\left(K \mathrm{e}^{i \varphi(\mathbf{R})} \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}+\mathbf{d}_{x}}+J \hat{a}_{\mathbf{R}}^{\dagger} \hat{a}_{\mathbf{R}+\mathbf{d}_{y}}\right)+\text { h.c. }
$$

Magnetic flux through a plaquette:

$$
\phi=\int_{\beth} B \mathrm{~d} S=\varphi_{1}-\varphi_{2}
$$

D. Jaksch \& P. Zoller, New J. Phys. (2003)
F. Gerbier \& J. Dalibard, New J. Phys. (2010) N. Cooper, PRL (201I)
E. Mueller, Phys. Rev. A (2004)
L.-K. Lim et al. Phys. Rev.A (2010)
A. Kolovsky, Europhys. Lett. (20II)
see also: lattice shaking
E. Arimondo, PRL(2007) , K. Sengstock, Science (201I),
M. Rechtsman \& M. Segev, Nature (2013)

Sunday 22 June 14

Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase $\varphi(\mathbf{R})$

Harper Hamiltonian: $J=K$ and ϕ uniform.

The lowest band is topologically equivalent to the lowest Landau level.
D.R. Hofstadter, Phys. Rev. BI 4, 2239 (1976)
see alo Y.Avron, D. Osadchy, R. Seiler, Physics Today 38, 2003
Sunday 22 June 14

Experimental method

- Atoms in a 2D lattice
- Tunneling inhibited along one direction using energy offsets

- Atoms in a 2D lattice
- Tunneling inhibited along one direction using energy offsets

- Induce resonant tunneling with a pair of far-detuned running-wave beams
\rightarrow Reduced heating due to spontaneous emission compared to Raman-assisted tunneling!
\rightarrow Independent of the internal structure of the atom
- Interference creates a running-wave that modulates the lattice
-The phase of the modulation depends on the position in the lattice

$$
\begin{aligned}
& \text { Lattice modulation: } \\
& V_{K}^{0} \cos (\omega t+\phi(\mathbf{r})) \\
& \text { with spatial-dependent phase } \\
& \phi(\mathbf{r})=\delta \mathbf{k} \cdot \mathbf{r} \\
& \qquad \begin{array}{l}
\delta \mathbf{k}=\mathbf{k}_{2}-\mathbf{k}_{1} \\
\omega=\omega_{2}-\omega_{1}
\end{array}
\end{aligned}
$$

- Realization of time-dependent Hamiltonian, where tunneling is restored
- Discretization of the phase due to underlying lattice $\rightarrow \phi_{m, n}$
- Time-dependent Hamiltonian:

$$
\begin{aligned}
\hat{H}(t)= & \sum_{m, n}\left(-J_{x} \hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}-J_{y} \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n}+\text { h.c. }\right) \\
& +\sum_{m, n}\left[m \Delta+V_{K}^{0} \cos \left(\omega t+\phi_{m, n}\right)\right] \hat{n}_{m, n}
\end{aligned}
$$

Artificial magnetic fields

Experimental method

- Time-dependent Hamiltonian:

$$
\begin{aligned}
\hat{H}(t)= & \sum_{m, n}\left(-J_{x} \hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}-J_{y} \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n}+\text { h.c. }\right) \\
& +\sum_{m, n}\left[m \Delta+V_{K}^{0} \cos \left(\omega t+\phi_{m, n}\right)\right] \hat{n}_{m, n}
\end{aligned}
$$

- Can be mapped on an effective time-averaged time-independent Hamiltonian for $\hbar \omega \gg J_{x}, J_{y}, U$

$$
\hat{H}_{e f f}=\sum_{m, n}\left(-K e^{i \phi_{m, n}} \hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}-J \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n}+\text { h.c. }\right)
$$

- To avoid excitations to higher bands $\hbar \omega$ has to be smaller than the band gap

Experimental method

- Time-dependent Hamiltonian:

$$
\begin{aligned}
\hat{H}(t)= & \sum_{m, n}\left(-J_{x} \hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}-J_{y} \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n}+\text { h.c. }\right) \\
& +\sum_{m, n}\left[m \Delta+V_{K}^{0} \cos \left(\omega t+\phi_{m, n}\right)\right] \hat{n}_{m, n}
\end{aligned}
$$

- Can be mapped on an \oint

Note: Corrections could be important! see e.g. N. Goldman \& J. Dalibard arXiv: 1404.4373
\& related work A. Polkovnikov
for $\hbar \omega \gg J_{x}, J_{y}, U$

$$
\hat{H}_{e f \mathcal{T}}=\sum_{m, n}\left(-K e^{i \phi_{m, n}} \hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}-J \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n}+\text { h.c. }\right)
$$

- To avoid excitations to higher bands $\hbar \omega$ has to be smaller than the band gap

Effective coupling strength:

$$
\begin{aligned}
& K=J_{x} \mathcal{J}_{1}(x) \\
& J=J_{y} \mathcal{J}_{0}(x)
\end{aligned}
$$

$\mathcal{J}_{\nu}(x)$: Bessel-functions of the first kind
and $x=\frac{f(\eta) V_{K}^{0}}{\Delta}$

η : Phase difference of the modulation between neighboring bonds

see also: H. Lignier et al. PRL (2007)

Experimental parameters:

$$
\begin{aligned}
& \left|\mathbf{k}_{1}\right| \simeq\left|\mathbf{k}_{2}\right|=\frac{\pi}{2 d} \\
& \Rightarrow \phi_{m, n}=\frac{\pi}{2}(m+n)
\end{aligned}
$$

Experimental parameters:

$$
\begin{aligned}
& \left|\mathbf{k}_{1}\right| \simeq\left|\mathbf{k}_{2}\right|=\frac{\pi}{2 d} \\
& \Rightarrow \phi_{m, n}=\frac{\pi}{2}(m+n)
\end{aligned}
$$

Flux through one unit cell:

$$
\Phi=\phi_{m, n+1}-\phi_{m, n}=\frac{\pi}{2}
$$

depends only on phase difference along y !

Experimental parameters:

$$
\begin{aligned}
& \left|\mathbf{k}_{1}\right| \simeq\left|\mathbf{k}_{2}\right|=\frac{\pi}{2 d} \\
& \Rightarrow \phi_{m, n}=\frac{\pi}{2}(m+n)
\end{aligned}
$$

Flux through one unit cell:

$$
\Phi=\phi_{m, n+1}-\phi_{m, n}=\frac{\pi}{2}
$$

depends only on phase difference along y !

The value of the flux is fully tunable by changing the geometry of the driving-beams!

Study laser-assisted tunneling in the presence of a magnet field gradient

- Initial state: atoms $\left({ }^{87} \mathrm{Rb}\right)$ in 3D lattice only populate even sites

Study laser-assisted tunneling in the presence of a magnet field gradient

- Initial state: atoms $\left({ }^{87} \mathrm{Rb}\right)$ in 3D lattice only populate even sites

Study laser-assisted tunneling in the presence of a magnet field gradient

- Initial state: atoms $\left({ }^{87} \mathrm{Rb}\right)$ in 3D lattice only populate even sites

- Atom population in odd sites vs. modulation frequency

Study laser-assisted tunneling in the presence of a magnet field gradient

- Initial state: atoms $\left({ }^{87} \mathrm{Rb}\right)$ in 3D lattice only populate even sites

- Atom population in odd sites vs. modulation frequency

Sunday 22 June 14

Realization of the Hofstadter-Harper Hamiltonian

$$
\hat{H}=-\sum_{m, n}\left(K \mathrm{e}^{i \phi_{m, n}} \hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}+J \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n}\right)+\text { h.c. }
$$

Scheme allows for the realization of an effective uniform flux of

$$
\Phi=\pi / 2
$$

- Classical:

Charged particle in magnetic field

- Classical:

Charged particle in magnetic field

- Quantum Analogue:
- Initial State:
- Single Atom in the ground state of a tilted plaquette.

$$
\left|\psi_{0}\right\rangle=\frac{|A\rangle+|D\rangle}{\sqrt{2}}
$$

- Classical:

Charged particle in magnetic field

- Quantum Analogue:
- Initial State:
- Single Atom in the ground state of a tilted plaquette.

$$
\left|\psi_{0}\right\rangle=\frac{|A\rangle+|D\rangle}{\sqrt{2}}
$$

- Switch on running-wave to induce tunneling

A Lattice of Plaquettes

Using two superlattices, we realize a lattice whose elementary cell is a 4-site plaquette.

Mean atom position

- Site resolved detection along one direction

S. Fölling et al., Nature (2007); J. Sebby-Strabley et al., PRL (2007)
- Site resolved detection along one direction

S. Fölling et al., Nature (2007); J. Sebby-Strabley et al., PRL (2007)
- Site resolved detection in plaquettes

Mean atom position

- Site resolved detection along one direction

S. Fölling et al., Nature (2007); J. Sebby-Strabley et al., PRL (2007)
- Site resolved detection in plaquettes

- Mean atom position along x and y

$$
\frac{\langle X\rangle}{d_{x}}=\frac{-N_{A}+N_{B}+N_{C}-N_{D}}{2 N} \quad \text { and } \quad \frac{\langle Y\rangle}{d_{y}}=\frac{-N_{A}-N_{B}+N_{C}+N_{D}}{2 N}
$$

Cyclotron orbit

Quantum analogue of

 cyclotron orbit

Parameters:
$J / h=0.5 \mathrm{kHz}$
$K / h=0.3 \mathrm{kHz}$
$\Delta / h=4.5 \mathrm{kHz}$

Observation of the uniformity of the effective flux:

- Superlattice potential shifted by one lattice constant
wns n w

Uniformity of the flux

Observation of the uniformity of the effective flux:

- Superlattice potential shifted by one lattice constant

$$
w \sim \sim \leftrightarrow \sim w
$$

Uniformity of the flux

Observation of the uniformity of the effective flux:

- Superlattice potential shifted by one lattice constant

W W ↔ W W

Observation of the uniformity of the effective flux:

- Superlattice potential shifted by one lattice constant

$$
w \sim \sim w n
$$

Uniformity of the flux

Observation of the uniformity of the effective flux:

- Superlattice potential shifted by one lattice constant

W~ぃ N W N

Sunday 22 June 14

Uniform flux

Quantum Spin Hall Hamiltonian

Value of the flux depends on the internal state of the atom

- $|\uparrow\rangle=\left|F=1, m_{F}=-1\right\rangle$

Quantum Spin Hall Hamiltonian

Value of the flux depends on the internal state of the atom

- $|\uparrow\rangle=\left|F=1, m_{F}=-1\right\rangle$
- $|\downarrow\rangle=\left|F=2, m_{F}=-1\right\rangle$

Uniform flux

Quantum Spin Hall Hamiltonian

Value of the flux depends on the internal state of the atom
$\cdot|\uparrow\rangle=\left|F=1, m_{F}=-1\right\rangle \quad \bullet|\downarrow\rangle=\left|F=2, m_{F}=-1\right\rangle$

Spin-dependent optical potential: $\Delta \Longleftrightarrow-\Delta$

Quantum Spin Hall Hamiltonian

Value of the flux depends on the internal state of the atom

- $|\uparrow\rangle=\left|F=1, m_{F}=-1\right\rangle$
- $|\downarrow\rangle=\left|F=2, m_{F}=-1\right\rangle$

Spin-dependent optical potential: $\quad \Delta \Longleftrightarrow-\Delta$
Spin-dependent complex tunneling amplitudes: $K e^{i \phi_{m n}} \Longleftrightarrow K e^{-i \phi_{m n}}$

Sunday 22 June 14

Value of the flux depends on the internal state of the atom
$\bullet|\uparrow\rangle=\left|F=1, m_{F}=-1\right\rangle \quad \bullet|\downarrow\rangle=\left|F=2, m_{F}=-1\right\rangle$

Spin-dependent optical potential: $\Delta \Longleftrightarrow-\Delta$
Spin-dependent complex tunneling amplitudes: $K e^{i \phi_{m n}} \Longleftrightarrow K e^{-i \phi_{m n}}$
Spin-dependent effective magnetic field: $\quad \Phi=\pi / 2 \Longleftrightarrow \Phi=-\pi / 2$

Quantum Spin Hall Hamiltonian

Time-reversal-symmetric quantum spin Hall Hamiltonian:

$$
\hat{H}_{\uparrow, \downarrow}=-\sum_{m, n}\left(K \mathrm{e}^{ \pm i \phi_{m, n}} \hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}+J \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n}\right)+\text { h.c. }
$$

Uniform flux

Quantum Spin Hall Hamiltonian

Time-reversal-symmetric quantum spin Hall Hamiltonian:

Quantum Spin Hall Hamiltonian

Time-reversal-symmetric quantum spin Hall Hamiltonian:

Bernevig and Zhang, PRL 96, I06802 (2006); N. Goldman et al., PRL (2010)
Sunday 22 June 14

Uniform flux
Spin-dependent cyclotron orbit

- Spin up:

$\left|\Psi_{\uparrow}\right\rangle=(|A\rangle+|D\rangle) / \sqrt{2}$

- Spin up:

- Spin down:

$$
\left|\Psi_{\downarrow}\right\rangle=(|B\rangle+|C\rangle) / \sqrt{2}
$$

Sunday 22 June 14

Uniform flux

Spin-dependent cyclotron orbit

- Spin up:

- Spin down:

- Spin up:

$$
\left|\Psi_{\uparrow}\right\rangle=(|A\rangle+|D\rangle) / \sqrt{2}
$$

- Spin down:

$$
\left|\Psi_{\downarrow}\right\rangle=(|B\rangle+|C\rangle) / \sqrt{2}
$$

Opposite chirality!

Observation of chiral currents in

 bosonic flux laddersM. Atala et al., arXiv: 1402.0819

Flux ladder: experimental realization

- resonant laser-assisted tunneling:

$$
\omega_{1}-\omega_{2}=\Delta / \hbar
$$

- Spatial dependent phase factors

$$
\phi_{n}=n \cdot \pi / 2
$$

- Uniform flux

$$
\Phi=\pi / 2
$$

Experiment: M.Atala et al., arXiv: 1402.0819 (2014) Theory: D. Hügel, B. Paredes, PRA 89, 023619 (2014)
E. Orignac \& T. Giamarchi PRB 64, I445I5 (200I)
A. Tokuno \& A. Georges arXiv: 1403.0413
R.Wei \& E. Mueller arXiv:I405.0230

Sunday 22 June 14

Flux Ladder

Flux ladder: experimental realization

Experiment: M.Atala et al., arXiv:I402.08I9 (2014) Theory: D. Hügel, B. Paredes, PRA 89, 023619 (2014)
E. Orignac \& T. Giamarchi PRB 64, 144515 (200I) A. Tokuno \& A. Georges arXiv: 1403.0413
R.Wei \& E. Mueller arXiv:I405.0230

Flux Ladder Hamiltonian

Hamiltonian of the system written in a simpler theory gauge

$$
\begin{aligned}
H= & -J \sum_{\ell}\left(e^{-i \ell \varphi} \hat{a}_{\ell+1 ; L}^{\dagger} \hat{a}_{\ell ; L}+e^{i \ell \varphi} \hat{a}_{\ell+1 ; R}^{\dagger} \hat{a}_{\ell ; R}\right) \\
& -K \sum_{\ell}\left(\hat{a}_{\ell ; L}^{\dagger} \hat{a}_{\ell ; R}\right)+\text { h.c. }
\end{aligned}
$$

$$
\text { Flux: } \quad \phi=2 \varphi
$$

Hamiltonian of the system written in a simpler theory gauge

$$
\begin{aligned}
H= & -J \sum_{\ell}\left(e^{-i \ell \varphi} \hat{a}_{\ell+1 ; L}^{\dagger} \hat{a}_{\ell ; L}+e^{i \ell \varphi} \hat{a}_{\ell+1 ; R}^{\dagger} \hat{a}_{\ell ; R}\right) \\
& -K \sum_{\ell}\left(\hat{a}_{\ell ; L}^{\dagger} \hat{a}_{\ell ; R}\right)+\text { h.c. }
\end{aligned}
$$

Flux: $\quad \phi=2 \varphi$

Define: $\quad \hat{a}_{q ; \mu}=\sum_{\ell} e^{i q \ell} \hat{a}_{\ell ; \mu}$,
and solve for the ansatz

$$
\left|\psi_{q}\right\rangle=\left(\alpha_{q} \hat{a}_{q ; L}^{\dagger}+\beta_{q} \hat{a}_{q ; R}^{\dagger}\right)|0\rangle
$$

$$
\epsilon_{q}=2 J \cos (q) \cos (\varphi) \pm \sqrt{K^{2}-4 J^{2} \sin ^{2}(\varphi) \sin ^{2}(q)}
$$

Sunday 22 June 14

Two energy bands

$$
\epsilon_{q}=2 J \cos (q) \cos (\varphi) \pm \sqrt{K^{2}-4 J^{2} \sin ^{2}(\varphi) \sin ^{2}(q)}
$$

Ladder Band Structure

Two energy bands

$$
\epsilon_{q}=2 J \cos (q) \cos (\varphi) \pm \sqrt{K^{2}-4 J^{2} \sin ^{2}(\varphi) \sin ^{2}(q)}
$$

$K / J=0.2$

$K / J=0.8$

$K / J=2$

Sunday 22 June 14

Flux Ladder

Ladder Band Structure

Two energy bands

$$
\epsilon_{q}=2 J \cos (q) \cos (\varphi) \pm \sqrt{K^{2}-4 J^{2} \sin ^{2}(\varphi) \sin ^{2}(q)}
$$

$K / J=0$

$K / J=0.8$

$K / J=0.2$

Probability Currents in Ladder

Current along the legs:
$\hat{\mathbf{j}}_{\ell ; \mu}^{y}=-\frac{i}{\hbar}\left(\hat{a}_{\ell+1 ; \mu}^{\dagger} \hat{a}_{\ell ; \mu} H_{\ell \rightarrow \ell+1 ; \mu}-\right.$ h.c $)$
$\mu=(\mathrm{L}=$ left, $\mathrm{R}=$ right $)$

In the experiment total current is measured

$$
\mathbf{j}_{\mathbf{L}}=N_{l e g}^{-1} \sum_{l} \mathbf{j}_{l ; L}^{y}
$$

Chiral current: $\mathbf{j}_{\mathrm{C}}=\mathbf{j}_{\mathrm{L}}-\mathbf{j}_{\mathrm{R}}$

see E. Orignac \& T. Giamarchi PRB 64, I445I5 (200I)
Sunday 22 June 14

Flux ladder

Spin-orbit coupling - short digression

- The flux ladder Hamiltonian can be mapped into a spin-orbit coupled system
- Left right legs are mapped into pseudo-spins:

$$
\hat{a}_{\ell ; R} \rightarrow \hat{a}_{\ell ; \downarrow} \quad \hat{a}_{\ell ; L} \rightarrow \hat{a}_{\ell ; \uparrow}
$$

Flux ladder

Spin-orbit coupling - short digression

- The flux ladder Hamiltonian can be mapped into a spin-orbit coupled system
- Left right legs are mapped into pseudo-spins:

$\hat{a}_{\ell ; L} \rightarrow \hat{a}_{\ell ; \uparrow}$

Spin-Momentum locking: D. Hügel, B. Paredes, PRA 89, 023619 (2014)

Spin-orbit coupling - short digression

- The flux ladder Hamiltonian can be mapped into a spin-orbit coupled system
- Left right legs are mapped into pseudo-spins:
$\hat{a}_{\ell ; R} \rightarrow \hat{a}_{\ell ; \downarrow}$

Spin-Momentum locking: D. Hügel, B. Paredes, PRA 89, 023619 (2014)

Continuum: I. B. Spielman Nature 47I, 83 (201I)

- The flux ladder Hamiltonian can be mapped into a spin-orbit coupled system
- Left right legs are mapped into pseudo-spins:

$$
\hat{a}_{\ell ; R} \rightarrow \hat{a}_{\ell ; \downarrow} \quad \hat{a}_{\ell ; L} \rightarrow \hat{a}_{\ell ; \uparrow}
$$

Spin-Momentum locking: D. Hügel, B. Paredes, PRA 89, 023619 (2014)

Current Measurements: Sequence

How to measure currents in our setup?
\rightarrow project the state into isolated double wells
S. Trotzky et al. Nature Physics 8, 325 (2012)
S. Kessler \& F. Marquardt, arXiv:I309.3890 (2012)

K
Groundstate

> Josephson oscillations in double wells

Current Measurements: Sequence

How to measure currents in our setup?
\rightarrow project the state into isolated double wells
S. Trotzky et al. Nature Physics 8, 325 (2012)
S. Kessler \& F. Marquardt, arXiv:I309.3890 (2012)

Groundstate

> Josephson oscillations in double wells

Sunday 22 June 14

Current Measurements: Sequence

How to measure currents in our setup?
\rightarrow project the state into isolated double wells
S. Trotzky et al. Nature Physics 8, 325 (2012)
S. Kessler \& F. Marquardt, arXiv:I309.3890 (2012)

K

Groundstate
Josephson oscillations in double wells

Current Measurements: Sequence

How to measure currents in our setup?
\rightarrow project the state into isolated double wells
S. Trotzky et al. Nature Physics 8, 325 (2012)
S. Kessler \& F. Marquardt, arXiv:I309.3890 (2012)

K

Groundstate

> Josephson oscillations in double wells

Sunday 22 June 14

Flux Ladder

Double well oscillations - currents

In the experiment we measure the average of all the oscillations on either side of the ladder:

$$
n_{\text {even } ; \mu}(t)=\frac{1}{2}\left[1+\left(n_{\text {even } ; \mu}(0)-n_{\text {odd } ; \mu}(0)\right) \cos (2 \omega t)-\frac{j_{\mu}}{J / \hbar} \sin (2 \omega t)\right]
$$

Oscillations in double wells

- Prepare ground state of the flux ladder with $\mathrm{K} / \mathrm{J}=2$ and project into isolated double wells

- Prepare ground state of the flux ladder with $\mathrm{K} / \mathrm{J}=2$ and project into isolated double wells

When inverting the flux the current gets reversed

Zero flux ladders

- Prepare ground state of the ladder with zero flux
- project into isolated double wells

The chiral current can be reliably calculated by

$$
\begin{aligned}
n_{\text {even } ; \mu}(t) & =\frac{1}{2}\left[1+\left(n_{\text {even } ; \mu}(0)-n_{\text {odd } ; \mu}(0)\right) \cos (2 \omega t)-\frac{j_{\mu}}{J / \hbar} \sin (2 \omega t)\right] \\
& n_{\text {even } ; \mathrm{L}}(t)-n_{\text {even } ; \mathrm{R}}(t)=\frac{\mathbf{j}_{C}}{J / \hbar} \sin (2 \omega t)
\end{aligned}
$$

Extracting the Chiral current

The chiral current can be reliably calculated by

$$
n_{\mathrm{even} ; \mathrm{L}}(t)-n_{\mathrm{even} ; \mathrm{R}}(t)=\frac{\mathbf{j}_{C}}{J / \hbar} \sin (2 \omega t)
$$

Flux Ladder Experimental Results - Momentum Distribution

Summary and Outlook

B New detection method for probability currents

* Measurement of Chiral Edge States in Ladders

B Identification of Meissner-like effect in bosonic Iadder

Outlook:

- Entering the strongly correlated regime
- Chiral Mott Insulators
- Spin Meissner effect
- Connection of chiral ladder states to

Hoftstadter model edge states

- Spin-Orbit Coupling in ID

Probing Band Topology

Measuring the Zak-Berry's Phase of Topological Bands

Berry Phase in Quantum Mechanics

$$
\Psi(R) \rightarrow e^{i\left(\varphi_{\mathrm{Berry}}+\varphi_{\mathrm{dyn}}\right)} \Psi(R)
$$

Adiabatic evolution through closed loop
$\varphi_{\text {Berry }}=\oint_{\mathcal{C}} A_{n}(R) d R=i \oint_{\mathcal{C}}\langle n(R)| \nabla_{R}|n(R)\rangle d R$
$\varphi_{\text {Berry }}=\oint_{\mathcal{A}} \Omega_{n}(R) d A \quad$ Berry Phase
M.V. Berry, Proc. R. Soc. A (1984)

Berry connection

$$
A_{n}(R)=i\langle n(R)| \nabla_{R}|n(R)\rangle
$$

Berry curvature

$$
\Omega_{n, \mu \nu}(R)=\frac{\partial}{\partial R^{\mu}} A_{n, \nu}-\frac{\partial}{\partial R^{\nu}} A_{n, \mu}
$$

$$
\Psi_{k}(\mathbf{r})=e^{i \mathbf{k r}} u_{k}(\mathbf{r}) \quad \text { Bloch wave in periodic potential }
$$

Adiabatic motion in momentum space generates Berry phase!

$$
\Psi_{k}(\mathbf{r})=e^{i \mathbf{k r}} u_{k}(\mathbf{r}) \quad \text { Bloch wave in periodic potential }
$$

Adiabatic motion in momentum space generates Berry phase!

$$
\Psi_{k}(\mathbf{r})=e^{i \mathbf{k} \mathbf{r}} u_{k}(\mathbf{r}) \quad \text { Bloch wave in periodic potential }
$$

Adiabatic motion in momentum space generates Berry phase!

Berry Phase for Periodic Potentials

$$
\Psi_{k}(\mathbf{r})=e^{i \mathbf{k r}} u_{k}(\mathbf{r}) \quad \text { Bloch wave in periodic potential }
$$

Adiabatic motion in momentum space generates Berry phase!

Berry phase is fundamental to characterize topology of energy bands
$n_{\text {Chern }}=\frac{1}{2 \pi} \oint_{B Z} A_{k} d k=\frac{1}{2 \pi} \int_{B Z} \Omega_{k} d^{2} k \quad \leadsto \quad \sigma_{x y}=n_{\text {Chern }} e^{2} / h$
Chern Number (Topological Invariant)
Quantized Hall Conductance
Thouless, Kohmoto, den Nijs, and Nightingale (TKNN), PRL 1982
Kohmoto Ann. of Phys. 1985

$$
\Psi_{k}(\mathbf{r})=e^{i \mathbf{k} \mathbf{r}} u_{k}(\mathbf{r}) \text { Bloch wave in periodic potential }
$$

Adiabatic motion in momentum space generates Berry phase!

$n_{\text {Chern }}=\frac{1}{2 \pi} \oint_{B Z} A_{k} d k=\frac{1}{2 \pi} \int_{B Z} \Omega_{k} d^{2} k \quad \leadsto \sigma_{x y}=n_{\text {Chern }} e^{2} / h$

Chern Number (Topological Invariant)

Quantized Hall Conductance

Thouless, Kohmoto, den Nijs, and Nightingale (TKNN), PRL 1982
Kohmoto Ann. of Phys. 1985
Mention Problem with going on a line is
What is the extension to ID?

going straight means going around!

Band structure has torus topology!

2D Brillouin Zone

going straight means going around!

$$
\varphi_{Z a k}=i \int_{k_{0}}^{k_{0}+G}\left\langle u_{k}\right| \partial_{k}\left|u_{k}\right\rangle d k
$$

Zak Phase - the ID Berry Phase
J. Zak, Phys. Rev. Lett. 62, 2747 (1989)

going straight means going around!

$$
\varphi_{Z a k}=i \int_{k_{0}}^{k_{0}+G}\left\langle u_{k}\right| \partial_{k}\left|u_{k}\right\rangle d k
$$

Band structure has torus topology!

Non-trivial Zak phase:
-Topological Band
-Edge States (for finite system)
-Domain walls with fractional quantum numbers

Zak Phase the ID Berry Phase

J. Zak, Phys. Rev. Lett. 62, 2747 (1989)

Su-Shrieffer-Heeger Model (SSH)

Polyacetylene

W. P. Su, J. R. Schrieffer \& A. J. Heeger Phys. Rev. Lett. 42, 1698 (1979).

$$
H_{S S H}=-\sum_{n}\left\{J \hat{a}_{n}^{\dagger} \hat{b}_{n}+J^{\prime} \hat{a}_{n}^{\dagger} \hat{b}_{n-1}+\text { h.c. }\right\}
$$

Polyacetylene
W. P. Su, J. R. Schrieffer \& A. J. Heeger

Phys. Rev. Lett. 42, 1698 (1979).

$$
H_{S S H}=-\sum_{n}\left\{J \hat{a}_{n}^{\dagger} \hat{b}_{n}+J^{\prime} \hat{a}_{n}^{\dagger} \hat{b}_{n-1}+\text { h.c. }\right\}
$$

Two topologically distinct phases:
DI: $J>J^{\prime}$
D2: $\quad J^{\prime}>J$
$\mathrm{O}_{J}^{\mathrm{O}} \mathrm{O}-\mathrm{J} \underset{J}{\mathrm{O}} \mathrm{O}$

Polyacetylene

W. P. Su, J. R. Schrieffer \& A. J. Heeger Phys. Rev. Lett. 42, 1698 (1979).

$$
H_{S S H}=-\sum_{n}\left\{J \hat{a}_{n}^{\dagger} \hat{b}_{n}+J^{\prime} \hat{a}_{n}^{\dagger} \hat{b}_{n-1}+\text { h.c. }\right\}
$$

Two topologically distinct phases:
DI: $J>J^{\prime}$
$\mathrm{O}-\mathrm{J}-\mathrm{J} \underset{J}{\mathrm{O}} \mathrm{J}$
D2: $J^{\prime}>J$

$$
\delta \varphi_{Z a k}=\varphi_{Z a k}^{D 1}-\varphi_{Z a k}^{D 2}=\pi
$$

Topological properties:
domain wall features fractionalized excitations

Zak phase difference $\delta \varphi_{Z a k}$ is gauge-invariant

SSH Energy Bands - Eigenstates

...ABABA... Lattice Structure....

$$
\sum_{x} \Psi_{x}=\sum_{x} e^{i k x} \times\left\{\begin{array}{l}
\alpha_{k} \\
\beta_{k} e^{i k d / 2}
\end{array}\right.
$$

...ABABA... Lattice Structure.... $\quad \sum_{x} \Psi_{x}=\sum_{x} e^{i k x} \times\left\{\begin{array}{l}\alpha_{k} \\ \beta_{k} e^{i k d / 2}\end{array}\right.$
2×2 Hamiltonian:

$$
\left[\begin{array}{cc}
0 & -\rho_{k} \\
-\rho_{k}^{*} & 0
\end{array}\right]\binom{\alpha_{k}}{\beta_{k}}=\tilde{\epsilon}_{k}\binom{\alpha_{k}}{\beta_{k}}
$$

with

$$
\rho_{k}=J e^{i k d / 2}+J^{\prime} e^{-i k d / 2}=\left|\epsilon_{k}\right| e^{i \theta_{k}}
$$

...ABABA... Lattice Structure....

$$
\sum_{x} \Psi_{x}=\sum_{x} e^{i k x} \times\left\{\begin{array}{l}
\alpha_{k} \\
\beta_{k} e^{i k d / 2}
\end{array}\right.
$$

Eigenstates

$\binom{\alpha_{k, \mp}}{\beta_{k, \mp}}=\frac{1}{\sqrt{2}}\binom{ \pm 1}{e^{-i \theta_{k}}}$

SSH Energy Bands - Eigenstates

...ABABA... Lattice Structure....
Eigenstates

$$
\sum_{x} \Psi_{x}=\sum_{x} e^{i k x} \times\left\{\begin{array}{l}
\alpha_{k} \\
\beta_{k} e^{i k d / 2}
\end{array}\right.
$$

$$
\binom{\alpha_{k, \mp}}{\beta_{k, \mp}}=\frac{1}{\sqrt{2}}\binom{ \pm 1}{e^{-i \theta_{k}}}
$$

Adiabatic evolution in momentum space
...ABABA... Lattice Structure....

$$
\sum_{x} \Psi_{x}=\sum_{x} e^{i k x} \times\left\{\begin{array}{l}
\alpha_{k} \\
\beta_{k} e^{i k d / 2}
\end{array} \quad\binom{\alpha_{k, \mp}}{\beta_{k, \mp}}=\frac{1}{\sqrt{2}}\binom{ \pm 1}{e^{-i \theta_{k}}}\right.
$$

Eigenstates

Adiabatic evolution in momentum space

Sunday 22 June 14
...ABABA... Lattice Structure....
Eigenstates

$$
\sum_{x} \Psi_{x}=\sum_{x} e^{i k x} \times\left\{\begin{array}{l}
\alpha_{k} \\
\beta_{k} e^{i k d / 2}
\end{array} \quad\binom{\alpha_{k, \mp}}{\beta_{k, \mp}}=\frac{1}{\sqrt{2}}\binom{ \pm 1}{e^{-i \theta_{k}}}\right.
$$

$$
\varphi_{Z a k}=i \int_{k_{0}}^{k_{0}+G}\left(\alpha_{k}^{*} \partial_{k} \alpha_{k}+\beta_{k}^{*} \partial_{k} \beta_{k}\right) d k
$$

...ABABA... Lattice Structure....

$$
\sum_{x} \Psi_{x}=\sum_{x} e^{i k x} \times\left\{\begin{array}{l}
\alpha_{k} \\
\beta_{k} e^{i k d / 2}
\end{array}\right.
$$

Eigenstates
$\binom{\alpha_{k, \mp}}{\beta_{k, \mp}}=\frac{1}{\sqrt{2}}\binom{ \pm 1}{e^{-i \theta_{k}}}$

$$
\varphi_{Z a k}=\frac{1}{2} \int_{k_{0}}^{G+k_{0}} \partial_{k} \theta_{k} d k
$$

Sunday 22 June 14

SSH Energy Bands - Eigenstates

...ABABA... Lattice Structure....
Eigenstates

$$
\sum_{x} \Psi_{x}=\sum_{x} e^{i k x} \times\left\{\begin{array}{l}
\alpha_{k} \\
\beta_{k} e^{i k d / 2}
\end{array}\right.
$$

$$
\binom{\alpha_{k, \mp}}{\beta_{k, \mp}}=\frac{1}{\sqrt{2}}\binom{ \pm 1}{e^{-i \theta_{k}}}
$$

$$
\mathrm{D} \|: J>J^{\prime} \quad \varphi_{Z a k}^{D 1}=\frac{\pi}{2}
$$

SSH Energy Bands - Eigenstates

...ABABA... Lattice Structure....

$$
\sum_{x} \Psi_{x}=\sum_{x} e^{i k x} \times\left\{\begin{array}{l}
\alpha_{k} \\
\beta_{k} e^{i k d / 2}
\end{array}\right.
$$

Eigenstates
$\binom{\alpha_{k, \mp}}{\beta_{k, \mp}}=\frac{1}{\sqrt{2}}\binom{ \pm 1}{e^{-i \theta_{k}}}$

D2: $J^{\prime}>J \quad \varphi_{Z a k}^{D 2}=-\frac{\pi}{2}$

$$
H_{\mathrm{SSH}}=-\sum_{n}\left\{J a_{n}^{\dagger} b_{n}+J^{\prime} a_{n}^{\dagger} b_{n-1}+\text { h.c. }\right\} \quad 767 \mathrm{~nm}
$$

DI: $J>J^{\prime}$
D2: $J^{\prime}>J$

Phase shift

$$
\delta \varphi_{Z a k}=\varphi_{Z a k}^{D 1}-\varphi_{Z a k}^{D 2}=\pi
$$

DI: $J>J^{\prime} \quad$ Spin-dependent Bloch oscillations + Ramsey interferometry

Prepare BEC in state $|\sigma, k\rangle=|\downarrow, 0\rangle, \quad$ with $\sigma=\uparrow, \downarrow$

Dll: $J>J^{\prime}$

Create coherent superposition $\frac{1}{\sqrt{2}}(|\uparrow, 0\rangle+|\downarrow, 0\rangle)$

DI: $J>J^{\prime}$

DI: $J>J^{\prime}$

DI: $J>J^{\prime}$

DI: $J>J^{\prime}$

DI: $J>J^{\prime}$

Sunday 22 June 14

Bery Phose Measuring the Berry-Zak Phase (SSH Model)
DI: $J>J^{\prime} \quad \rightarrow \quad$ D2: $J^{\prime}>J$

$\mathrm{DI}: J>J^{\prime} \rightarrow \quad \rightarrow \quad \mathrm{D} 2: J^{\prime}>J$

D2: $J^{\prime}>J$

Apply magnetic field gradient \rightarrow adiabatic evolution in momentum space

D2: $J^{\prime}>J$

Apply magnetic field gradient \rightarrow adiabatic evolution in momentum space

D2: $J^{\prime}>J$

$$
\delta \varphi_{Z a k}=\varphi_{Z a k}^{D 1}-\varphi_{Z a k}^{D 2}+\varphi_{Z e e m a n}
$$

D2: $J^{\prime}>J$

Spin-Echo pulse

$$
\delta \varphi_{Z a k}=\varphi_{Z a k}^{D 1}-\varphi_{Z a k}^{D 2}+\varphi_{Z,<} \operatorname{man}
$$

D2: $J^{\prime}>J$

MW $\pi / 2$-pulse, with phase $\varphi_{\text {MW }}$
Detect phase difference with Ramsey interferometry

$$
\delta \varphi_{Z a k}=\varphi_{Z a k}^{D 1}-\varphi_{Z a k}^{D 2}
$$

Phase of reference fringe:

$$
\delta \varphi \neq 0
$$

Average of five individual measurements
Exp. imperfections: - Small detuning of the MW-pulse

- Magnetic field drifts

Measured Topological invariant:
Zak phase difference

$$
\delta \varphi_{Z a k}=0.97(2) \pi
$$

obtained from 14
independent measurements

Measuring the Zak Phase (SSH Model)

Measured Topological invariant:

 Zak phase difference$$
\varphi_{Z a k}^{D 1}-\varphi_{Z a k}^{D 2}=\pi
$$

$$
\delta \varphi_{Z a k}=0.97(2) \pi
$$

obtained from lu independent measurements

Zak Phase becomes fractional for heteropolar dimerization!

Probability Density of Eigenstates

Topologically Trivial

Topologically Non-Trivial

R. Rajaraman \& J. Bell, Phys. Lett B 1982, Nucl. Phys. B 1983

Sunday 22 June 14

R. Rajaraman \& J. Bell, Phys. Lett B 1982, Nucl. Phys. B 1983

'Aharonov-Bohm' Interferometer for Measuring Berry Curvature

Lattice: A and B degenerate sublattices

$$
H=H_{0}-J \sum_{\mathbf{R}} \sum_{i=1}^{3}\left(\hat{a}_{\mathbf{R}} \hat{b}_{\mathbf{R}+\mathbf{d}_{i}}^{\dagger}+\text { h.c. }\right)
$$

B

Reciprocal Space

Scalar \& Geometric Features

Band structure characterized by scalar \& geometric features!
Eigenstates: Bloch waves $\psi_{\mathbf{q}, n}(\mathbf{r})=e^{i \mathbf{q} \mathbf{r}} u_{\mathbf{q}, n}(\mathbf{r})$

Scalar Features

Dispersion relation
$E_{\mathbf{q}, n}$

Geometric Features

Berry connection
$\mathbf{A}_{n}(\mathbf{q})=i\left\langle u_{\mathbf{q}, n}\right| \nabla_{\mathbf{q}}\left|u_{\mathbf{q}, n}\right\rangle$
Berry curvature
$\Omega_{n}(\mathbf{q})=\nabla_{\mathbf{q}} \times \mathbf{A}_{\mathbf{n}}(\mathbf{q}) \cdot \mathbf{e}_{z}$

$\varphi_{A B}=\frac{q}{\hbar} \oint_{C} \mathbf{A}(\mathbf{r}) d \mathbf{r}=\frac{q}{\hbar} \int_{S} \nabla \times \mathbf{A}(\mathbf{r}) d^{2} r$

$$
\varphi_{A B}=\frac{q}{\hbar} \int \mathbf{B} d \mathbf{S}=2 \pi \Phi / \Phi_{0}
$$

Aharonov-Bohm Phase

BandTopolgy 'Aharonov Bohm' Interferometer in Momentum Space

Momentum Space

$\varphi_{A B}=\frac{q}{\hbar} \oint_{C} \mathbf{A}(\mathbf{r}) d \mathbf{r}=\frac{q}{\hbar} \int_{S} \nabla \times \mathbf{A}(\mathbf{r}) d^{2} r \quad \varphi_{\text {Berry }}=\oint_{C} \mathbf{A}_{n}(\mathbf{q}) d \mathbf{q}=\int_{S_{q}} \nabla \times \mathbf{A}_{n}(\mathbf{r}) d \mathbf{S}_{q}$

$$
\varphi_{A B}=\frac{q}{\hbar} \int \mathbf{B} d \mathbf{S}=2 \pi \Phi / \Phi_{0}
$$

Aharonov-Bohm Phase

$$
\varphi_{\text {Berry }}=\int \Omega_{n}(\mathbf{q}) d s_{q}
$$

Berry Phase

Berry curvature concentrated to Dirac cones, alternating in sign!

Breaking time reversal or inversion symmetry gaps Dirac cones
and spreads Berry curvature out

Hexagonal Lattice Hamiltonian

$$
H(\mathbf{q})=\left(\begin{array}{cc}
\Delta & f(\mathbf{q}) \\
f(\mathbf{q}) & -\Delta
\end{array}\right)
$$

Expanding momenta close to K Dirac point $H(\tilde{\mathbf{q}})=\left(\begin{array}{cc}0 & \tilde{q}_{x}+i \tilde{q}_{y} \\ \tilde{q}_{x}-i \tilde{q}_{y} & 0\end{array}\right)$

Eigenstates

$$
u_{\mathbf{K}, \tilde{\mathbf{q}}}^{ \pm}=\frac{1}{2}\left(e^{i \theta(\mathbf{q}) / 2} \pm e^{-i \theta(\mathbf{q}) / 2}\right)
$$

Berry Phase around K-Dirac cone

$$
\varphi_{\text {Berry }, \mathbf{K}}=\oint_{C} \mathbf{A}(\mathbf{q}) d \mathbf{q}=\pi
$$

Berry Phase around K'-Dirac cone

$$
\varphi_{\text {Berry }, \mathbf{K}^{\prime}}=-\pi
$$

Forces applied by lattice acceleration and magnetic gradients!

$\square^{\pi / 2,0} \ldots$

Forces applied by lattice acceleration and magnetic gradients!

Forces applied by lattice acceleration and magnetic gradients!

$\ldots \quad \square^{\pi, 0} \quad \ldots$

Forces applied by lattice acceleration and magnetic gradients!

The Interferometer

Forces applied by lattice acceleration and magnetic gradients!

Band Topology

Interferometry Results

Band Topology

Interferometry Results

Band Topology
Interferometry Results

Stückelberg Interferometry

Lattice acceleration allows for arbitrary path choice

Has allowed us to detect off-diagonal Berry connection through Wilson loops!

Outlook

- Rectified Flux, Hofstadter Butterfly
- Novel Correlated Phases in Strong Fields,

Transport Measurements

- Adiabatic loading schemes
- Spectroscopy of Hoftstadter bands
- Novel Topological Insulators
- Image Edge States - directly/spectroscopically
- Measure spatially resolved full current distribution
- Non-equilibrium dynamics in gauge fields
- Thermalization?

Gauge Field Team

From left to right:
Christian Schweizer
Monika Aidelsburger
I.B.

Michael Lohse
Marcos Atala
Julio Barreiro

Sunday 22 June 14

2D Berry Curvature Interferometer Team

Martin Reitter

IB

Monika Schleier-Smith

Ulrich Schneider

